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Figure 1: Boundary element rendering of biharmonic diffusion curve images. From left to right: toys image; sharp-profile (solid) and
smooth-profile (dotted) curves of the toys image, with thumbnail images below showing examples of the 4 building block segment fields; car
image and pumpkin image. The above images are c©CiSRA; the toys image is a CiSRA re-creation of a photograph taken by C. Concolato.

Abstract
There is currently significant interest in freeform, curve-based au-
thoring of graphic images. In particular, “diffusion curves” facili-
tate graphic image creation by allowing an image designer to spec-
ify naturalistic images by drawing curves and setting colour values
along either side of those curves. Recently, extensions to diffu-
sion curves based on the biharmonic equation have been proposed
which provide smooth interpolation through specified colour values
and allow image designers to specify colour gradient constraints at
curves. We present a Boundary Element Method (BEM) for ren-
dering diffusion curve images with smooth interpolation and gradi-
ent constraints, which generates a solved boundary element image
representation. The diffusion curve image can be evaluated from
the solved representation using a novel and efficient line-by-line
approach. We also describe “curve-aware” upsampling, in which
a full resolution diffusion curve image can be upsampled from a
lower resolution image using formula evaluated corrections near
curves. The BEM solved image representation is compact. It there-
fore offers advantages in scenarios where solved image represen-
tations are transmitted to devices for rendering and where PDE
solving at the device is undesirable due to time or processing con-
straints.
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1 Introduction

Vector graphic images are easily editable and scalable, with com-
pact representations. A key issue for the creation of naturalistic
vector graphic images is how an image designer specifies colour
variation (“colour gradients”) in the image.

Diffusion curves. [Orzan et al. 2008], [Orzan et al. 2013] propose
“diffusion curves” for image designers to specify colour variation
by drawing curves, setting colour values at sparse points along ei-
ther side of the curves, and setting “degree of blur” values at sparse
points along the curves. A diffusion curves image is generated by
an interpolation process followed by a blur process. In the inter-
polation process, initial image colours are determined at remaining
points along curves by 1D interpolation, and then at points away
from curves by solving, for each colour component, a partial dif-
ferential equation (PDE) with boundary constraints provided by the
colour values along the curves. In the blur process, degree of blur
values are determined throughout the image in a similar fashion to
the initial image colours and are then used to apply space-variant
blur filtering to transform the initial image colours to final image
colours. [Jeschke et al. 2009] describes a fast solver for diffusion
curves images; they also describe the interpolation process as solv-
ing the 2D Laplace equation with values specified at boundaries,
i.e. Dirichlet boundary conditions.

In the absence of blur, diffusion curve images typically have a jump
or a gradient discontinuity across the curves; that is, image values
have a “sharp-profile” across curves. The diffusion curves blur pro-
cess may leave the image value profile across a curve unchanged
(zero blur) or it may perform some averaging of colours across the
curve to form a “smooth-profile”. However, the diffusion curves
blur process has disadvantages. Typically, at a curve, the blur pro-
cess does not preserve the average of the left and right colour values
an image designer specifies along the curve, including when left
and right colours are the same; that is, diffusion curves do not pro-
vide smooth interpolation through specified colour values. As well,
the blur process has the problem that it can generate colours at a
curve having non-zero blur by undesirably drawing colours from
both sides, including the far side, of a nearby curve with no blur.

Biharmonic diffusion curves. [Finch et al. 2011] extends the dif-
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fusion curves image model to provide smooth interpolation through
colour constraints while omitting the diffusion curves blur opera-
tion. The smooth interpolation is achieved using biharmonic inter-
polation. [Boyé et al. 2012] describe rendering diffusion curves
images with smooth interpolation and gradient constraints using
a finite element method (FEM) biharmonic equation solver. They
generalize and neatly classify previous types of constraint curves.

Previous boundary element methods. [van de Gronde 2010] de-
scribes rendering diffusion curves (without blur) using a boundary
element method for solving the Laplace PDE. [Sun et al. 2012] rep-
resent diffusion curves images, without blur and without gradient
constraints, using a compact representation of fundamental solu-
tions and fitted (i.e. solved) weights, which they call “diffusion
curve textures”.

The main contributions of our paper are:
• a unified mathematical description of diffusion curves and

biharmonic diffusion curves and their closed curve isolation
properties;

• a compact (BEM) solved representation for biharmonic diffu-
sion curve images;

• a computationally efficient line-by-line method for evaluating
diffusion curve images or biharmonic diffusion curve images,
from a solved boundary element representation;

• a curve-aware upsampling technique for increasing the reso-
lution of a diffusion curves image or a biharmonic diffusion
curves image using the BEM solved representation.

In section 2, we present an overview of diffusion curves (with-
out blur) and biharmonic diffusion curves. Section 3 provides
a description of our boundary element approach to rendering bi-
harmonic diffusion curves, including line-by-line evaluation and
curve-aware upsampling. Section 4 reports the performance of our
implementations. Section 5 provides discussion of our results and
section 6 is our conclusion.

2 Biharmonic Diffusion Curves

Mathematical description of image models In the diffusion
curves image model, following [Jeschke et al. 2009], each of the
R, G and B colour components of an image are solutions of the
Laplace equation with value constraints at curves. In the bihar-
monic diffusion curves image model, following [Boyé et al. 2012],
the colour component images are solutions of the homogeneous bi-
harmonic equation with value and normal gradient constraints at
curves. Table 1 provides a summary of features of these image
models. The Laplace equation (1) is the governing partial differ-
ential equation (PDE) for diffusion curves; while the homogeneous
biharmonic equation (2), in which the Laplace operator is applied
twice, is the governing PDE for biharmonic diffusion curves. The
fundamental solution (i.e. free-space Green’s function) of the 2D
Laplace equation is the logarithmic potential function of equation
(3). The fundamental solution of the 2D homogeneous biharmonic
equation is the thin plate spline function of equation (4).

Equations (5) and (6) give formulae for any solution of the 2D
Laplace equation and the homogeneous biharmonic equation, for a
bounded domain in the plane, in terms of the fundamental solutions
(3), (4) and their directional derivatives. These equations are sim-
plified version of equations given in [Mai-Duy and Tanner 2005].
In these equations, Γ represents the totality of curves bounding the
domain, which includes an all-enclosing boundary curve and may
include internal boundary curves, P is a point in the plane, Q is
a point on a boundary curve, C(P ) is a constant which is 1 for
points inside the domain and 0 for points outside the domain, n is
the outward normal to the boundary and r is the distance between
P and Q. [Sun et al. 2012] use equation (5) as the basis for their

boundary element method of rendering diffusion curve images. We
use equation (6) as the basis for the boundary element method we
describe in this paper for rendering biharmonic diffusion curve im-
ages. [Weber et al. 2012] also derive equation (6) (for the interior
of a region), referring to it as the boundary integral identity for the
biharmonic equation. They use it to define coordinates within the
region for controlling shape deformation. In contrast, for diffusion
curve images we use equation (6) inside and outside the domain.

When there are nested closed curves and 2-sided open curves within
the domain, versions of equations (5) and (6) apply in which the val-
ues of the solutions U, F and their normal derivatives along bound-
aries become 2-sided “jump” values. Consequently, any diffusion
curves image and any biharmonic diffusion curves image can be
viewed as a superposition of “point source” fields (the fundamen-
tal solutions and their directional derivatives) which are positioned
with the field source points along the curves and weighted accord-
ing to jumps in the value, normal gradient, Laplacian and normal
gradient of Laplacian of the image at the curve.

Uniqueness properties. The Laplace equation and the homoge-
neous biharmonic equation satisfy uniqueness properties. Any so-
lution of the Laplace equation satisfying certain continuity require-
ments within a region is uniquely determined by its values on its
boundary [Kreyszig 1999]. Similarly, any solution of the homo-
geneous biharmonic equation satisfying certain continuity require-
ments within a region is uniquely determined by its values and its
normal derivative values on its boundary [Jaswon and Symm 1977,
p. 114]. In the context of diffusion curve images, these uniqueness
properties are important for two reasons.

Firstly, they allow an image designer to isolate or preserve parts of
their artwork as they continue to edit other parts of their artwork.
Secondly, they allow image rendering methods to achieve signifi-
cant efficiencies by independently processing different regions of
the image. For diffusion curve images, curves inside a closed curve
can be ignored when rendering outside the curve, and curves out-
side the closed curve can be ignored when rendering inside the
curve. [Sun et al. 2012] use this region independence to perform
curve “culling” in their diffusion curve image rendering and they
report high speed gains when it is applied in rendering particular
test images. Similarly, the uniqueness property of the homogeneous
biharmonic equation allows optimisations in rendering biharmonic
diffusion curve images.

Biharmonic diffusion curve images. Defining diffusion curve im-
ages as solutions of the homogeneous biharmonic equation brings
the benefits of a long history of study of the biharmonic equation, a
variety of solving methods, and it gives well-defined images which
facilitates interoperability with other image models. We note that
any image of the diffusion curves (without blur) image model is
also an image of the biharmonic diffusion curves image model.

3 BEM biharmonic diffusion curves rendering

3.1 Solved boundary element representation

The following formula, corresponding to equation (6), gives a dis-
crete approximation of the values of a colour channel of a bihar-
monic diffusion curves image.

im(x, y) =
X

i

diDi(x, y) +
X

i

liLi(x, y)+X
i

siSi(x, y) +
X

i

tiTi(x, y)
(7)



Table 1: Summary of features of the diffusion curves and biharmonic diffusion curves image models.

Diffusion curves Biharmonic diffusion curves
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´
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boundary
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∂F (Q)
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dΓ−

Z
Γ

∂GH(P,Q)
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F (Q)dΓ
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Γ

GB(P,Q)
∂U(Q)
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dΓ−

Z
Γ

∂GB(P,Q)

∂n
U(Q)dΓ

(6)

where U(x,y)=∇2F (x,y)

uniqueness
property

Inside a region bounded by piecewise
smooth curves, the solution is uniquely de-
termined by values on the curves.

Inside a region bounded by piecewise smooth curves, the solution is
uniquely determined by values and normal gradients on the curves.

Dipole Log S TPS

Figure 2: The four line segment field types of the biharmonic diffu-
sion curves image model, shown for an example line segment. Top
(1st) row from left to right: dipole (D), logarithmic (L), derivative
of thin plate spline (S), thin plate spline (T) line segment fields. 2nd
row: quantized fields to show contours. 3rd row: plot of image
values along the straight line which is normal to the line segment
and passes through the centre of the line segment. 4th row: plot of
image Laplacian values along the same straight line normal to the
line segment.

In this formula, the four summations are performed over straight
line segments which approximate the curves of the image, including
the outer curve enclosing the image region. The four summations
correspond to the four integrals of equation (6). Each subscripted
lower case value is a line segment weight; and each subscripted

upper case function is a line segment field function. Each line seg-
ment field is the integral along a line segment of a unit-weighted
point field function positioned along the segment. The four point
field functions, which correspond to the fundamental solutions of
equations (3), (4) and their directional derivatives, are:

1. the 2D dipole potential field (derivative of the 2D logarithmic
field), oriented normal to the curve;

2. the 2D logarithmic potential field;
3. the derivative of the 2D thin plate spline, oriented normal to

the curve;
4. the 2D thin plate spline.

Figure 2 shows images of the four types of line segment fields:
dipole (D), logarithmic (L), derivative of thin plate spline (S) and
thin plate spline (T). The dipole and logarithmic line segment fields
are harmonic at points away from the line segment. Equation (7)
with only the first two terms, i.e. with only dipole and logarithmic
line segment fields, is a boundary element representation of dif-
fusion curves without blur, similar to the solved representation of
[Sun et al. 2012]. The S and thin plate spline segment fields are
biharmonic. In equation (7), the presence of the thin plate spline
segment field enables smooth interpolation of colour constraints,
while the presence of the S segment field enables use of gradient
constraints normal to curves.

Table 2 gives formulae for the four types of line segment fields and
the point fields from which they are derived. For a directed line
segment running from endpoint (x1, y1) to endpoint (x2, y2) with
angle of inclination λ = atan2(y2 − y1, x2 − x1), the line seg-
ment field formulae give values at (x, y) using variables u1, u2, v
dependent on x, y according to equations (8). The variables u1,
u2, v are the components of the two vectors from the line segment
endpoints to a field point (x, y) in a (u, v) co-ordinate system ro-
tated so that the u axis is oriented in the same direction as the line
segment. This rotation aligns the branch cut of atan2(v, u) with the
segment, so that the angular quantity atan2(v, u2)−atan2(v, u1) in
the segment field formulae is a continuous function of the field point
except across the line segment.

u1 = cos(λ)(x− x1) + sin(λ)(y − y1)

u2 = cos(λ)(x− x2) + sin(λ)(y − y2)

v = − sin(λ)(x− x2) + cos(λ)(y − y2)

= − sin(λ)(x− x1) + cos(λ)(y − y1)

(8)



Table 2: Formulae for the four line segment fields of biharmonic diffusion curves.
Point field Line segment field

Dipole (D) d(x,y,λ)=
cos(λ)y−sin(λ)x

x2+y2
D(x,y)=atan2(v,u2)−atan2(v,u1)

Logarithmic
(L) l(x,y)=

1

2
log(x2+y2)

L(x,y)=−
„

u2

»
1

2
log(u2
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–
−vatan2(v,u2)

«
+

„
u1

»
1

2
log(u1
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–
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«

Derivative of
thin plate
spline (S)
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1

2
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2
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„

u2v
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1

2
log(u2
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2
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−v2atan2(v,u2)

«
+

„
u1v
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1

2
log(u1
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2

–
−v2atan2(v,u1)

«
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2»
1

2
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– T (x,y)=−1

6

„
(u2

3+3u2v
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1

2
log(u2
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1

3
u2

3−2u2v
2
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+

1

6

„
(u1
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1
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log(u1
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2
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The third row of Figure 2 shows for each type of line segment
a plot of image values along the straight line oriented 90 degrees
anti-clockwise to the segment and passing through the centre of the
segment. The dipole and logarithmic segment fields have sharp pro-
files, while the S and TPS segment fields have smooth profiles. The
fourth row of Figure 2 shows a plot of image Laplacian values along
the same straight line. The profiles of S and TPS segment fields for
Laplacian values have the same shape as the profiles of dipole and
logarithmic segment field values. The dipole, logarithmic, S and
TPS segment fields respectively contribute value, normal gradient,
Laplacian and normal gradient of Laplacian discontinuities to a bi-
harmonic diffusion curves image. Because each type of segment
field contributes one type of discontinuity but no other, the four line
segment field types can be considered to form an orthogonal set.

3.2 Specification of biharmonic diffusion curves

Sharp-profile / smooth-profile paradigm. In our implementation
of biharmonic diffusion curves, we use a simple “sharp-profile”
curve, “smooth-profile” curve paradigm for image designers to
specify images. This is quite similar to the use of sharp-profile
and smooth-profile curves in sketch-based surface modelling, such
as in [Nealen et al. 2007], [Joshi and Carr 2008] and [Andrews
et al. 2011]. Generally, a sharp-profile curve divides an image lo-
cally into independent left and right image regions, while a smooth-
profile curve adjusts the colour variation of its (left and right) sur-
rounding region. It is expected that an image designer would typi-
cally sketch outlines of regions with sharp-profile curves and adjust
the colouring within regions using smooth-profile curves. How-
ever, the profile type of a curve is editable as are its associated con-
straint values. A sharp-profile curve has colour value constraints on
both its left and right sides (the left and right colours may be the
same). A sharp-profile curve is also given a Laplacian constraint:
zero Laplacian at the curve. This means that colour surfaces near a
sharp-profile curve have the same behaviour in the biharmonic dif-
fusion curves image model as in the diffusion curves image model.
As a consequence, a region bounded by sharp-profile closed curves,
is independent of colours in the surrounding regions. This region
independence is sensible default behaviour, because often sharp-
profile curves occur as outlines of objects. A smooth-profile curve

has constraints that apply to both sides of the curve: colour con-
straints along the curve, which are smoothly interpolated by sur-
rounding colours; and optionally colour normal gradient constraints
along the curve. We note that omitting normal gradient constraints
gives a simpler image model, which still provides smooth interpo-
lation of colour constraints.

The combination of diffusion curves with sharp-profiles, smooth-
profiles, the option to set constraint values by sampling a work-in-
progress rendered image, along with conventional image authoring
schemes such as layering and transparency, provides a reasonably
simple, but effective tool set for specifying colour variation. The
solved boundary element representation of a biharmonic diffusion
curve image of equation (7) is a general representation for solutions
of the biharmonic equation with value and gradient constraints and
as such is capable of representing images specified by all the curve
constraint types described in [Boyé et al. 2012]. However, our spec-
ification of biharmonic diffusion curves images using sharp-profile
and smooth-profile curves as above does not include the full range
of these curve constraint types. Currently we do not implement nor-
mal gradient constraints at sharp-profile curves, smooth interpola-
tion at isolated points and “barrier” curves (proposed by [Bezerra
et al. 2010]), which would all be very useful for authoring. Nor do
we implement contraint curves at which no colour value is speci-
fied, such as “tear”, “crease” and “slope” curves. Implementation
of additional curve constraint types is an area of future work for us.

3.3 Overview of rendering steps

There are two main steps in our diffusion curves image rendering.
1. Generate a solved boundary element image representation:

(a) generate polyline segments from the curves;
(b) determine dipole segment weights;
(c) set up and solve a linear system of equations to obtain

log, S and TPS segment weights.
2. Evaluate the output image from the solved representation

(segments and segment weights).
The output image can be evaluated using direct evaluation of equa-
tion (7) or using line-by-line processing; in each case, curve-aware
upsampling can be employed to reduce the computation.



3.4 Generating the solved BEM representation

Curves to polylines. Our current implementation renders a bihar-
monic diffusion curves image from a text file image specification,
including curves, sharp-profile / smooth-profile curve attributes,
and colour values and colour gradient values at positions along
curves. We implement curves as cubic Bézier curves. We use re-
cursive subdivision to convert cubic Bézier curves to line segments.
The recursion terminates when a straightness threshold is reached.
Subsequently we divide long segments so that segments do not ex-
ceed a maximum length threshold. Constraints for line segments,
being colour values and colour normal gradient values at the cen-
tre of line segments, are derived from the curve constraints of the
image specification by interpolating values along curves.

Dipole field weights. Weights for line segment dipole fields for a
colour channel are equal to the difference of colour channel values
on the left and right sides of the line segment, divided by 2π.

Linear system of equations. The weights for line segment loga-
rithmic, S and thin plate spline fields for a colour channel are ob-
tained by solving a linear system of equations consisting of three
types of equations (9), (10), (11). In these equations the summa-
tions are performed over all line segments.

X
i

(liLi + siSi + tiTi)(x,y) = c−
X

i

diDi(x,y) (9)

X
i

“
si∇2

Si + ti∇2
Ti

”
(x,y) = 0 (10)

X
i

„
li

∂Li

∂n
+ si

∂Si

∂n
+ ti

∂Ti

∂n

«
(x,y) =

∂c

∂n
−

X
i

di
∂Di

∂n
(x,y) (11)

Let s be the number of sharp-profile segments, m be the number
of smooth-profile segments and g be the number of smooth-profile
segments having a normal gradient constraint. The linear system
includes firstly s + m equations of the form of equation (9) which
constrain the colour channel value c at the centre of a line segment
(x, y). For a sharp-profile line segment the colour channel value
is the average of the segment left and right colour channel values.
Secondly, there are s equations of the form of equation (10) con-
straining the Laplacian of colour channel values to be zero at the
centre of line segments of sharp-profile curves. And thirdly, there
are g equations of the form of equation (11) constraining the gradi-
ent of colour channel values at the centre of a line segment in the
direction normal to the segment, for curves for which a normal gra-
dient has been specified. This gives a total of 2s+m+ g equations
in the system. For smooth-profile curves, weights for logarithmic
segment fields are set to zero (m weights); and for sharp-profile
curves and smooth-profile curves with no normal gradient specified,
weights for S segment fields are set to zero (s + m − g weights).
This leaves 3∗ (s+m)−m− (s+m−g) = 2s+m+g weights.
In this way, the linear system has the same number of unknowns
as constraint equations, and it is solved to provide, alongside the
weights set to zero, a full set of log, S and TPS weights.

3.5 Line-by-line evaluation

Rendering a biharmonic diffusion curves image by direct evaluation
of equation (7) requires calculating values for all segment fields
at all image positions. Here we describe our line-by-line method
for evaluating biharmonic diffusion curve images, which is a much
more efficient alternative when rendering large images with many
curves. The line-by-line evaluation method calculates a close ap-
proximation of a biharmonic diffusion curves image equal to the
sum of approximate dipole, log, S and TPS segment fields, as in

equation (12). Formulae for the approximate segment fields, as
sums of periodic and polynomial functions, are provided in Table 4
in the appendix, along with a description of the derivation of the
formulae.

˜im(x, y) =
X

i

diD̃i(x, y) +
X

i

liL̃i(x, y)+X
i

siS̃i(x, y) +
X

i

tiT̃i(x, y)
(12)

Before describing in detail image evaluation according to equation
(12), we introduce principles of line-by-line evaluation of bihar-
monic functions using repeated 1D convolution operations.

Line-by-line evaluation of biharmonic functions. The following
Poisson (or Schwarz) integral formula [Brown and Churchill 1996]
describes the harmonic extension of a function from its values on
the x axis to the upper half plane, y > 0.

U(x, y) = U(x, 0) ∗ 1

π

y

x2 + y2
(13)

According to this formula, values of a harmonic function on a hor-
izontal line above the x axis are obtained from values of the func-
tion on the x axis by convolution with the Cauchy distribution (i.e.
function) with scale parameter y. The Cauchy distribution is a bell-
shaped curve. It has the property, verified by considering its Fourier
Transform, that it is closed under self-convolution. In particular,
the Cauchy distribution with an integer scale parameter n, is equal
to the result of convolving together n copies of the standard Cauchy
distribution (having scale parameter 1) as expressed by the follow-
ing equation.

1

π

n

n2 + x2
=

„
1

π

1

1 + x2

«∗n

≡ 1

π

1

1 + x2

n−1 timesz }| {„
∗ 1

π

1

1 + x2

«
(14)

Intuitively, in a convolution operation, a Cauchy distribution acts
as a low pass or “spreading” filter. Repeated convolution with a
Cauchy distribution progressively smooths the (1D) function on
which it operates. Combining equations (13) and (14) to give equa-
tion (15), shows that values of a harmonic function on a horizontal
line can be used to successively obtain values of the harmonic func-
tion on uniformly spaced horizontal lines with greater y intercept,
by repeated convolution with the same filter function1. Also, any
2D biharmonic function can be expressed according to equation
(16), as a sum of a first harmonic function and y times a second
harmonic function [Poritsky 1946, p. 253].

U(x, y + n) = U(x, y)

„
∗ 1

π

1

1 + x2

«∗n

(15)

F (x, y) = U1(x, y) + yU2(x, y) (16)

Equations (15) and (16) indicate the possibility for biharmonic
functions, and hence biharmonic diffusion curve images, of taking
values on one line parallel to the x axis and performing 1D filtering
operations to calculate values on the next line, and then repeating
this process to calculate values on subsequent lines. Specifically,

1This processing scheme has been used by the first author in algorithms
for digital halftoning and mixed content image compression [Ilbery 2008].



consider the initialization expressed by equations (17) of two uni-
variate functions, line1 and line2 using values of the bivariate har-
monic functions U1 and U2 along a horizontal line, and the set of
operations on the two univariate functions expressed by equations
(18). After repeating the set of operations n times we have the result
given by equation (19). That is, values of the biharmonic function,
F (x, y) are obtained on subsequent lines.

line1(x) = U1(x, y) + yU2(x, y)

line2(x) = U2(x, y)
(17)

line1(x) := line1(x) ∗ 1

π

1

1 + x2

line2(x) := line2(x) ∗ 1

π

1

1 + x2

line1(x) := line1(x) + line2(x)

(18)

line1(x) = U1(x, y + n) + (y + n)U2(x, y + n) (19)

We use this processing scheme in our line-by-line method of eval-
uating biharmonic diffusion curve images. However, rather than
working with continuous functions we operate on discrete func-
tions and use cyclic (i.e. periodic) convolution. Cyclic convolution
is desirable because non-cyclic convolution spreads a signal wider
so that repeated non-cyclic convolution on finite length signals re-
quires special processing to prevent signal loss, which is liable to
distort the signal. We next discuss formulae expressing approxi-
mate line segment fields using harmonic and biharmonic 1-D peri-
odic functions, suitable for line-by-line evaluation.

Line segment fields as sums of 1D-periodic functions and poly-
nomial functions. In Table 4 in the appendix, the top formula
for each approximate segment field is a summary formula. E.g.the
summary formula for the approximate dipole segment field is:

D̃(x, y) =XD(x− x2, y − y2)−X D(x− x1, y − y1)

+y D(y) +xy D̃(x, y)
(20)

The summary formulae for approximate log, S and TPS segment
fields have the same structure. As seen in Table 4, the first two terms
of each approximate segment field formula (indicated by the prefix
“X”) are composed of functions which are periodic in the x dimen-
sion. The third term is a line adjustment term (prefix “y”) composed
of polynomials in y, and the fourth term is a bivariate polynomial
term (prefix “xy”) which is composed of bivariate polynomials in
x and y. In calculating a diffusion curves image according to equa-
tion (12), we evaluate the periodic terms line-by-line using cyclic
convolution, while the remaining polynomial terms are evaluated
by conventional means.

The periodic terms of the approximate segment fields are composed
from real and imaginary parts of polylogarithms of complex expo-
nentials. The polylogarithm function of order n is defined by equa-
tion (21). For y ≥ 0, real and imaginary components of the poly-
logarithms of the complex exponential ei2z are given by equation
(22). Now, as well as being periodic in x, the polylogarithm of com-
plex exponential functions extend harmonically to the upper half
plane [Lerma 2002] as described by equation (13). Consequently,
values of the periodic terms of the dipole and logarithmic segment
fields are harmonic, and the values of the periodic terms of the S
and TPS segment fields, which include polylogarithms multiplied
by y, are biharmonic.

Lin(z) =

∞X
m=1

zm

mn
(21)

Figure 3: Line plots of a dipole segment field, showing the shape
of the plots smoothing from line to line.
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In our line-by-line processing, we perform cyclic convolution with
the discrete periodized Cauchy distribution given in the appendix.
Figure 3 is a graph of an approximate dipole segment field for lines
of constant y value. This segment field is calculated using the imag-
inary part of the order 1 polylogarithm of complex exponential,
which at y = 0 has a “saw tooth” or periodic triangular shape.
In the line-by-line method, the smoothed values of the approximate
dipole segment field and other types of segment fields along lines of
constant y value are successively obtained using field values along
the preceding line closer to the segment by convolution with the
periodized Cauchy distribution acting as a spreading filter. We now
discuss evaluation of approximate line segment field formulae us-
ing an upward and downward sweep over image, before describing
our implementation of line-by-line evaluation.

Sub-segments and upward and downward passes. The formulae
of Table 4 are valid when y ≥ y1, y2 (the y co-ordinates of the
segment end points). That is, the formulae are valid in an upper
half-plane above the segment. The formulae are also valid when
y ≤ y1, y2, i.e. in a lower half-plane below the segment. In our
line-by-line method, each segment is split into sub-segments, such
that each sub-segment lies in a region bounded by adjacent rows of
pixel centres. Values for sub-segment fields can then be evaluated
using the formulae on all rows of pixel centres and the values of
a segment field are obtained as the sum of the values of the con-
stituent sub-segment fields.

From inspection of the approximate segment field formulae of Ta-
ble 4 it can be seen that the periodic and line adjustment terms con-
tain a sign term s, but the bivariate polynomial terms do not. The
sign term is ±1 depending on whether y is above or below the seg-
ment. Because bivariate polynomial terms are the same above or
below a segment, their contribution to image values in equation (12)
can be calculated simply by summing the contribution of each seg-
ment to the coefficient of each polynomial xiyj and then evaluating
the polynomials at image positions using the summed coefficients.

In distinction, because the formulae for the periodic and line ad-
justment terms are different above and below a line segment, we
calculate contributions from these terms in two parts - in an upward
pass over image scanlines and a downward pass over image scan-



im = zeros(Yim,Xim); % Xim = width, Yim = height
[im,coeffs] = do_pass(im,Xim,1, 1,Yim,segs); % up
[im] = do_pass(im,Xim,Yim,-1, 1,segs); % down
for y=1:Yim % add polynomial values
[c0,c1,c2,c3,c4] = x_coeffs_from_coeffs(y,coeffs);
for x=1:Xim
im(y,x) = im(y,x)+c0+c1*x+c2*xˆ2+c3*xˆ3+c4*xˆ4;

end
end

function [im,coeffs] =
do_pass(im,Xim,y_start,y_step,y_end,segs)

line1 = zeros(1,X); % X >= 2*Xim; line1, line2
line2 = zeros(1,X); % are scanline data stores
sys_vars = init_dsys(); % init. discrete systems
coeffs = init_coeffs(); % init. polynomial coeffs

for y=y_start:y_step:y_end
contribs1 = zeros(1,X);
contribs2 = zeros(1,X);
for each sub-segment in image region (y+y_step,y]
contribs1 = add_seg_contribs1(contribs1,sub_seg);
contribs2 = add_seg_contribs2(contribs2,sub_seg);
sys_vars = update_dsys_with_seg(sys_vars,sub_seg);
if y_step==1
coeffs = add_seg_coeffs(coeffs,sub_seg); end

end
line1 = line1 + contribs1;
line2 = line2 + contribs2;

line_adjust = adj_from_dsys(sys_vars);
for x=1:Xim % add pass image values

im(y,x) = im(y,x) + line1(x) + line_adjust;
end

% updates for step in y
line1 = cconv(line1,h,X); % cyclic convolution
line2 = cconv(line2,h,X); % with spreading filter, h
line1 = line1 + line2;
sys_vars = time_step_dsys(sys_vars);

end

Figure 4: Pseudo-code (pseudo-Matlab) for line-by-line evaluation
of a single colour plane biharmonic diffusion curves image.

lines. In the upward pass, upper half-plane values for the periodic
terms are calculated in a similar fashion to the line-by-line process-
ing scheme of equations (17) and (18). However, rather than cal-
culating values for a single biharmonic function, sums of values of
biharmonic functions are calculated, being upper half-plane values
for all the periodic terms of the fields of all sub-segments preced-
ing the current scanline. Lower half-plane values are calculated in
a similar way in the downward pass. Values for line adjustment
terms are also calculated using the upward pass and downward pass
over image scanlines but using discrete time systems described in
the appendix.

Line-by-line evaluation implementation. We now describe an
overview of our line-by-line method of evaluating biharmonic dif-
fusion curves for a single colour plane image, referring to the
pseudo-code of Figure 4 (a colour image is evaluated by separately
evaluating each colour plane). Please note that our implementa-
tion of line-by-line evaluation includes optimisations not described
in the pseudo-code but discussed later. The input for the evalua-
tion is a set of segments, each with weights for dipole, log, S and
TPS segment fields. The image values are calculated according to
the periodic, line adjustment and bivariate polynomial terms of the
summary segment field formulae of Table 4, using sub-segments.
At the start of the pseudo-code, the image is calculated by first
setting image values to zero, then adding pass image values gen-
erated by an upward pass over image scanlines, then adding pass
image values generated by a downward pass over image scanlines
and finally adding polynomial values corresponding to the bivariate

polynomial terms of Table 4.

In the upward pass over image scanlines, the pass image values are
the sum of biharmonic function values corresponding to the peri-
odic terms of Table 4, and line adjustment values corresponding to
the line adjustment terms of Table 4. The upward pass image val-
ues are calculated for successive lines of the image by proceeding
from the lowest y coordinate value to the highest; the values corre-
spond to all sub-segments preceding (i.e below) the line. Similarly
in the downward pass, downward pass image values are calculated
for successive lines of the image, proceeding from the highest y co-
ordinate value to the lowest, as sums of values corresponding to all
sub-segments preceding (i.e. above) the line.

The upward pass and downward pass over image scanlines are im-
plemented as calls to the pseudo-code function do_pass, with the
parameter y step set respectively to 1 and -1. At the start of the
pass, the two line stores, line1 and line2 (of length X greater than or
equal to twice the image width), are zero initialised; and the discrete
time system variables and the bivariate polynomial coefficients are
zero initialised using calls to pseudo-code functions init_dsys
and init_coeffs. Within each pass, for each scanline, each
sub-segment lying in the region between the pixel centres of the
current scanline and the pixel centres of the preceding scanline is
processed as follows. Firstly, contributions from periodic func-
tions for the sub-segment are accumulated in line stores contribs1
and contribs2. The sub-segment contributions added to contribs1
(add_seg_contribs1) are values along the scanline for each
of the polylogarithm terms of Table 4, multiplied by the appropriate
segment weight. The sub-segment contributions added to contribs2
(add_seg_contribs2) are segment weighted values along the
scanline for those polylogarithm terms of Table 4 which are mul-
tiplied by y (occurring in the S and TPS fields), except that rather
than being multiplied by y, they are multiplied by the distance be-
tween scanlines. Secondly, the discrete system variables are up-
dated for the sub-segment (update_dsys_with_seg). Also, if
the pass is upward, the sums of bivariate polynomial coefficients
are updated for the sub-segment (add_seg_coeffs).

Once all sub-segments for the scanline have been processed, the
line stores, line1 and line2, are updated with the periodic function
contributions, contribs1 and contribs2 similar to equations (17). At
this point, line1 stores sums of biharmonic function values for all
sub-segments preceding the current scanline. These values plus the
line adjustment value calculated from the discrete time system vari-
ables (adj_from_dsys) constitute the pass values of the current
scanline and are added to the image. Then the line stores are pre-
pared for the next scanline by performing cyclic convolution with
the spreading filter (the periodic Cauchy kernel) and adding line2
values to line1 values, similar to equations (18), and the discrete
system variables are updated, corresponding to a time step of 1
(time_step_dsys), to prepare for the next scanline.

Following the upward and downward passes, polynomial val-
ues corresponding to the bivariate polynomial coefficients ob-
tained in the upward pass, are added to the image scanline
by scanline, as polynomials in x, using pseudo-code function
x_coeffs_from_coeffs to determine the coefficients of the
polynomials in x for the current scanline. In this way, the weighted
values of all sub-segment fields from the periodic, line adjustment
and bivariate polynomial terms are added to the image

Line-by-line evaluation optimisations and details. In our imple-
mentation we avoid calculation of polylogarithm values by using
pre-calculated values stored in look up tables. Each sub-segment
is approximated as a weighted sum of segments with end points
having pixel centre co-ordinates. In this way, the look up tables
only need to store polylogarithm values evaluated at uniformly sam-



Figure 5: Curve-aware upsampling. A line segment, shown in
black, lies on a coarse grid of low resolution image pixels. Image
values at a higher resolution are calculated from the coarse grid im-
age values by upsampling. Correction image values are calculated
for blocks of higher resolution pixels close to the line segment.

pled positions in the x dimension along two horizontal lines, with
y position equal to 0 and y position equal to the distance between
scanlines. Instead of performing circular convolution operations
in the spatial domain, we perform the convolutions using multipli-
cations of frequency values. We transform to and from frequency
values using power-of-2 Fast Fourier Transforms (FFTs). In using
the approximate field formulae of Table 4, co-ordinate values are
first scaled by π/X , where X is the polylogarithm period which is
set greater than or equal to twice the image width.

3.6 Curve-aware upsampling

Line segment fields are increasingly smooth as the distance from
the line segment increases. Consequently, the value of a line seg-
ment field at an image position can be calculated to a close approx-
imation by interpolating line segment values at surrounding image
positions, provided the region covered by the surrounding positions
is not close to the line segment. With curve-aware upsampling, the
image is calculated by upsampling a lower resolution image and
adding correction values near each line segment.

Figure 5 illustrates one level of 2x2 symmetric upsampling, show-
ing a coarse grid of low resolution pixel centres in red and a fine
grid of blue or yellow high resolution pixel centres. A square image
region with corners at the centres of four nearest neighbour lower
resolution pixels (red crosses), is the same as the image region oc-
cupied by a 2x2 block of higher resolution pixels (blue or yellow
crosses). For each line segment, correction values are calculated
for blocks of higher resolution pixels that are close to the line seg-
ment (yellow crosses). For a line segment, the correction value at a
higher resolution pixel is the sum of:

1. an upsampling compensation value which is the negative of
the contribution by upsampling to the higher resolution pixel
value from parts of lower resolution pixel values due to the
line segment, and

2. a replacement value being the sum of line segment field values
at the high resolution pixel due to the line segment, calculated
according to the line segment field formulae of Table 2.

In this way, when lower resolution pixel values are exact, for an
image value at a higher resolution pixel close to a line segment,
the total contribution to the image value due to the line segment
(i.e. the part of the upsampled value due to the line segment plus
the correction value) is equal to the exact contribution to the image
value from the line segment according to equation (7). This dis-
tinguishes curve-aware upsampling from “discontinuity-aware up-
sampling” described in [Finch et al. 2011] in which the effect of

Figure 6: Diffusion curve images rendered using our implementa-
tion. Top row images are re-creations of images in [Orzan et al.
2008]. The duck and cat images are re-creations of images in
[Finch et al. 2011] and [Boyé et al. 2012] respectively.

Table 3: Execution times. All images are 512x512 RGB.

image no. of
segments

execution times (secs)

solve evaluate
(direct +1)

evaluate
(line-by-line)

pepper 1487 0.245 0.634 0.078
flower 3536 0.946 1.222 0.076
dolphin 3659 1.072 1.212 0.084
parrot 1012 0.279 0.501 0.119
pumpkin 1710 0.792 0.719 0.151
toys 1912 0.797 0.789 0.134
duck 2192 1.338 0.891 0.140
car 2611 2.200 0.999 0.126
cat 2755 2.020 1.028 0.161
lines 4241 8.052 1.457 0.147

a close curve is estimated. Curve-aware upsampling can be per-
formed multi-scale by successively taking a low resolution image
to higher resolutions. However, all the curve-aware upsampling
results reported in this paper are for one level of 4x4 symmetric
upsampling using bicubic interpolation.

4 Performance

Speed. Table 3 gives execution times for rendering the example
images of Figure 1, Figure 6 and Figure 8. The top row of Figure 6
shows our rendering of diffusion curve images appearing in [Orzan
et al. 2008]. These images are rendered using vector data from the
authors of [Orzan et al. 2008], but without applying blur; with vec-
tor data for the dolphin image being cropped. Figure 6 also shows
our rendering of the cat image appearing in [Boyé et al. 2012] and
the duck image appearing in [Finch et al. 2011]. For our rendering
of the cat image we have modified original data by adding colour
values for curves at which colour was not specified and we have
excluded or slightly moved curves to avoid having smooth-profile
curves very close to other curves. The “lines” texture image of Fig-
ure 6 was prepared programmatically by placing randomly oriented
straight lines separated from each other.

Table 3 shows times for generating the solved BEM representation
using a GPU, and for two methods of evaluation from the solved
representation. The first of these methods is direct evaluation with
one level of curve-aware upsampling (“direct +1”) using equations
(7), (8) and the line segment field equations of Table 2, performed
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using a GPU. The second method (“line-by-line”) is line-by-line
evaluation on a CPU. Times for the top row diffusion curve images
of Figure 6 are listed separately to times for the other images, be-
cause the top row images, which conform to the diffusion curves
without blur image model, do not include smooth-profile curves
(i.e. no S and TPS segment fields) and as a consequence have
comparatively smaller solve and line-by-line evaluation times. Our
performance figures are for execution on a PC with an Intel Xeon
E5630 2.53 GHz processor having 4 cores and with an NVIDIA
Quadro 2000 graphics card with 1GB of video memory.

The computational complexity of direct evaluation of diffusion
curve images according to equation (7) is O(nm), while the com-
putational complexity of the line-by-line evaluation algorithm is
O(nlogn) + O(m), where n is the number of pixels and m is the
number of segments. Figure 7 shows times for direct evaluation
with curve-aware upsampling on a CPU and line-by-line evaluation
times on a CPU for a simple image as the image height and width
are changed together. The direct evaluation with upsampling times
increase approximately in proportion to the number of pixels times
the number of segments. The increase in the line-by-line evaluation
times is much more subdued, which is consistent with the computa-
tional load not jointly depending on the image size and the number
of segments.

Accuracy. The top row of Figure 8 shows on the left a plot of a
TPS segment field, and on the right, the difference between the field
and its line-by-line evaluation using the formulae of Table 4. The
approximation error, which in this case is at most approximately
5.1x10−4 of the maximum image field value, is primarily due to
truncating polynomial series in the derivation of the approximate
field formulae. The bottom row of Figure 8 shows on the left a
parrot image rendered using line-by-line evaluation. On its right is
a difference image obtained by subtracting it from the same image
rendered using direct evaluation (with differences multiplied by 20
to enhance visibility). The direct evaluation is not anti-aliased, so
there are significant differences along the sharp-profile curves of
the image. Elsewhere in this image, differences of 8 bit colour val-
ues are at most one before multiplying. For each test image shown
in this paper it is difficult to observe, except along sharp-profile
curves, any difference between the image rendered line-by-line and
the image rendered by direct evaluation with curve-aware upsam-
pling.

In the line-by-line evaluation method, image approximation errors
are primarily due to TPS segment fields. This is because TPS seg-
ment field weights can become large when smooth profile segments
are close to each other or to other curves. This is understandable,
because when smooth-profile curves are close to other curves, the
value and gradient constraints specified along curves can cause high
curvature, i.e. bending of the colour surfaces. In an animation

Figure 8: Difference images. Top-left: TPS field for a segment
from endpoint (50,50) to endpoint (52,51); top-right: TPS segment
field minus the approximate field obtained using our line-by-line
evaluation implementation; bottom-left: parrot biharmonic diffu-
sion curves image c©CiSRA; bottom-right: parrot image rendered
by direct evaluation minus image rendered line-by-line, with differ-
ences multiplied by 20.

composed of rendered frames, the requirement for rendering ac-
curacy is much higher than for individual images, because slight
changes from one frame to the next can produce annoying flicker
artefacts. For all the video we have produced using direct evaluation
with curve-aware upsampling, flicker artefacts have been absent.
In the video provided in the supplemental materials, rendered us-
ing our line-by-line evaluation method, image approximation errors
are small enough so that the animations are smooth without flicker.
However, it is easy to specify images with smooth-profile curves
close to other curves, which give line-by-line evaluated video with
significant flicker. In such cases it is expected that flicker should be
alleviated by using approximate segment field formulae with less
truncation of polynomial series. Another strategy to avoid flicker is
to restrict image specification.

5 Discussion

Extreme constraints. Extreme constraints present difficulties for
biharmonic diffusion curve images. Smoothly interpolated colour
values very close to other constraints and arbitrarily large colour
gradients can define colour surfaces which move rapidly out of
range. With boundary element rendering of biharmonic diffu-
sion curve images, extreme constraints can lead to very large TPS
weights and to solving failure. For the image content presented in
this paper, we have excluded smooth-profile curves which are very
close to other curves as a way of side-stepping this issue.

Line-by-line evaluation. For the previously published bound-
ary element methods of rendering diffusion curve images, [van de
Gronde 2010] and [Sun et al. 2012], the computational load for
evaluation from the solved representation is in general dependent
on the product of the number of evaluation points (e.g. pixels)
and the number of boundary elements. In our line-by-line evalu-



ation method, the computational load does not jointly depend on
the image size and the number of boundary elements. The line-
by-line evaluation method may be useful in efficiently evaluating
solutions of PDEs for other applications. We expect to improve the
performance of line-by-line-evaluation by reducing the use of FFTs
through calculating segment contributions to line stores using infi-
nite impulse response (IIR) filtering along scanlines. However we
have not included this in our implementation yet.

Direct evaluation. Direct evaluation of equation (7) is suited to
evaluation of small image regions; however, the computation is typ-
ically heavy for large image regions. Direct evaluation is suited to
parallel execution and implementation on a GPU; and the compu-
tational load is significantly reduced by curve-aware upsampling.
The ability to directly evaluate image values at arbitrary positions
can be very useful, for colouring surfaces as in [Sun et al. 2012]
and [Boyé et al. 2012], and for setting new curve constraint values
during image authoring, discussed in section 3.2. Our implementa-
tions of direct evaluation and curve-aware upsampling are currently
not antialiased. However, adding antialiasing should be straightfor-
ward.

Solving. The boundary element method requires solving a linear
system of equations with a dense system matrix. This solving step
is the bottleneck in our rendering implementation, being compara-
tively slow and O(n3). We hope to be able to address this. Solving
performance can be significantly improved for particular images by
separately solving for independent image regions. We have not im-
plemented this yet. FEM solving times reported in [Boyé et al.
2012] are well below one second. [Boyé 2012, p. 119] indicates
that this FEM solving exploits separate solving of independent re-
gions. However, for some types of images, including the flower and
dolphin images of Figure 6 which are obtained by automatic vector-
ization of photographs described in [Orzan et al. 2008], the number
of curves per independent region can be high, in which case it is
expected that separate solving of independent regions will be less
effective in reducing the solving load. The solving times reported
in [Finch et al. 2011] are also below our solving times, although
that solving includes coarse-to-fine processing with acknowledged
accuracy limitations.

Accuracy. The accuracy of a biharmonic diffusion curves image
evaluated according to equation (7) using our BEM solved repre-
sentation, depends only on how well curves are approximated by
line segments and how well the image discontinuities at curves are
modelled by line segment weights. The BEM solved representa-
tion, like the FEM solved representation of [Boyé et al. 2012], is
vectorial; so there is no dependence on a pixel grid as in the finite
difference method of [Finch et al. 2011]. However, the BEM solved
representation has no dependence on the density or quality of a 2D
mesh as in [Boyé et al. 2012].

Compactness. The FEM solved representation for biharmonic dif-
fusion curve images of [Boyé et al. 2012] has solved values at mesh
points covering the 2D image space. Similarly to the previously
published boundary element methods of rendering diffusion curve
images, our solved representation contains solved values only along
the 1D boundary curves. Table 4.1 of [Boyé 2012] reports the cat
image of Figure 6 being rendered by the FEM solver using 49,731
nodes and 12,439 triangles. This indicates that the FEM solved
representation would be about 5 times the size of the BEM solved
representation for this RGB image. Considering the dimensionality
of the solved representations, it is expected that the relative com-
pactness of BEM over FEM would increase with image size.

Rendering from a compact solved representation. In our render-
ing, the highly compact BEM solved diffusion curves image repre-
sentation can be pre-calculated, and times for our line-by-line eval-

uation from the solved representation are sub-second while only
increasing slowly and linearly with the number of image curve seg-
ments. Thus line-by-line evaluation from the BEM solved repre-
sentation may be attractive for rendering complex diffusion curve
images.

6 Conclusion

We have presented a unified mathematical description of diffusion
curves without blur and biharmonic diffusion curves, and a bound-
ary element approach to rendering biharmonic diffusion curve im-
ages. Like the finite element approach, the boundary element ap-
proach has an image rendering advantage over the finite difference
approach in producing a vectorial solved image representation in-
dependent of a pixel grid. However the boundary element solved
representation is more compact than the finite element solved rep-
resentation. We have also presented an efficient line by line calcula-
tion method and a curve-aware upsampling method for calculating
diffusion curve images from the solved boundary element repre-
sentation. The new approach to rendering diffusion curve images
offers the possibility of transmitting compact solved image repre-
sentations to devices for evaluation at the device, where the devices,
due to time or processing constraints, are not suited to PDE solving.
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Appendix

Discrete periodized Cauchy distribution

The spreading filter in our line-by-line evaluation method is the fol-
lowing periodic Cauchy convolution kernel, evaluated at y = 1/X
and x ∈ Z. It is given with its Fourier Transform in the x dimen-
sion. In this formula X is the period of the periodic functions.

h(x) = 1
X

sinh (2πy)− 2e−πyX

„
sinh(πy) cos(πx) cos(πx/X)

− cosh(πy) sin(πx) sin(πx/X)

«
cosh (2πy)− cos (2πx/X)

x←→ e−y |ω | 2π
X

m = X−1
2P

m = − X−1
2

δ
`
ω −m 2π

X

´

Derivation of approximate segment field formulae

Table 1 in the Supplemental Appendix gives formulae for each line
segment field using a corresponding real function of the complex
variable z. Each of the functions of z involves real or imaginary
components of integrals of the complex function 1/z.

From the Laurent series for cot(z), valid for |z| < π:

1

z
= cot(z) +

1

3
z +

1

45
z3 +

1

945
z5 +

1

4725
z7 + ...

From [Lerma 2002], for y ≥ 0:

cot(πz) = −i[1 + 2Li0(e
i2πz)]

So we have

1

z
= −i[1 + 2Li0(e

i2z)] +
1

3
z +

1

45
z3 +

1

945
z5 +

1

4725
z7 + ...

Repeatedly integrating this analytic function and adding appropri-
ate constants gives the formulae in Table 2 of the Supplemental
Appendix, which express the integrals of 1/z as the sum of higher
order polylogarithms of a complex exponential and sums of polyno-
mials, including polynomial series. The approximate segment field
formulae of Table 4 are then obtained using the following three
steps. Firstly, the polynomial series of the integrals of 1/z being
log(z), z[log(z)−1], (z2/2)[log(z)−3/2], (z3/6)[log(z)−11/6]
are truncated to remove powers of z greater than 2, 3, 4 and 5 re-
spectively. Secondly, these truncated formulae are used to replace
terms which are integrals of 1/z in the segment field formulae of
Table 1 in the Supplemental Appendix. Thirdly, the resulting seg-
ment field formulae are simplified after expanding the polynomials
about the segment mid-point. The polynomial series truncation has
the result that the bivariate polynomial terms (prefix “xy”) in Ta-
ble 4 are approximations as indicated by use of the tilde symbol.

Discrete-time linear systems

Discrete time linear systems are used to calculate values of line
adjustment terms in Table 4. Consider the upward pass. Let d =
dyie − yi, where yi is the y co-ordinate of the centre of the i’th
sub-segment and de denotes the ceiling function. Then d satisfies
0 ≤ d < 1, and is the distance from the sub-segment centre to the
nearest horizontal image line at or above the sub-segment centre.
To calculate values of the line adjustment terms of Table 4, discrete-
time linear systems are used which have impulse responses which
match sampled continuous-time polynomial impulse responses.

For the input operations below, performed at integer time k corre-
sponding to an impulse at time k−d, followed by the accumulating
operations below,

input operations accumulating operations
in0[k] += 1 A0[k] = A0[k−1] + in0[k]
in1[k] += d A10[k] = A10[k−1] + in1[k]
in1[k+1] += 1− d A11[k] = A11[k−1] + A10[k]

A12[k] = A12[k−1] + A11[k]
A13[k] = A13[k−1] + A12[k]

in2[k] += d2 − d A2[k] = A2[k−1] + in2[k]
in31[k] += d3 − d A31[k] = A31[k−1] + in31[k]
in32[k+1] += d2 − d A320[k] = A320[k−1] + in32[k]

A321[k] = A321[k−1] + A320[k]

the outputs below have the desired impulse responses.

output impulse
response

A0[k] u[k]
A11[k] (k+d)u[k]
2A12[k]−A11[k]+A2[k] (k+d)2u[k]
6A13[k]−6A12[k]+A11[k]+A31[k]+3A32[k−1] (k+d)3u[k]

Here u[k] is the unit step sequence, satisfying u[k] = 1 for k =
0, 1, 2, .. and u[k] = 0 otherwise.

http://www.math.northwestern.edu/~mlerma/papers/bern_period_func.pdf
http://www.math.northwestern.edu/~mlerma/papers/bern_period_func.pdf


Table 4: Formulae for dipole, log, S and TPS segment fields as the sum of functions periodic in the x dimension, univariate line adjusment
functions and bivariate polynomial functions. Each periodic function is expressed using real and imaginary components of the polylogarithm
function of order n, Lin(z), with n = 1, 2, 3, 4. In these formulae, the line segment start and end points are (x1, y1) and (x2, y2), λ is the
angle of inclination of the line segment and len is the length of the line segment. The formulae are valid for y ≥ y1, y2 and for y ≤ y1, y2

with s = sign(y − y1+y2
2

). In the formula for xyT̃ (x, y), ζ[3] is an evaluation of the Riemann zeta function.

D̃(x,y)=XD(x−x2,y−y2)−XD(x−x1,y−y1)+yD(y)+xyD̃(x,y)

XD(x,y)=−s Im
h
Li1(e

−2|y|+i2x)
i

yD(y)=s len cos(λ)
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”
+cos(λ)
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h
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S̃(x,y)=XS(x−x2,y−y2)−XS(x−x1,y−y1)+yS(y)+xyS̃(x,y)

XS(x,y)=sin(λ)cos(λ)
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2
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T̃ (x,y)=XT (x−x2,y−y2)−XT (x−x1,y−y1)+yT (y)+xyT̃ (x,y)
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