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Abstract. We consider stochastic cellular networks where base stations loca-
tions form a homogeneous Poisson point process and each mobile is attached

to the base station that provides the best mean signal power. The mobile is

in outage if the SINR falls below some threshold. The handover decision has
to be made if the mobile is in outage during several time slots. The outage

probability and the handover probabilities are evaluated taking into account

the effect of path loss, shadowing, Rayleigh fast fading, frequency factor reuse
and conventional beamforming. The main assumption is that the Rayleigh

fast fading changes at each time slot while other network components remain

static during the period of study.

1. Introduction

In wireless networks, relative locations of both customers and resources play a
crucial role in the performance of the whole system. Base stations (BS) are often
assumed to be deployed according to an hexagonal pattern.

Figure 1. 2G and 3G base stations locations in Paris. Source : cartoradio.fr

As shown by Figure 1, this approach fails to capture the irregularity and random-
ness of a real network. Recently, stochastic model of nodes gained some interest.
The most prevalent stochastic process in use is the Poisson point process since it
allows some flexibility in the parameter choice and usually leads to elegant closed
formulas. A configuration ω in a bounded domain C of the plane which represents
for instance a district or a town, is a finite set of points ω = {x1, · · · , xn}. Let
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ΓC the set of configuration on C, for a positive real λ, the Poisson distribution of
intensity λ over ΓC is the probability measure P such that: 1) for any A ⊂ C, the
integer-valued random variable ω(A) which represents the number of points of ω
which fall into A is Poisson distributed with parameter λ.area(A), 2) if A and B are
two disjoint subsets of C, the random variables ω(A) and ω(B) are independent.
See [2, 3] for properties and applications of this model.

back to wireless network modeling, it is frequently assumed that a mobile once
active in the network is served by the nearest BS. This is justified if we consider a
path loss exponent model of radio propagation and if we remove the effect of fading.
This assumption implies that cells (i.e. region of the plane served by each BS) are
Poisson-Voronoi cells (for example, [2], page 63). We here consider that the mobile
is served by the BS that provides the strongest mean signal power in time (best
server). The mean signal power depends both on path loss and slow fading. This
choice of serving BS can be made either by the mobile or the operator. Thus, our
model can be thought as a generalization of the Poisson-Voronoi cell model.

Once the mobile is attached to a particular BS, the signal received from this
BS is the useful signal whereas the cumulative signal received from other BS using
the same frequency is considered as interference. It is not longer true when we
consider advanced systems in which base stations are cooperative; however, our
model covers almost all existing cellular networks. To model the frequency reuse,
we add an independent mark to the atoms of our Poisson point process of BSs. A
BS interferes with the other BSs that have the same mark. That is to say that
we put a label on each position, thus the configurations become sets of the form
{(x1,m1), · · · , (xn,mn)}. Marks are said to be independent if the random choice
of mj depends only on xj and not on the other atoms (see again [2] for details).
In addition to the interference, the local noise can intervene. For a mobile to
communicate with a BS, the signal-to-noise-plus-interference ratio (SINR) at this
mobile location must exceed some threshold; in this case the mobile is covered,
otherwise, it is said to be in outage. If the mobile is in outage during a period of
time, i.e for several consecutive time slots, a handover decision has to be made.
It can be made by the mobile, the served BS, the network system or even by a
neighboring BS. In this paper, we are interested in the calculation of the outage
probability and the handover probability in explicit forms. Since we assume a
homogeneous Poisson point process of BSs, but not fixed patterns, these results
does not depend on the position of the mobile and can be considered as global, i.e.
valid for all MSs.

In [9], Haenggi showed that the path loss fading process is a Poisson point process
on the real line in the case of path loss exponent model. In [1], [2] and [3], Baccelli
and al. established closed form expressions for outage probability of networks where
each node tries to connect with a destination at fixed distance or with the nearest
node in case of Rayleigh fading. In [6], Kelif et al. found an expression of the
outage probability for cellular networks by mean of the so-called fluid model. In [5],
Ganti et al. gave some interesting results about temporal and spatial correlation of
wireless networks. In [10] and [11], outage probability of regular hexagonal cellular
networks with reuse factor and adaptive beamforming was studied by simulation.

This paper is organized as follows. In Section 2 we describe our model. In Section
3, we calculate the outage probability. In Section 4, we calculate the handover
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probability. Section 5 shows the numerical results and the difference between our
model and the traditional hexagonal model.

2. System model

Given a BS (base station) located at y, of transmission power P , and an MS (mo-
bile station) located at x, the mobile’s received signal has average power L(y−x)P
where L is the path loss function. The most used path loss function is the path loss
exponent law L(z) = K|z|−γ where |z| refers to the Euclid norm of z. The param-
eter K depends on the characteristics of the antenna and the path loss exponent γ,
typically in the range (2, 4), characterizes the environment under study. Actually,
this path loss model gives closed formulas but is is not correct for small distances
as it implies an almost infinite power close to the BS. It is thus often preferable to
consider the modified path loss exponent model L(z) = K(max{R0, |z|})−γ where
R0 is a reference distance. In addition to the deterministic large scale effect, there
are two random factors that have to be considered. The first one, called shadow-
ing, represents the signal attenuation caused by large obstacles such as buildings.
The second, called fast fading, represents the impact of multi-path. The shadow-
ing can be considered as constant during a period of communication of a mobile
while the fast fading changes at each time slot. If no beamforming technique is
used, the received signal power from the BS y to the MS x at the time slot l is
Pyx[l] = ry,x[l]hyxL(y − x)P, where {hyx}x,y∈R2 are copies of a random variable H
while {ryx[l]} are independent copies of R which is an exponential random variable
of mean 1/µ. We suppose that for each x, the random variables (hyx, y ∈ R2) are
independent, and pH (resp. FH) denotes their PDF (resp. complementary CDF).
The most used shadowing random model is log-normal shadowing, for which H
is a log-normal random variable. In this case, we can write H ∼ 10G/10 where
G ∼ N (0, σ2). We now consider the conventional beamforming technique with nt
antennas. The power radiation pattern for a conventional beam-former is the prod-
uct of the array factor times the radiation pattern of a single antenna. If φ is the
direction towards which the beam is steered, the array gain in the direction θ is
given by ( [11], [10]):

sin2(nt
π
2 (sin(θ)− sin(φ))

nt sin2(π2 (sin(θ)− sin(φ))
g(θ),

where g(θ) is the gain in the direction θ with one antenna. For simplicity we assume
that the BS always steers to the direction of the served MS and the gain g(θ) is
positive constant on (−π/2, π/2) and 0 otherwise (zero front-to-back power ratio).
Hence, the interference signal power from a BS to an MS attached to another BS
using the same frequency, in the direction θ, will be reduced by a factor of:

a(θ) = 1{θ∈(−π/2,π/2)}
sin2(nt

π
2 (sin(θ)))

n2t sin2(π2 (sin(θ)))
·

If the beamforming technique is not used a(θ) = 1. We assume that the bandwidth
is split in k non interfering sub-bands.

Thus, for a mobile at position x, any BS is characterized by three quantities:
Its position y, the sub-band in which it operates e and ξ−1 = hxyL(y − x)P . Once
being in the network, the mobile x is attached to (or served by) the BS that provides
the best average signal strength in time: it is attached to the BS which has the
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minimal ξ. We denote by y0 the position of the chosen BS and by (yn, n ≥ 1) the
positions of the other BSs. Sub-bands and ξ’s are indexed accordingly.

Assume that each BS using frequency e0 is always serving an MS, and denote
by θi the argument of the segment [x, yi]. The SINR at time slot l is given by:

(1) sx[l] =
ry0x[l]ξ−10

N +
∑
i 6=0 1{ei=e0}a(θi)ryix[l]ξ−1i

where N is the noise power, assumed to be constant. The term

Ix =
∑
i 6=b(x)

1{ei=e0}a(θi)ryix[l]ξ−1i

is the sum of all interference. In order to communicate with the attached BS, the
SINR must not fall below some threshold T .

We assume that the base stations are distributed in the plane according to a
Poisson point process ΠB of intensity λB . The frequency ei at which operates yi
is chosen uniformly in {1, · · · , k} where k is the frequency reuse factor. The BSs
that have the same mark interfere between themselves. Our reuse model can be
considered as a worst case scenario since the sub-bands are distributed at random,
in contrast with planned network patterns where frequencies are attributed to BSs
in order to minimize interferences. The subsequent computations rely mainly on
the following theorem.

Theorem 1. The family of random variables Ξ = {(hy,xL(y − x)P )−1, y ∈ ΠB}
is a Poisson point process on R+ with intensity dΛ(t) = λBB

′(t)dt where B(β) =∫
R2 FH((L(z)Pβ)−1) dz.

Proof. Define the marked point process Πx = {yi, hyix}∞i=0. It is a Poisson point
process of intensity λBdy ⊗ fH(t)dt because the marks are independent and iden-
tically distributed. Consider the probability kernel p((z, t), A) = 1{(L(z)Pt)−1∈A}
for all sets A ⊂ R+ and apply the displacement theorem [2, Theorem 1.3.9], to
obtain that Ξ is a Poisson point process whose intensity measure we denote by Λ.
Moreover, for any β

Λ([0, β]) = λB

∫
R2⊗R

1{t≥(βP.L(z)P )−1}pH(t)dzdt

= λB

∫
R2

FH((βL(z)P )−1)dz = λBB(β).

This concludes the proof. �

By straightforward quadatures, we get the following proposition.

Proposition 1. If L(z) = K(max{R0, |z|})−γ then:

(2) B(β) = C1β
2
γ

∫ ∞
R
γ
0

βPK

t
2
γ pH(t)dt,

where C1 = π(PK)
2
γ . For log-normal shadowing H ∼ 10G/10 where G ∼ N (0, σ2)

and we have:

(3) B(β) = C1β
2
γ e(

2σ1
γ )2Q(

− lnβ − ln(PKR−γ0 )

σ1
− 2σ1

γ
)

where Q(u) = 1√
2π

∫∞
u
e−u

2/2du and σ1 = σ ln 10
10 .
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For the exponent pathloss model, it is sufficient to put R0 = 0 in the above
formulas. This particular result could be derived from [9]. We observe that the

distribution of the point process Ξ does depend only on E(H
2
γ ) but not on the

distribution of H itself. This phenomenon can be explained as in [4, Page 159].

3. Outage analysis

The mobile at x suffers an outage at time slot l whenever its SINR falls below
a threshold T at this slot. For the sake of notations, in this Section, we drop the
index l as it is fixed.

Theorem 2. The outage probability is given by

(4) po := P(sx < T ) = 1 − λB

∫ ∞
0

B′(β)e−λBB(β)−NTµβ− λB
2πkD(β) dβ

where D(β) =
∫ π
−π dθ

∫∞
β
B′(ξ)(1 + ξ/Tβa(θ))−1 dξ.

Proof. Since ry0x is an exponential r.v. of mean 1/µ we have:

P(sx ≥ T |ξ0 = β) = P(ry0x ≥ Tβ(N + Ix(β)) | ξ0 = β)

= E(e−µTβ(N+Ix(β)) | ξ0 = β)

= e−NTµβLIx(β)(Tµβ)

where Ix(β) is the distribution of the random variable Ix given (ξ0 = β)) and LIx(β)
is its Laplace transform. Given (ξ0 = β), according to strong Markov property, the
point process {ξi}i>0 is a Poisson point process on (β,∞) with intensity λBB

′(ξ)dξ.
By thinning, the point process {ξi}{i>0,ei=e0} is a Poisson point process on (β,∞)

with intensity k−1λBB
′(ξ)dξ. Hence, LIx(β) can be calculated as follows (see [2]):

LIx(β)(u) = exp

(
−
∫ ∞
β

λB
2πk

B′(ξ)(1− E(e−a(θ)uξ
−1R))dξ

)
= exp

(
− λB

2πk

∫ ∞
β

B′(ξ)dξ

∫ ∞
0

dr

∫ π

−π
µe−µr(1− e−a(θ)urξ

−1

)dθ

)
= exp

(
− λB

2πk

∫ π

−π
dθ

∫ ∞
β

B′(ξ)
dξ

1 + ξµ(ua(θ))−1

)
.

Thus, we get

(5) P(sx ≥ T |ξ0 = β) = exp

(
−NTµβ − λB

2πk
D(β)

)
.

Since the distribution density of ξ0 is λBB
′(β)e−λBB(β), by averaging over all ξ0

we obtain (4). �

Proposition 2. In the interference-limited regime (N = 0), we have

(6) po(T ) = 1− λB
∫ ∞
0

B′(β)e−λBB(β)− λB
2πkD(β)dβ.

If L(z) = K|z|−γ we have:

(7) po(T ) = 1−
∫ ∞
0

e−Mα−Gα
γ
2 dα
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whereM := M(k, T, γ) = 1+ 1
2πk

∫ π
−π dθ

∫∞
1

du

1+(T.a(θ))−1u
γ
2
and G = NTµ(λBC)−

γ
2 .

If L(z) = K|z|−γ and N = 0 we have:

(8) po(T ) = 1− 1

M
·

Some interesting facts are observed from these results:

• Rewrite the expression of SINR as

sx[l] =
ry0x[l]ξ−10

µN +
∑
i 6=0 1{ei=e0}a(θi)ryix[l]ξ−1i

where ry0x[l] = µryix[l]. Since ryx[l] is an exponential random variable of
mean 1/µ, ry0x[l] is an exponential random variable of mean 1. Hence by
the above equation it is expected that the outage probability depends on
the product µN but not directly on µ and N . It is an increasing function
of Nµ which is confirmed by (4). The fact that the outage probability is
an increasing function of µ and N is quite natural, increasing of the noise
or of the fast fading influence always deteriorate the system performances.
• It is also expected that in the interference limited case (N = 0) the outage

probability does not depend on µ. It is confirmed by (6). Physically it
means that in the absence of noise, the fast fading modifies the channel
(from the MS to each BS) characteristics by the same factor, thus the
SINR does not change.
• In the interference limited scenario with the exponent pathloss model, the

outage probability does not depend neither on µ, nor on the BS density λB
and nor on the distribution of shadowing H. It is due to the scaling prop-
erties of the pathloss function and of the Poisson point process. The outage
probability is a decreasing function of the pathloss exponent γ, reflecting
the fact that bad propagation environment deteriorates the received SINR.
• In the presence of noise N > 0 and still for the exponent pathloss model,

the outage probability is an increasing function of λB . Hence, it can be
thought that the more an operator installs BSs, the better the network is.
In addition, if the density of BSs goes to infinity then outage will never
occur. However it is not true. In fact, if the density of BSs is very high, the
distances between a MS and BSs tend to be relatively small. Hence, the
exponent pathloss model is no longer valid since it is not accurate at small
distances. If the modified exponent pathloss is used, the outage probability
must converge to 0. The outage probability is also an increasing function

of E(H
2
γ ), and if the shadowing H follows log-normal distribution then

the outage probability will be an increasing function of σ. We recover an
other well known fact: the increasing of uncertainty of the radio channel
deteriorates the performance of the network.

4. Handover analysis

If the MS is in outage for n consecutive time slots, a handover decision has to
be made. Keep in mind that only the Rayleigh fast fading changes at each time
slot. Let Al be the event that the mobile is in outage in the time slot l, and Acl
its complement and observe that in fact P(∩mi=1A

c
ji

) = P(∩mi=1A
c
i ). By definition
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pho := P(∩ni=1Al+i−1) = P(∩ni=1Ai). We have

pho = 1 +

n∑
m=1

(−1)m
∑

j1 6=...6=jm∈{1,..,n}

P(∩mi=1A
c
ji)

= 1 +

n∑
m=1

(−1)m
n!

m!(n−m)!
P(∩mi=1A

c
i )·

Theorem 3. The handover probability is given by:

pho = 1 +

n∑
m=1

(−1)m
n!

m!(n−m)!
qm,

where qm = P(∩mi=1A
c
i ) is given by:

qm =

∫ ∞
0

λBB
′(β)e−λBB(β)−NTµβ− λB

2πkDm(β)dβ,

and Dm(β) =
∫ π
−π dθ

∫∞
β
B′(ξ)(1− ( 1

1+Tβa(θ)ξ−1 )m)dξ.

Proof. We need to calculate the probability P(∩mi=1A
c
i ) that is the probability that

the mobile is covered in m different time slots.

P(∩mi=1A
c
i |ξ0 = β) = P(sx[1] ≥ T, ..., sx[m] ≥ T |ξ0 = β)

= P(ry0x[i] ≥ β(TN + Ix[i]), i = 1 . . .m|ξ0 = β)

= E(e−µ(mTNβ+
∑m
i=1 Ix(β)[i])|ξ0 = β)

= e−mNTµβL∑m
i=1 Ix(β)[i]

(Tµβ)

where Ix(β)[i] is the distribution of the random variable Ix[i] given (ξ0 = β). We
have :

m∑
i=1

Ix(β)[i] =

∞∑
j=1

1{ei=e0}ξ
−1
i a(θi)(

m∑
i=1

ryix[i])·

As the random variables ryix[i] are independent copies of the exponential random
variable R, the random variables

∑m
i=1 ryix[i] are also i.i.d and the common Laplace

transform of the latter is :

L∑m
i=1 ryix[i]

(u) = (LR(u))m = (
µ

µ+ u
)m·

The Laplace transform of
∑m
i=1 Ix(β)[i] is now:

L∑m
i=1 Ix(β)[i]

(u) = e
− λB

2πk

∫ π
−π dθ

∫∞
β
B′(ξ)(1−( µ

µ+a(θ)ξ−1u
)m)dξ·

Proceeding as for Theorem 2, we get

qm =

∫ ∞
0

λBB
′(β)e−λBB(β)−NTµβ− λB

2πkDm(β)dβ·

The result follows. �

We can obtain more closed expression for qm in some special cases.
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Proposition 3. In the interference limited regime N = 0, we have:

qm =

∫ ∞
0

λBB
′(β)e−λBB(β)− λB

2πkDm(β)dβ·

If L(z) = K|z|−γ then:

qm =

∫ ∞
0

e−Mmα−Gα
γ
2 dα

where Mm = 1 + 1
2πk

∫ π
−π dθ

∫∞
1

(1− ( 1

1+Ta(θ)u−
γ
2

)m)du.

If N = 0 and L(z) = K|z|−γ we have: qm = 1/Mm.

From these computations, the same kind of conclusions as for outage probability
can be drawn.

5. Numerical results and comparison to the hexagonal model

We place a MS at the origin o and consider a region B(o,Rg) where Rg =
10, 000(m). The BSs are distributed according to a Poisson point process in this
region. The path loss exponent model is considered. The default values of the
model parameters are K = −20 dB, P = 0 dB, nt = 8 and µ = 1.

In the literature, the hexagonal model is widely used and studied so we would
like to compare the two models. For a fair comparison, the density of BSs must be
chosen to be the same, i.e the area of an hexagonal cell must be 1/λB . Unlike the
Poisson model where each BS is randomly assigned a frequency, in the hexagonal
model, the frequencies are well assigned so that an interfering BS is far from the
transmitting BS and BSs of different frequency are grouped in reuse patterns. The
reuse factor k in the hexagonal model is determined by k = i2 + j2 + ij where
integers i, j are the relative location of co-channel cell.

Figure 2 shows the outage probability versus the SINR threshold of the Poisson
model and the hexagonal model in the case k = 7. As we can see, the outage
probability in the case of Poisson model is always greater than that of hexagonal
model as expected. The difference is about 8 (dB) in the case γ = 4 and 6(dB) in
the case γ = 3.

In Figure 4, we can see that the outage probability is a decreasing function of γ
as theoretically observed. In Figure 5, we see if the reuse factor k increases, the MS
has to do less handover. Thus, increasing the reuse factor has a positive effect on
the system performance not only in term of outage but also in term of handover.

6. Conclusion

In this paper we have investigated the outage and handover probabilities of
wireless cellular networks taking into account the reuse factor, the beamforming, the
path loss, the slow fading and the fast fading. We valid our model by simulation and
compare numerical results to that of hexagonal model. The closed form expressions
derived in the this paper can be considered as an upper bound for a real system.
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