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ABSTRACT

We propose in this paper a simple fusion framework for un-
derdetermined audio source separation. This framework can
be applied to a wide variety of source separation algorithms
providing that they estimate time-frequency masks. Fusion
principles have been successfully implemented for classifi-
cation tasks. Although it is similar to classification, audio
source separation does not usually take advantage of such
principles. We thus introduce some general fusion rules in-
spired by classification and we evaluate them in the context
of voice extraction. Experimental results are promising as
our proposed fusion rule can improve separation results up to
1 dB in SDR.

Index Terms— audio source separation, data fusion, non-
negative matrix factorization, machine learning

1. INTRODUCTION

Underdetermined audio source separation is an important
field of research which has reached sufficient quality to chal-
lenge a variety of industrial issues. Numerous algorithms
and models have been proposed in the literature. They ex-
ploit different features, such as sparsity [1, 2], morphological
characteristics [3, 4, 5] or perceptual grouping [6], in order
to segregate each source from the others. Efficient methods
have usually been developed for a specific source separation
problem and their performance also depends on the tuning of
the models and the algorithms.

To a certain extent, audio source separation can be seen
as a classification problem: while a classifier is used to assign
an object to a class, a separator, i.e., an algorithm for source
separation, assigns sound events such as spectral shapes or
time-frequency bins to a source amongst others. Moreover,
as for source separation algorithms, classifiers are often de-
signed and tuned for a specific task.Yet the diversity of re-
sults given by different classifiers on a same task has led re-
searchers to combine classifiers [7] and to develop the prin-
ciples of data fusion for classification [8]. In particular, late
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fusion approaches focus on the decision level: they combine
the decisions taken by several classifiers in order to formu-
late a new decision which is expected to be more reliable.
Each classifier having its strengths and weaknesses, late fu-
sion tends to reinforce decisions by exploiting complemen-
tary and contradictory information given by distinct classi-
fiers.

Although it is similar to classification, audio source sep-
aration barely exploits fusion principles. Kirbiz et al. im-
plemented in [9] a form of late fusion: NMF (Non-negative
Matrix Factorization) based separation is applied in paral-
lel to different time-frequency resolution spectrograms and
the resulting time-domain source estimates are combined
through an adaptive filter bank. Their paper thus applies
data fusion principles to an audio source separation prob-
lem thanks to the design of a specific algorithm. In image
processing, Meganem et al. also propose in [10] to compute
several source estimates thanks to different analysis param-
eters and to use a correlation measure in order to select the
best estimate.

We introduce in this article some simple late fusion ap-
proaches applied to multiple parallel separation algorithms
in a way similar to classifier fusion. We focus on algorithms
based on time-frequency masking so that fusion consists of
combining estimated masks. Our experiments show that the
proposed approach can improve the SDR (Signal to Distor-
tion Ratio) of separated sources up to 1 dB which is very
significant in comparison with improvements achieved in the
literature in the last few years [11]. Our approach differs
from [9] in that we propose a very simple framework, easy
to implement for any source separation task and which could
be applied to a large variety of source separation algorithms
without redesigning them. Our method also differs from
[10] in that we derive a soft combination of separation re-
sults instead of proceeding to the hard selection of one result
amongst the others. The fusion rules we propose will be
introduced in Sec. 2. The estimation of fusion coefficients
will be discussed in Sec. 3. We will then present our exper-
imental framework in Sec. 4 before analyzing the results of
our experiments in Sec. 5. Finally we conclude and suggest
some future works in Sec. 6.
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2. FUSION IN SOURCE SEPARATION

We introduce in this section the general fusion framework we
developed for underdetermined audio source separation. Ac-
cording to the terminology of data fusion, our work focuses
on the decision level, meaning that the fusion step occurs right
after the separation step. The literature also refers to such a
framework as late fusion. Moreover, we limit our study to
audio source separation algorithms based on time-frequency
masking in order to reinforce the comparison with data fusion
for classification.

2.1. Separation step

Let us consider a mono signal denoted by x(t). We assume
that this signal is the mixture of N sources xn(t) so that

x(t) =

N∑
n=1

xn(t) (1)

where t is the time index and n the source index.
We define a separator Sk as an algorithm for source sep-

aration together with the corresponding models, hyperparam-
eters and initializations. This separator provides an estimate
x̃k
n(t) of each source. Algorithms based on time-frequency

masking firstly compute a time-frequency representation of
the mixture signal that we will denote as X(f, t) where f
is the frequency index. Most often, the Short Time Fourier
Transform (STFT) is employed. A time-frequency mask
M̃k

n(f, t) is then estimated for each source n so that the time-
frequency representation of the estimated source x̃k

n is given
by

X̃k
n = M̃k

n ◦X (2)

where the operator ◦ denotes the Hadamard (element-wise)
product. The elements M̃k

n(f, t) of the masks are nonneg-
ative and they verify

∑N
n=1 M̃

k
n(f, t) = 1. Each element

represents the contribution of source n in the time-frequency
bin (f, t) as estimated by the separator Sk. We refer to binary
masking when the gain is constrained to be either 0 or 1 and
to soft masking otherwise [12].

Once the masks have been estimated for each source, the
estimated time-domain signal x̃k

n(t) is computed by inverting
the resulting time-frequency representation X̃k

n in (2).
Depending on the type of sources that are involved in the

mixture, different ways of estimating the masks M̃k
n have

been proposed in the literature [1, 2, 4, 5] and each one leads
to different estimates of the sources. However, a given algo-
rithm can also lead to different estimated sources depending
on the tuning of the underlying models and their initializa-
tion. As a consequence, we consider in the following that two
separators S1 and S2 are distinct if they use either different
source separation algorithms or the same algorithm with dif-
ferent parameter initializations and/or tunings.

2.2. Fusion of soft masks

When the masks are binary, the parallel with a classifica-
tion problem is obvious as discussed in [13]. The goal of
late fusion in classification is to combine the decision of sev-
eral classifiers, expecting that it would improve the classifi-
cation performance. In the same manner, combining several
binary masks might allow the estimation of another binary
mask which will improve the separation quality. According
to [7], one of the simplest ways of combining multiple classi-
fiers is to use a majority vote rule.

However, soft masking methods such as adaptive Wiener
filtering are known to give slightly better separation results
than binary masking approaches [14, 15]. It seems then more
promising to design some simple ways of combining sev-
eral separators which estimate soft masks. In this case, since∑N
n=1 M̃

k
n(f, t) = 1, an element M̃k

n(f, t) can be considered
as the probability of the time-frequency bin (f, t) being part
of the source n, similarly to multiclass classification problems
[16]. We thus propose to estimate a new soft mask M̃n(f, t)
as a simple linear combination of K different masks so that

M̃n(f, t) =

K∑
k=1

αk(f, t)M̃
k
n(f, t). (3)

In order to keep the interpretation of M̃n(f, t) as a prob-
ability, we impose that ∀k and ∀(f, t), αk(f, t) ≥ 0 and∑K
k=1 αk(f, t) = 1. According to [17], each coefficient

αk(f, t) should reflect the degree of confidence in the separa-
tor Sk depending on the time-frequency bin (f, t) under con-
sideration. In the following, we will refer to {αk(f, t)}Kk=1

as the set of fusion coefficients.

2.3. Temporal fusion

In order to evaluate the potential of the proposed fusion rule
(3), we suggest that in a first approach the fusion coefficients
remain independent of (f, t). As a consequence, the time-
frequency representation X̃n of a source after fusion can be
simplified as follows

X̃n = M̃n ◦X =
(∑K

k=1 αkM̃
k
n

)
◦X

=
∑K
k=1 αk

(
M̃k

n ◦X
)
=
∑K
k=1 αkX̃

k
n.

(4)

By applying the inverse transform to X̃k
n, our fusion rule

can be expressed in the time domain as

x̃n(t) =

K∑
k=1

αkx̃
k
n(t). (5)

Our fusion rule thus becomes in this case a linear combi-
nation of the estimated time-domain signals, which we will
refer to as temporal fusion by linear combination.



3. ESTIMATION OF THE FUSION COEFFICIENTS

As we have already highlighted, a fusion coefficient somehow
reflects the degree of confidence in its corresponding separa-
tor. In audio source separation, the quality of separation is of-
ten measured by the SDR (Signal to Distortion Ratio) [18] ex-
pressed in decibels (dB). For instance, the SDR of the source
estimate x̃n(t) is given by

SDR = 10 log10

∑
t ‖xn(t)‖2∑

t ‖x̃n(t)− xn(t)‖2
(6)

where xn(t) denotes the original source involved in (1). The
computation of the SDR for each separator Sk could enable
us to measure its performance and then to determine its cor-
responding fusion coefficient αk accordingly. However, as
in practice the original sources xn(t) are usually unavailable,
we must think of estimating the fusion coefficients without
accounting on the SDR of the test mixture.

In our experimental framework, knowledge of the original
sources allows us to compute the upper bound on performance
of our temporal fusion rule (see Sec. 3.1) and to investigate a
learning method for the fusion coefficients (see Sec. 3.2). We
also propose in Sec. 3.3 a blind approach to the estimation of
the fusion coefficients in which we do no take advantage of
the original sources.

3.1. Oracle temporal fusion

If the original sources are known, the SDR can be computed
for the estimated signals after fusion as defined in (6). In or-
der to evaluate the potential of our temporal fusion rule, we
can estimate the set of fusion coefficients which maximizes
the SDR of the resulting signals x̃n(t) after fusion. Maximiz-
ing (6) leads to a standard Quadratic Programming (QP) [19]
problem under linear equality and inequality constraints:

argmin
(α1,...,αk,...,αK)

∑
t

∥∥∥xn(t)−
∑K
k=1 αkx̃

k
n(t)

∥∥∥2
subject to

{
∀k, αk ≥ 0∑K
k=1 αk = 1

.
(7)

In the following, we refer to this approach as oracle tem-
poral fusion as it gives the best SDR that we could expect
using (5). It is to be compared to an approach by oracle sepa-
rator selection which consists of selecting the separator which
gives the best SDR for a given mixture amongst the set of K
possible separators.

3.2. Learned temporal fusion

Solving the QP problem in (7) relies on the availability of
the original sources that compose the test mixture. If these
original sources are not available, we propose to learn the
fusion coefficients from a training dataset. Let us consider
that we have a training dataset composed of several mixtures

and their original sources. In order to learn an average set
of coefficients, we propose to concatenate all the examples of
the training dataset and estimate a set of fusion coefficients
on this concatenated signal thanks to the method proposed in
Sec. 3.1. These learned fusion coefficients are then applied to
the test mixture without knowing its original sources.

In the following, we will refer to this approach as learned
temporal fusion. It is to be compared to an approach by
learned separator selection which consists of selecting
amongst the set of K possible separators the separator which
gives the best SDR on average on the training database. This
latter approach is often used in practice when the original
sources of the test mixture are unknown in order to choose a
suitable separator a priori. As such, we will consider it as the
baseline in our experiments.

3.3. Temporal fusion by mean

Contrary to oracle temporal fusion and to learned temporal
fusion which always require the knowledge of some original
sources (respectively the original sources of the test mixture
and the original sources of the training mixtures), we propose
here a blind approach to our temporal fusion rule by simply
taking the mean of the estimated signals, which is equivalent
to set ∀k, αk = 1/K in (5).

4. EXPERIMENTAL FRAMEWORK

In this section, we propose to test the above fusion framework
in the context of voice extraction. In voice extraction, the
signal to be separated is composed of a lead singing voice
mixed with a musical background. The mixing model in (1)
is now expressed as

x(t) = v(t) +m(t) (8)

where v(t) is the lead voice signal and m(t) the music signal.

4.1. Signal models

Following Sec. 2, we are going to estimate both the voice
signal and the music signal thanks toK separators which each
outputs two soft masks M̃k

v and M̃k
m, respectively for the

voice and the music signals. Both masks will be estimated
with the model proposed by Durrieu et al. in [4].

The model is defined in the time-frequency domain in
terms of matrices representing time-varying Power Spectral
Densities (PSDs), defined as the squared magnitude of the
Short Time Fourier Transform (STFT). The PSD of the ob-
served mixture signal x(t) is thus represented by the matrix
|X|2 (f, t) = |STFT{x}(f, t)|2 of size F×T , where F is the
number of frequency bins and T the number of time frames.

Assuming that the two sources are statistically indepen-
dent, the observed PSD matrix |X|2 is modeled by

D = WMHM + [WEHE ] ◦ [WFHF ] (9)



where the index M refers to the musical model and the in-
dices E and F refer respectively to the source and the filter
models for the voice. WM and HM are respectively the dic-
tionary of spectral bases (of size F ×KM ) and the activation
matrix (of size KM × T ) of the music model. Both these ma-
trices are randomly initialized.WE and HE are respectively
the dictionary and the activation matrix of the voice source
part which model the PSD contributed by the glottal source
and WF and HF the dictionary and the activation matrix of
the voice filter part which model the PSD contributed by the
filtering of the vocal tract. WE is fixed and initialized as a
collection of harmonic combs. WF is fixed and initialized
as a collection of smooth spectral shapes. HE and HF are
randomly initialized.

Parameter estimation is performed by Secan iterative gra-
dient descent method with multiplicative update rules which
minimize a certain divergence d between the model D and the
observation |X|2

D
(
|X|2

∣∣∣D) =

F∑
f=1

T∑
t=1

d
(
|X|2 (f, t)

∣∣∣D(f, t)
)
. (10)

Here, we use the Itakura-Saito (IS) divergence:

dIS(x|y) =
x

y
− log

x

y
− 1. (11)

Once the model parameters are estimated, the following
soft Wiener masks are computed:{

M̃v = ([WEHE ] ◦ [WFHF ])./D

M̃m = (WMHM )./D.
(12)

The time-domain signals ṽ(t) and m̃(t) are then com-
puted by inverse STFT of the estimated PSDs, respectively
Ṽ = M̃v ◦X and M̃ = M̃m ◦X.

Note that the dimensions of the model matrices as well as
the random initial values given to these matrices are known to
influence the quality of the separation results [20, 21].

4.2. Experimental settings

We evaluated the fusion approaches proposed in Sec. 3 on a
dataset of L = 7 professionally-produced music recordings
from diverse genres [22]. All recordings are sampled at 44.1
kHz.

In order to evaluate the temporal fusion rule, we propose
three distinct experiments :
1. fusion on the number of components of the music

model: here, a separator is defined by the number of
components KM of its music model (i.e., the number of
columns of the dictionary WM ) introduced in (9). Other
hyperparameters are fixed to standard values [4] and are
common to all separators. We defined K = 20 distinct
separators for KM varying from 5 to 100 components by
steps of 5. Note that the model matrices are initialized
in the same way for all separators using a single random
seed.

2. fusion on the initializations: in this case, all hyperparam-
eters (including the number of music componentsKM ) are
the same for all separators. However, each separator has
its own seed which is itself randomly selected. We thus
selected K = 20 distinct seeds in order to define K = 20
different separators.

3. fusion on both the number of components and the ini-
tializations: here, a separator is defined by both its num-
ber of components KM and a proper seed. As for the two
previous experiments, we chose K = 20 distinct separa-
tors for KM varying from 5 to 100 components by steps
of 5 and for 20 different random seeds.

For each of these experiments, we tested the three dif-
ferent fusion approaches introduced in Sec. 3, namely ora-
cle temporal fusion, learned temporal fusion and fusion by
mean. We have simulated the learned temporal fusion ap-
proach by learning the coefficients on the concatenation of
all our dataset signals except the one under consideration, in
reference to a traditional leave one out protocol. Finally, all
experiments were independently repeated ten times and the
SDRs were averaged over these ten runs.

5. RESULTS

Table 1 gives the average SDR of the estimated voice source
for our baseline system, the oracle separator selection ap-
proach and the three fusion approaches described earlier.
Each result is given for the three proposed experiments,
namely when the K separators have distinct number of mu-
sic components KM , distinct initializations or both distinct
number of music components and initializations. Detailed
results are given in Fig. 1 for the specific case of fusion on
the number of music components KM . The figure depicts the
gain in SDR of the fusion approaches and of oracle separator
selection with respect to the baseline by learned separator se-
lection. All measurements were obtained with the BSS EVAL
toolbox [23]. Sound examples are also available online1.

5.1. Influence of the hyperparameters and the initializa-
tion

The results of oracle separator selection and learned separa-
tor selection clearly show the influence of the initialization
and the hyperparameters (here, the number of components
of the music model) on the separation performance. Indeed,
learned separator selection results are always outperformed
by oracle learned selection results by 1 dB on average. More-
over, Fig. 1 also highlights that the number of music compo-
nents which gives the best SDR is different for each example
of our dataset. The tuning of a separator is thus important for
separation quality.

1http://www.tsi.telecom-paristech.fr/aao/?p=829



Variable KM Variable initialization Variable KM and initialization
Selection Fusion Selection Fusion Selection Fusion

Oracle 4.36 4.69 4.31 4.56 4.49 4.80
Learned 3.36 3.86 3.43 3.87 3.25 3.82

Fusion by mean 4.00 3.98 4.01

Table 1. Average SDR (dB) achieved by the proposed temporal fusion methods.

Fig. 1. SDR gain (dB) of different fusion methods compared to the baseline (learned separator selection), when varying
the number of components KM . The SDR of the baseline and the value of KM which gives the highest SDR are given in
parentheses below the name of each example.

5.2. Fusion by mean

The fusion method by mean, presented at the bottom of Ta-
ble 1 for our three experiments, outperforms on average our
baseline (learned separator selection). Fig. 1 also shows that
this statement is verified for all examples of our dataset, when
we consider separators which differ by their number of com-
ponents KM . On average, the gain is of nearly 0.7 dB which
is significant according to [11]. This result highlights that the
learning of an average separator to use with any test mixture
is out of reach mainly because of the difficulty to build a rep-
resentative database. The fusion by mean seems thus to be an
interesting alternative and overcomes to a certain extent the
need of choosing this number of components and the initial-
ization of the model matrices.

5.3. Oracle and learned fusions

The oracle temporal fusion results given in Table 1 mainly
show that the proposed fusion rule (5) reaches the expected
fusion property of exceeding the performance of each individ-
ual separator involved. Indeed, we can notice that the oracle
temporal fusion results outperform both the oracle separator
selection and the learned separator selection strategies, re-
spectively by about 0.3 dB and 1.3 dB on average. Fig. 1
confirms this assertion for all examples of our dataset.

However, learned temporal fusion hardly reaches the per-
formance of oracle temporal fusion and is even outperformed
by the fusion by mean. The learning method we propose is
thus perfectible. For instance, we could expect better results
if we were able to use a more representative database or to

adapt the learning step to the test signal.
Finally, by increasing the number of separators involved

in the fusion process, we could also expect to increase the
SDR. Yet, our three experiments shows that the fusion on
the number of components, on the initializations and on both
result in approximately the same gain in SDR. As a conse-
quence, it could also be interesting to investigate the fusion
between separators which differ by the structure of the un-
derlying models and not only by their hyperparameters and
initializations.

6. CONCLUSION

We proposed a general late fusion framework inspired by
classifier fusion which was applied to audio source separation
algorithms based on time-frequency masking. We demon-
strated its potential with a simplified temporal fusion rule
applied to a voice extraction problem, as oracle fusion results
reached higher SDR than individual separator results. The
good performance of the fusion by mean showed that it can be
a simple alternative to the fine tuning and initialization of sep-
aration models. However, the poor performance of learned
fusion suggested that our learning dataset was not enough
representative of the test mixtures. More recent experimental
results showed that on a well-defined problem with a repre-
sentative learning database, the learned fusion can effectively
outperform the fusion by mean and nearly reach oracle fusion
results. To go further, future work will be focused on testing
the full time-frequency fusion rule through the combination
of time-frequency masks as well as investigating the fusion
of separators with models of different structure.
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