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 

Abstract—Synthetic aperture radar has become an important 

technique for generating high-resolution images of the ground, 

because of its all-weather capabilities. SAR imaging of stationary 

scenes is nowadays well mastered. Moving targets induce a 

delocalization and a defocusing effect in the azimuth direction in 

a SAR image. This latter effect can be used to detect moving 

targets, to image them and to estimate their azimuthal velocity, 

but the main limitation is the impossibility to estimate the full 

target velocity vector, because of the Doppler shift dependency on 

azimuthal position and radial velocity. 

In this paper, we analyse the performances of a method that 

reconstructs the real target trajectory given the apparent 

positions of the moving target measured on SAR images acquired 

along a circular trajectory. We first outline the steps of this 

trajectory reconstruction methodology, then we perform a 

mathematical analysis of this methodology and finally we present 

some results on real data, around two French cities. 

Index terms – circular SAR, moving target, trajectory 

reconstruction, focusing 

I. INTRODUCTION 

ynthetic aperture radar has become an important technique 

for generating high-resolution images of the ground, 

because of its all-weather capabilities. SAR imaging of 

stationary scenes is nowadays well mastered [1] but if a 

moving target is present in the illuminated scene, it appears 

delocalized in the azimuth direction and defocused in the SAR 

image [2].  

Two main processing categories have been 

considered in the recent literature. The first category concerns 

multisensor (or multichannel) techniques [3]. This category 

mainly relies on Displaced Phase Center Antenna (DPCA) [4], 

Space-Time adaptive processing (STAP) [5, 6] and along track 

interferometry (ATI) [7]. STAP and DPCA are applied to non-

focused data and enable to detect and estimate the moving 

targets radial velocity. The azimuth velocity is then estimated 

by filtering. ATI or AT-InSAR [8] is applied to SAR data and 

enable detect and estimate the moving target radial velocity 

vector, the azimuthal velocity being estimated by refocusing. 

However, it is difficult to reconstruct the target trajectory, 

because the signals are integrated over a long time. One 
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advantage of these multisensor techniques is the ability to 

suppress clutter. The moving target detection is therefore 

made easier, especially in severe background environment [9, 

10]. For practical reasons, a significant part of airborne SAR 

systems is limited to one single channel. The SAR systems 

developed by the French Aerospace Lab ONERA (SETHI 

[11], and more recently RAMSES NG [12]) fit into this 

category. Standard single antenna processing exploits the 

moving target apparent characteristics to focus them [13, 14] 

and estimate their azimuth velocity [15] under the assumption 

of a high PRF, in order to avoid the Doppler ambiguity 

problem [16]. The main limitations of these methods are: 

1) The difficulty to estimate the full target velocity 

vector, because of the Doppler shift dependence on both 

azimuthal position and radial velocity of the moving target 

[17-19]. 

2)  The errors in the azimuthal velocity estimate due 

to the background image [13].  

Some interesting studies have been done on ground moving 

target tracking in single channel SAR to solve these problems. 

Kirscht [20] has worked on moving target detection and 

apparent trajectory estimation. He uses the information 

content of multilook processing [21] to detect potential 

moving targets. The apparent target velocity vector is then 

estimated from target displacement between successive 

images with a normalized cross correlation function as 

matching criterion [22]. Dias and Marques [23] have worked 

on real trajectory reconstruction by using the amplitude 

modulation term of the returned echo from a moving target to 

estimate its radial velocity, and then avoid the azimuth 

ambiguity. The radial velocity estimator used in [23] yields 

effective results for a high signal-to-clutter (SCR) ratio (14 

dB). Itoh [24] has worked on moving target radial motion 

estimation by Doppler detection, and has obtained effective 

results on ships. However, the radial velocity estimation given 

the antenna radiation pattern [23] or the centroid Doppler 

signature [24] may be affected by the clutter, the moving 

target anisotropic behaviour and the weak directivity of the 

beam. Furthermore, the velocity estimation with a cross 

correlation function [20, 22] could be imprecise in the case of 

defocused targets and the moving target trajectory estimation 

can thus be flawed. Therefore, the literature shows that it is 

difficult to reconstruct precisely the real moving target 

trajectory using monosensor SAR.  

Acquisitions of SAR data over a circular trajectory 

[25] bring new information, because objects may be seen from 
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any aspect angle. The continuity of the SAR-platform 

movement may thus enhance moving targets trajectory 

reconstruction, because objects of interest may be seen during 

a longer time than in the linear stripmap SAR case. Thanks to 

the multiple azimuth direction, the azimuth ambiguity may be 

solved. Perlovsky [26] has used circular acquisition to work 

on moving target detection and trajectory reconstruction. He 

has proposed a method using multiple backprojection images 

as input of a framework called Dynamic Logic. This 

framework computes the conditional likelihood of the data 

values given the tested Gaussian models, providing moving 

target detection and characterization.  

In this paper, we analyse performance of the 

reconstruction of the real target trajectory given the apparent 

positions of the moving target measured on SAR images 

acquired along a circular trajectory. We suppose that targets 

have already been detected (using, for instance, the method 

described in [27] or in [20]). In practice, we first manually 

detect the moving target on SAR images. These manual 

detections combined with a refocusing algorithm provide 

measurements of the apparent coordinates of the moving 

targets [28]. We use SAR images acquired along a circular 

trajectory to exploit the multiplicity of aspect angles and the 

long observation time, and we present an inversion method to 

validate the possibility of target trajectory reconstruction using 

single-channel circular SAR. This paper is organized as 

follows. In section II we present the data sets. In section III we 

outline the steps of our trajectory reconstruction methodology. 

In section IV we perform a mathematical analysis given 

synthetic data, we present in section V some trajectory 

reconstruction results on real data, around the city of Nîmes 

(acquired by the SAR system SETHI) and around the Istres 

Airport (acquired with RAMSES NG) in France and finally, 

we present in section VI some reconstruction results with an 

orientation constraint given by the road network. 

II. PRESENTATION OF THE DATA SETS 

The data were acquired with two different sensors 

from ONERA. The RAMSES NG sensor [12] is dedicated to 

defense and security applications. The main improvement is 

the ability to operate at long range and ultra-high resolution in 

X band. One dataset was acquired on Istres area in 2012 in X 

band with a 50 cm slant range resolution. We study a moving 

target (see Fig. 1) with ground truth (GPS data). The vehicle is 

a Renault Master with an average speed of       .  

The SETHI sensor [11] is an airborne radar dedicated 

to civilian applications, equipped with different bands (P, L, 

X) on a Falcon 20. In this paper, we focus on the X dataset 

acquired around the city of Nîmes in 2009, with a 12 cm slant 

range resolution. We particularly examine a moving target 

with unknown trajectory which is supposed to be a train: we 

see several horizontal lines probably due to train cars. The 

residual curvature of the horizontal lines is due to range 

migration, which appears on images with high azimuth 

resolution (see Fig. 1). The main characteristics of the two 

acquisitions are summarized in Table I. 

   
      a.                                                           b. 

 
c. 

Fig. 1. Examples of signatures of moving targets on SAR images in the cities 

of Nîmes (a.) and Istres (b. and c.). The azimuth direction is horizontal so the 

defocusing effect appears as horizontal lines, with a residual curvature in the 
range direction for the train (a.). For c., the SCR is about 3dB, which is 

considered to be the limit for manual detection (the highest measured SCR 

value for this target is about 12dB). 

TABLE I 
AIRCRAFT TRAJECTORY PARAMETERS FOR NIMES (SETHI) 

AND ISTRES (RAMES NG) 

Symbol Quantity Value 

 Acquisition around the city of Nîmes  

   Near Range        

   
   

Range resolution 
Average sensor velocity 

        
           

  Center wavelength      

    Incidence 60° 

   
 

 

   

   
   
  

    
   

Time interval between two images 

 

Acquisition around the city of Istres 

Near Range 

Range resolution 

Average sensor velocity 
Center wavelength 

Incidence 

Time interval between two images 

   
 

 

       

        
           

     
60° 

   

III. MOVING TARGET TRACKING METHODOLOGY 

In this section, we present the moving target model, 

we describe the measurement method, we explain how the 

whole trajectory of the moving target is reconstructed given its 

apparent coordinates in the SAR images and under several 

moving target hypotheses, and then we present the system 

inversion calculation using the Least Mean Squares (LMS) 

method. 

A. Moving target 2
nd

 order model 

Let us consider the SAR scenario illustrated in Fig. 2 

where the SAR platform moves along a circular trajectory, so 

that SAR images can be computed for all possible azimuth 

angles. Images are processed in a spotlight mode, so each 

azimuth direction corresponds to a squint angle. 

We consider a moving target P with velocity  ⃗  and 

acceleration   , which is considered to be constant during the 

sensor displacement between    and   . The SAR-platform 

velocity is noted   ⃗⃗  ⃗ and its acceleration is noted   ⃗⃗⃗⃗ . In this 

section, we consider that the moving target is a point-like 

isotropic scatterer for the target phase history calculation. Real 

moving targets are actually made up of finite number of bright 

spots, whose spatial distributions are unpredictable, and 

depend on the target nature and on the aspect angle. However, 

for small integration angles, the point-like isotropic scatterer is 

a good approximation for moving targets. The method used to 

calculate the moving target phase history is given by [2] and 

explained here to present our notations.  



TGRS-2013-00623 

 

3 

 

Fig. 2. Principle of calculation of two different images. For the first image 
(resp. the second), the SAR-platform is in M0 (resp. in Mt) and the moving 

target is in P0 (resp. in Pt). Q is a still target which appears at the same 

position as P (due to effects of target motion) on the SAR image. 

At time t0 (resp t0+δt), the target is at position P0 

(resp. Pt, see Fig. 2). The phase of the returned echo     

during the time period δt is given by: 

     
  

 
(‖    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖  ‖    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖) (1)  

Let  

   ⃗⃗⃗⃗  
    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

‖    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖
 (2)  

be the normalized line of sight (LOS) vector for moving target 

  at time   . We also define     ‖    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ the distance 

between the SAR sensor and the moving target at time t0. A 

development to the second order in δt is done, because most of 

the phase error due to target motion is given by second order 

terms [13]. For high order studies, see [10]. Adapting the 

range variation expression with time given by [2] to the 

circular flight path case, we have, before SAR processing: 

     
  

 
(        ) (3)  

With: 

 

 (   ) 

 
     

 

   
 
  ⃗⃗  ⃗  ⃗ 

  
 
  ⃗⃗⃗⃗ 

 
 (     ⃗⃗⃗⃗ )  

(  ⃗⃗  ⃗   ⃗⃗⃗⃗ )
 

   

 
(  ⃗⃗⃗⃗   ⃗ )

 

   
 
 

  
(  ⃗⃗  ⃗   ⃗⃗⃗⃗    ⃗⃗⃗⃗   ⃗ ) 

(4)  

 

  ( )    ⃗⃗⃗⃗   ⃗    ⃗⃗  ⃗   ⃗⃗⃗⃗  (5)  

Where   is the magnitude of  ⃗  and   is the magnitude of   .  

   is the magnitude of the SAR-platform velocity   ⃗⃗  ⃗.  ( ) is 
a phase slope in the azimuth frequency domain that induces 

the azimuth shift of the target. The moving target P appears at 

the same position as a still target Q on the SAR image. So 

when we compute the azimuthal spectrum of the moving 

target P after SAR processing, the residual phase    is the 

difference between the phase history of the moving target   

and the phase history of the still target Q. Given   ⃗⃗ ⃗⃗   

   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖⁄ , we thus have: 

            
  

 
(        ) (6)  

With   the defocusing parameter (see section II), given by: 

  (   )  
  

   
 
  ⃗⃗  ⃗  ⃗ 

  
 
  ⃗⃗⃗⃗ 

 
 (     ⃗⃗⃗⃗ ) (7)  

And: 

  ( )  ( ( )    ⃗⃗  ⃗   ⃗⃗ ⃗⃗  ) (8)  

The difference of squint angles between P and Q is zero, so 

the difference of slope of the phase history is zero (   ), 
which leads to the relationship: 

    (  )     (  )  
  ⃗⃗ ⃗⃗   ⃗ 

  
 (9)  

Where    (resp.   )  is the squint angle for the moving target 

P (resp. for the still target Q). It should be noted that    is 

linked to the azimuth pixel line corresponding to the center of 

the target on the image.  

Besides,   is an expression which is function of both 

the velocity and the acceleration of the moving target, 

especially the azimuth velocity (  ⃗⃗  ⃗  ⃗ ) and the radial 

acceleration (     ⃗⃗ ⃗⃗ ). Finally the ground moving target P 

appears on a SAR image at the apparent position (     ) 

corresponding to pixel (i,j) in the SAR image, with the 

defocusing parameter  . These three measurements lead to the 

following system: 

 

{
  
 

  
 ‖    
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖                                                            

    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    ⃗      (   (  )  
  ⃗⃗ ⃗⃗   ⃗ 

  
)                 

  (
  

   
 
  ⃗⃗  ⃗  ⃗ 

  
 
     ⃗⃗ ⃗⃗ 

 
 

 

 
)                        

 (10) 

With     ⃗⃗ ⃗⃗   (  ⃗⃗⃗⃗  ⃗    ⃗⃗ ⃗⃗  ). Due to the number of unknowns, we 

need at least two sets of equations to solve the problem. A 

general overview of the model implementation is given in 

[29]. From now on the system unknowns will be expressed in 

the Cartesian system (   ⃗⃗   ⃗⃗ ), the  ⃗⃗  axis representing the East 

direction and the  ⃗⃗  axis representing the North direction. 

B. Description of the measurements 

As stated in the introduction, the main purpose of this 

paper is to analyse the algorithm that transforms the apparent 

measurements of the target into a geolocalised trajectory. The 

moving target detection step is therefore done by an operator: 
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the operator roughly points at the target on each image so that 

the input of the algorithm is a set of patches containing the 

moving target signature (see Fig. 1).  

The estimation of the apparent position (i,j) of the 

target on the image as well as the estimation of the defocusing 

parameter (α) inside each patch is automatic: in order to 

measure α, we use the method described in [28] which is close 

to [19]: the moving target azimuthal spectrum is computed. As 

the target phase history is developed to the second order, we 

fit a parabola to its phase behavior. We then use an autofocus 

algorithm, based on a sharpness ratio measurement, which 

selects the best phase correction, i. e. which selects the value 

of α that best refocuses the moving target on the image. 

Finally, the moving target 2D centroid of magnitude image is 

computed to estimate the apparent coordinates (   ) of the 

moving target center. Fig. 3 and Fig. 4 show the results of the 

measurement method on two signatures of the Renault Master 

presented in Fig. 1, with different SCR ratio. As a moving 

target generally appears on several images, we obtain a set of 

measurements used to reconstruct the real trajectory of the 

moving target. 

     
                 a.                                                     b. 

 
c. 

Fig. 3. Result of the measurement method on a signature of a moving target in 

Istres (SCR=10dB). a: defocused target (starting point). b: result of the 
focusing algorithm. The length of the moving target (highlighted in red) is 

about 6m, which corresponds to the length of a Renault Master. c.: result of 

the barycentric method for estimating the coordinates of the moving target 
center. 

     
                 a.                                                     b. 

 
c. 

Fig. 4. Result of the measurement method on a signature of a moving target in 

Istres (SCR=3dB). a: defocused target (starting point). b: result of the focusing 

algorithm. c.: result of the barycentric method. 

C. Moving target trajectory reconstruction methodology 

Suppose that SAR images are computed every Δθ 

angle corresponding to a time interval ΔT. We propose to 

define a moving target model with constant acceleration 

during the time NΔT, N being the number of images used. 

Moreover, we consider that the target velocity and 

acceleration are collinear, so we look for targets moving along 

a straight line during calculation time. The moving target 

orientation is noted θtarget. Using this hypothesis, the ground 

coordinates of the moving target on each image #k can be 

written as:  

 {
                    

 

 
           (   )

 

                    
 

 
           (   )

 

 (11) 

and we can use the system (10) for all the images between t0 

and t0+NΔT to obtain the target parameter vector 

(X,Y,V,A,θtarget). By propagating this principle along the entire 

circular trajectory (see Fig. 5) of the SAR platform, we can 

reconstruct the whole trajectory of the moving target. 

 
Fig. 5. Principle of reconstruction of the moving target whole trajectory. In 

this example, calculations of the moving target positions are made up of three 

apparent positions on SAR images. 

D. Inversion of the system 

Let   be the target parameter vector and   the 

measurement vector.   is defined by: 

   (  )  [   ]  (               ) (12) 

  is given by:  

   (  )  [     ]  (                 ) (13) 

The moving target trajectory is obtained by estimating the 

target parameter vector  ̂ as follows: 

  ̂        (∑∑     
 (   )

 

   

 

   

) (14) 

Where         and     are the three equations in (10) for the 

nth sub-aperture image.  ̂ is estimated by the Least Mean 

Squares method, using the Levenberg-Marquardt algorithm 

[30]. 

IV. MATHEMATICAL ANALYSIS 

In this section, we study the method robustness using realistic 

synthetic moving target. Using a perfect synthetic aircraft 

trajectory, we perform a mathematical analysis of the 

robustness and then we invert synthetic target trajectories to 

validate this analysis. 
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A. Generation of a perfect synthetic aircraft trajectory 

In order not to take into account the aircraft 

turbulences, we generate a perfect synthetic aircraft with 

characteristics close to our dataset for system validation. The 

characteristic of the simulation are given in Table II.  

TABLE II 

SYNTHETIC AIRCRAFT TRAJECTORY PARAMETERS 

Symbol Quantity Value 

   
   

Range resolution 

Azimuth resolution 

0.25 m 

0.002° 

  Center wavelength 3 cm 

  

   

   

Number of images used for the inversion 
Angle between two images 

Time interval between two images 

Variable 

   
      

B. Mathematical study of the Robustness 

The system (10) is a non-linear system, so the 

estimate of the output parameters  ̂ cannot be analytically 

given with respect to the measurements Y. This system can be 

modelled by an implicit function as follows:  

  (   )    (15) 

A development of (15) at the vicinity of the solution  ̂ of the 

system leads to:  

           (16) 

   represents the matrix of first partial derivatives of the 

inversion system (10) with respect to X and evaluated in  ̂: 

    (
   
   

( ̂  ))
  [    ]   [   ]

 (17) 

   represents the matrix of first partial derivatives of the 

inversion system (10) with respect to measurements Y and 

evaluated in  ̂: 

    (
   
   

( ̂  ))
  [    ]   [    ]

 (18) 

From the expression (16), we obtain: 

    (  
   )

  
  

      (19) 

The analytical expressions of    and    are very complex.  

In order to study the robustness of the method, we first analyse 

the inversibility of       
   , by computing the condition 

number of   .This condition number is given by :  

     ‖  ‖‖  
  ‖ (20) 

In numerical analysis, we consider that the numerical stability 

of the system will be guaranteed only if     is less than a limit 

value      which is linked to the machine accuracy    :  

      
 

√   
 (21) 

Fig. 6 shows the evolution of     with respect to the 

total angular span used to solve the system for two different 

moving target models: the first one is a model of a moving 

target with constant acceleration and colinearity constraint 

with 5 unknown (X,Y,V,A,θtarget), and the second is a model 

with constant velocity (X,Y,V,θtarget). We generate independent 

data, so that the interval angle between two images is strictly 

equal to the integration angle for each image. As we want an 

azimuth resolution corresponding to the resolution of our real 

data (which is equal to 0.5m, approximately), the 

corresponding interval angle between two images is given by:  

    
 

     
 (22) 

In this case,    is approximately equal to 2°, so we choose an 

interval angle equal to 2°.  

The   axis represents the total angular span       

used for inversion, given by          . We test different 

values of       ranging from 4° to 180°. We clearly see that 

the condition number is too high for the 

model (X,Y,V,A,θtarget), the value of     is less than      only 

for           . We tested other types of trajectories and 

we always obtained similar results. So the robustness of the 

method is not guaranteed with this model. By contrast, from a 

certain angular span, we see that the condition number is 

sufficiently low for the model (X,Y,V,θtarget). The numerical 

stability seems to be guaranteed with this model, but we want 

to validate it on realistic measurement errors. From now on we 

only study the model (X,Y,V,θtarget). 

 

 
Fig. 6. Evolution of the condition number     with respect to the total angular 

span Δθmax. Top: results with the model (X,Y,V,A,θtarget). Bottom: results 

with the model (X,Y,V,θtarget). 

C. Inversion with synthetic moving targets 

In this section, we validate the inversion system and 

the study of the robustness. We first compute apparent 

trajectories of synthetic moving targets, and then we test two 

different types of perturbations. In the first case, we simulate a 

moving target trajectory which corresponds to the models 

(with constant velocity) and we add Gaussian noise to the 
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computed apparent characteristics (i,j,α) to test the sensitivity 

of the inversion to measurement errors. For (i,j), we add a zero 

mean noise with σ=1m, and for α we add a noise 

corresponding to a 1m error on the target defocusing length. In 

the second case, we simulate a moving target trajectory with 

no measurement errors, but with a sinusoidal perturbation with 

σ 0.7m. So the real trajectory does not fit the model. In this 

case, we test the sensitivity of the inversion to deviations from 

the moving target models. This second perturbation and the 

corresponding apparent trajectory are represented in Fig. 7. 

The moving target trajectories are then estimated with 

the above-described methodology, given different angular 

spans. The normal configuration is a moving target with 

V=5m.s
-1

, VS=120m.s
-1

, the incidence inc=60° and D0=5000m. 

We test separately the impact of variation of V, VS, inc and 

D0. So for each test, only one parameter is changed. We 

compute the RMS differences between the estimated trajectory 

and the synthetic ground truth. We present the results in the 

table III obtained with the (X,Y,V,θtarget) model. 

 
Fig. 7. Representation of a synthetic target trajectory (black) moving towards 

North with a sinusoidal perturbation, and its corresponding apparent trajectory 

(dark grey). The positions of the sensor are represented in light grey.  

The results are evaluated on four parameters: Δθlim 

represents the angular span beyond which the RMS 

differences are less than 20m, that is the minimal angular span 

needed to obtain a non aberrant trajectory, tlim is the time 

interval corresponding to Δθlim, mRMS and σRMS represent the 

mean and the standard deviation of the RMS differences for 

the angular spans beyond Δθlim.  

These results confirm the mathematical analysis of 

the robustness. We see that from a certain angular span 

(depending on the parameters), the estimated trajectory is 

close to the ground truth. We also notice that the method is 

highly sensitive to deviation from the moving target model, 

because we need large angular spans to obtain accurate 

reconstructions in the second case. Finally, we can see that the 

influence of the tested parameters (sensor velocity, incidence, 

range…) on the reconstruction is limited. One can conclude 

that the main limiting factor of this reconstruction method is 

the accuracy of the constant velocity model of the moving 

target. 

TABLE III 

STATISTICS ON THE RMS DIFFERENCES BETWEEN THE ESTIMATED TRAJECTORY 

AND THE SYNTHETIC GROUND TRUTH, GIVEN DIFFERENT TARGET VELOCITIES 

AND ACQUISITION PARAMETERS.  

 

Gaussian noise 

      (°)      (s)      (m)     (m) 

Normal 20 13.8 1.93 2.61 

          20 13.8 1.84 2.39 

        
   24 16.5 2.21 3.25 

        16 11 1.96 2.73 

         32 22 2.34 3.32 

 
Sinusoidal perturbation 

      (°)      (s)      (m)     (m) 

Normal 60 41 2.37 2.71 

          60 41 2.39 2.75 

        
   72 50 1.89 1.95 

        60 41 2.48 2.80 

         72 50 2.09 2.26 

V. EXPERIMENTAL RESULTS ANALYSIS 

In this section, we present some results concerning 

real moving target tracking around the city of Nîmes and Istres 

(two cities in the South of France). We first focus on Istres 

data and on the moving target presented in Fig. 1. We applied 

the inversion algorithm to calculate the moving target 

trajectory and to compare it to the GPS truth. Fig. 8 shows the 

RMS differences between the estimated trajectory of the real 

moving target on Istres data and its GPS position. The   axis 

represents the index of the first image used to solve the 

system. Since the sensor is moving along the circular 

trajectory, this number is linked with the difference of 

orientation between sensor velocity and target velocity. The   

axis represents      . We tested again the two different 

moving target models: the one with constant velocity (see Fig. 

8, left) and the one with constant acceleration (see Fig. 8, 

right).  

  

 
Fig. 8. RMS differences between the estimated trajectory of a real moving 

target around the city of Istres and its ground truth (GPS data). On the left is 
the result with the constant velocity model and on the right is the result with 
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the constant acceleration model. The red line on the left represent the angular 

span at which the trajectory estimation is close to the GPS truth. 

These results show that from a certain angular span 

(white line, see Fig. 8), the estimated trajectory is close to the 

ground truth when we use a constant velocity model. It is not 

the case if we add the acceleration as a degree of freedom, 

which confirms the results of the mathematical analysis of the 

robustness. Fig. 9, which represents vertical cross-sections of 

the first column of the two images presented in Fig. 8, 

highlights this observation. 

One of the configurations of Fig. 8 is used to show an 

example of trajectory reconstruction of the moving target (see 

Fig. 10). We took a time interval ΔTmax between the two 

farthest images equal to 37s (corresponding to a total angular 

span Δ max equal to 50° approximately) to compute this 

trajectory. The red dots represent the result of the trajectory 

computation and the green dots represent the apparent 

trajectory of the moving target, i. e. the apparent position of 

the moving target on all the images, but projected on a single 

image. As the line of sight changes from one image to the 

other, the delocalization direction changes leading to a real 

trajectory shorter than the apparent one. 

 
Fig. 9. RMS differences between the estimated trajectory and the GPS data 
with respect to the angular span. On the left is the result with the constant 

velocity model and on the right is the result with the constant acceleration 

model. We see that with the constant velocity model, the estimations are close 
to the GPS data for angular spans beyond 40°. 

We then compare the calculation result with the GPS 

data by computing RMS differences between the two 

trajectories. The moving target trajectory reconstruction is 

very accurate. The average position RMS error on the whole 

target trajectory is less than   . The error of the velocity 

is           , which correspond to an average error about 

2%. Concerning the acceleration and orientation errors, they 

are very low (          and      , respectively).  

 
Fig. 10. Trajectory reconstruction for a real known trajectory (with ground 

truth) near the Istres airport. The red dots represent the result of the trajectory 
computation, and the green dots represent the apparent trajectory of the 

moving target. The moving target is a Renault Master travelling at an average 

speed of       . 

Fig. 11 shows the trajectory of the moving target 

obtained around the city of Nîmes concerning the moving 

target with unknown movements. We took a time interval 

      between the two farthest images equal to     
(corresponding to a total angular span       equal to     
approximately) to compute this trajectory.  

The green dots represent the apparent trajectory of 

the moving target during the time      , i. e. the coordinates 

of the moving target center in all the SAR images used for the 

trajectory calculation. The coordinates of the moving target 

center is obtained by using the measurement methodology 

described on the section II. We projected all these coordinates 

on a single image for visualisation. The measured velocity of 

the moving target is almost constant and equal to       . 

Furthermore, the target is close to the railway (green dotted 

lines), the average position RMS error on the whole target 

trajectory is around 15m. The red dots represent the result of 

the trajectory computation. All these characteristics are 

consistent with a train arrival in the Nîmes station (red circle). 

 
Fig. 11. Trajectory reconstruction for a real unknown trajectory. Red circle is 

the train station of the city of Nîmes. The red dots represent the result of the 

trajectory computation, and the green dots represent the apparent trajectory of 
the moving target. The green (dashed) line represents the railway. 

VI. ROAD NETWORK CONSTRAINT 

In order to encompass the instability responses of the 

constant acceleration model, we have tried to add an 

orientation constraint given by the road network [31]. The 

reconstruction is performed using the moving target model 

with constant acceleration. 3 different moving target 

orientations are tested, and the method automatically selects 

the target orientation that minimizes  (   ) given by (13). 

Results are shown on Fig. 12. They are obtained on the Istres 

dataset. 

 
Fig. 12. RMS between the estimated trajectory of a real moving target around 

the city of Istres and its ground truth (GPS data), with a model containing an 

information about the road network. 
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These results show that if we use the road directions (in urban 

context), the trajectory estimation is very precise, even with 

small angular spans. As the results are obtained with the 

constant acceleration model, the trajectory reconstruction 

method is efficient for more complex movements. 

VII. CONCLUSION 

This paper presents a novel methodology to 

reconstruct moving target trajectories from their apparent 

coordinates in a set of SAR images acquired along a circular 

trajectory in a monosensor spotlight mode. This method 

consists in inverting a 3N equation system, N being the 

number of used images. The ambiguity between azimuthal 

position and radial velocity of the moving target is solved.  

The apparent coordinates measurements are given by 

an autofocus and relocation method. We do not work on 

automatic target detection but we could have used the work 

described in [13] or in [22]. Results on real data have shown 

the efficiency of this measurement method in strong clutter 

environment or in urban context (especially in Nîmes [28]), 

which is a contribution compared to existing methods [13,19]. 

A validation with synthetic aircraft and target 

trajectories was carried out, testing two different moving 

target models: one with a constant velocity and one with a 

constant acceleration. This validation has highlighted the 

sensitivity of the method when considering a moving target 

model with acceleration and its stability with the constant 

velocity model. 

Results on real moving targets trajectory 

reconstruction are shown around the city of Istres and Nîmes. 

The computation of the RMS differences confirms the results 

obtained on synthetic trajectories and proves the efficiency of 

the method with the constant velocity model for an angular 

span larger than 35°. 

One can conclude that the reconstruction of a real 

trajectory based on monosensor measurements on SAR data 

acquired along a circular trajectory is possible under several 

hypotheses: 

- If the road network is not used, we have to choose 

the moving target model with constant velocity and a large 

enough angular span to retrieve precisely the moving target 

trajectory. It induces a tradeoff between the angular span, the 

precision of the reconstruction and the constant velocity 

hypothesis. 

- If the road network is known, it can be used to 

encompass the instabilities using the constant acceleration 

model by adding orientation constraints on the system. In this 

case good results are obtained even for small angular spans. 

Further work should be done to study the best way to 

implement the road information in the inversion scheme.   
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