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Abstract

Diffusion-weighted imaging (DWI) allows imaging the geometry of water diffusion in bi-
ological tissues. However, DW images are noisy at high b-values and acquisitions are slow
when using a large number of measurements, such as in Diffusion Spectrum Imaging (DSI).
This work aims to denoise DWI and reduce the number of required measurements, while
maintaining data quality. To capture the structure of DWI data, we use sparse dictionary
learning constrained by the physical properties of the signal: symmetry and positivity. The
method learns a dictionary of diffusion profiles on all the DW images at the same time
and then scales to full brain data. Its performance is investigated with simulations and
two real DSI datasets. We obtain better signal estimates from noisy measurements than
by applying mirror symmetry through the q-space origin, Gaussian denoising or state-of-
the-art non-local means denoising. Using a high-resolution dictionary learnt on another
subject, we show that we can reduce the number of images acquired while still generating
high resolution DSI data. Using dictionary learning, one can denoise DW images effec-
tively and perform faster acquisitions. Higher b-value acquisitions and DSI techniques are
possible with approximately 40 measurements. This opens important perspectives for the
connectomics community using DSI.
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1. Introduction

Diffusion-weighted imaging (DWI) is able to non-invasively image the diffusion of wa-
ter molecules in biological tissues. DWI was rapidly made popular by several clinical ap-
plications using apparent diffusion coefficient (ADC) imaging and diffusion tensor imaging
(DTI) (Basser et al., 1994). However, the diffusion tensor is an over-simplified Gaussian
view of the local diffusion phenomenon happening in each imaging voxel. The holy grail of
DWI is to recover the full tridimensional (3D) probability distribution describing the local
diffusion phenomenon. This is often called the ensemble average propagator (EAP) formal-
ism (Tuch, 2002; Wedeen et al., 2005; Descoteaux et al., 2011), which provides a powerful
framework to describe and predict the diffusion behavior in complex materials. The EAP
contains the full 3D information about the water molecule diffusion within the imaging
voxel, which goes beyond principal directions that can be used for tractography (Merlet
et al., 2012b). The EAP can serve to estimate parameters that reflect the microstructural
environment, such as axonal diameter in recent works (Assaf et al., 2008; Ozarslan et al.,
2013).

EAP imaging can be long and demanding in terms of acquisition requirements (De-
scoteaux et al., 2011). Hence, the last 10 years have seen the emergence of numerous
techniques to reconstruct the angular information of the EAP, the orientation distribution
function (ODF) or other such angular distributions (Seunarine and Alexander, 2009; De-
scoteaux and Poupon, 2013, in press) from a reduced sampling scheme. These new tech-
niques are most often restricted to a single shell in q-space with N uniform measurements
for a single b-value (typically b ∈ [1000, 3000] s/mm2). This spanned the rich literature
of high angular resolution diffusion imaging (HARDI), from compartment modeling to
model-free and deconvolution techniques. These works are well covered in the follow-
ing two book chapters (Seunarine and Alexander, 2009; Descoteaux and Poupon, 2013, in
press).

In the last 2-4 years, Diffusion Spectrum Imaging (DSI) and 3D DWI have regained
popularity, because of two applications. First, several works have shown that the radial
information of the DWI signal is important and can be sensitive to white-matter anomalies
caused by demyelination or brain damage (Assaf et al., 2008; Alexander, 2008). Conse-
quently, new modeling and anisotropy measures from the EAP have appeared in the liter-
ature to better capture both the radial and angular information contained in the diffusion
signal. Second, the recent fame of DSI (Wedeen et al., 2012) combined with connectomics
studies (Hagmann et al., 2008; Honey et al., 2009), as well as the human brain connectome
project6 have made DSI a central acquisition protocol, despite the issue of long scanning

6http://www.humanconnectomeproject.org/
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time.
No matter what diffusion imaging protocol is used, be it scalar DWI, DTI, HARDI, or

DSI, there is always a trade-off between quality of the data and acquisition time. Indeed,
the higher the number of acquired images, the better the estimation of the diffusion signal
will be. A common way of improving the signal-to-noise ratio (SNR), which is particu-
larly poor for large b-values (see Fig. 6 for an example), is to repeat the acquisition of the
same signal with the same sequence parameters and average them. However, for clinical
requirements and applications, and considering the reduction of the risk of motion artifacts,
an acquisition time between 3 and 15 minutes is the limit. A first challenge is therefore to
be able to improve the SNR of a single acquisition of DWI with denoising algorithms. A
second challenge is the ability to reduce the number of acquired images while offering the
high resolution data required to estimate complex white matter structures, such as fiber
crossing configurations, and microstructural features, such as axonal diameter (Assaf et al.,
2008; Alexander, 2008). This paper addresses both of these challenges, providing valida-
tion and performance quantification using denoising metrics. The motivation for the use
of a denoising benchmark is to compare the results obtained from undersampled data, with
full resolution data after denoising using some well established methods. The experimental
section focuses on DSI data, as it is a protocol with a dense sampling scheme using high
b-value images. Two questions are of particular interest: Can we obtain DSI data with the
same number of DWIs required for single b-value HARDI? How much can we subsample
the q-space while keeping high spectral resolution in diffusion images?

The intuition behind this paper is that the signal measured by multiple DWIs over the
q-space is redundant and shares an underlying structure: the DSI acquisition on a 258
points half-space or on the full 515 points sampling contains redundant information that
one can learn and then use to denoise or reduce the number of acquisitions. We show that a
dictionary estimated from DSI data captures the geometry of white matter brain structures
and can thus be used in 2 different setups: i) intra-subject studies, for denoising purposes
and ii) inter-subject studies, to perform super-resolution of q-space data. The latter is done
by acquiring subsampled DSI data (low resolution) and using a high resolution dictionary
of DSI profiles learnt on another subject in order to recover the full DSI. This inter-subject
validation setup was earlier proposed in our previous work (Gramfort et al., 2012), and by
Bilgic et al. (2012a), although using an alternative non-physically constrained dictionary
learning formulation (see next section). The key contribution of this work is to use sparse
coding to estimate a dictionary of prototypical diffusion profiles constrained by physical
properties of the signal. We indeed enforce symmetry and positivity for the atoms in the
dictionary taking into account the structure of the signal present in multiple DWIs. See
for example (Tournier et al., 2007), for a previous demonstration of the relevance of non-
negativity constraints. As for symmetry, the physics of dMRI tells us that the measured
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local diffusion signal must also be symmetric (Tuch, 2002, Sections 3.3 and 8.3.2.3).
Results are presented on a publicly available simulation dataset and on two real DSI

datasets, one from the Pittsburgh Brain Competition 2009 Challenge and one from our insti-
tute. The results of the proposed method are compared to the SNR improvements obtained
by applying mirror symmetry through the q-space origin, Gaussian denoising and state-of-
the-art non-local means denoising. A preliminary version of this work was presented at the
MICCAI 2012 international conference (Gramfort et al., 2012). This manuscript comple-
ments it with more details on the method, an extensive simulation study and results on a
new dataset (Pittsburgh Brain Competition 2009).

2. Theory

Diffusion-Weighted Imaging and Diffusion Spectrum Imaging. Under the narrow pulse as-
sumption (Stejskal and Tanner, 1965), there is a Fourier relationship between the measured
DWI signal and diffusion propagator, P (R),

P (R) =

∫
q∈<3

E(q)e−2πiq·Rdq, (1)

with E(q) = S(q)/E0, where S(q) is the diffusion signal measured at position q in q-
space, and E0 is the baseline image acquired without any diffusion sensitization (q = 0).
We denote q = |q| and q = qu, R = rr, where u and r are 3D unit vectors. The wave
vector q is q = γδG/2π, with γ the nuclear gyromagnetic ratio of water molecules and
G = gu the applied diffusion gradient vector. The norm of the wave vector, q, is related
to the diffusion weighting factor (the b-value), b = 4π2q2τ , where τ = ∆ − δ/3 is the
effective diffusion time with δ the duration of the applied diffusion sensitizing gradients
and ∆ the time between the two pulses. Note that the Fourier relationship between the
EAP and the diffusion signal of Eq. 1 is strictly valid only if the narrow pulse assumption
is met, which is rarely the case in in vivo 3D q-space MRI. Nonetheless, we can measure
the approximation of the average diffusion propagator by taking the ensemble average over
the imaging voxel, hence the name Ensemble Average Propagator, EAP (Tuch, 2002).

The current state-of-the-art acquisition technique to reconstruct the 3D diffusion propa-
gator is DSI. The original DSI protocol (Wedeen et al., 2005) measured S(q) on a Cartesian
grid restricted to a sphere of radius 5, resulting in 515 q-space discrete measurements S(q).
Then, a simple 3D inverse Fast Fourier Transform (FFT) is applied to recover the EAP at
every imaging voxel. Finally, the diffusion ODF, Ψ, can be extracted by numerically com-
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puting the radial integral over the discrete DSI grid, r ∈ [0, 5], as

Ψ(u) =

∫ 5

0

P (ru)r2dr. (2)

DSI acquisition is a long process. A typical full brain coverage acquisition with 60
axial slices, 2 mm isotropic voxels, parallel imaging, a repetition time of approximately
TR=11 s, a full DSI grid with 515 directions and b-values from 0 to 6,000 s/mm2 or so,
takes 1h45 min of acquisition (Descoteaux et al., 2011). Because diffusion is symmet-
ric (Tuch, 2002), one can reduce acquisition time by half if only the half-space is acquired,
resulting in 257 directions (Hagmann et al., 2008). The missing half is then obtained by
applying mirror symmetry through the q-space origin.

Dictionary learning. Sparse coding, equivalently referred to as dictionary learning, applied
to diffusion weighted images such as DSI data reveals the latent structure of the diffusion in
white matter voxels. However, sparse coding is not compressed sensing (CS). Compressed
sensing consists of three ingredients: a linear sensing process, a linear transformation to
the data that generates sparsity and is incoherent to the sensing basis, and a solver used for
signal recovery that promotes sparse estimates, e.g. using `1 norm or `0 non-linear pseudo-
norm Donoho (2006). There are further conditions on the sensing and the transformation
for CS to work. Our technique is not a CS setup, nor does it involve any of the theoretical
properties required by CS. Sparse coding offers a way to learn a code book, a dictionary,
that can be used to accurately approximate the diffusion signal with a few dictionary el-
ements, also called atoms. This dictionary forms a data-driven model for the diffusion
signal. A parallel can be made between such a dictionary and parametric decompositions
such as wavelets, short time Fourier transforms or spherical harmonics often used for, re-
spectively, images, audio signals and data defined on a sphere. A relevant example of data
defined on the sphere is the angular distribution estimated by HARDI. Here however, the
dictionary is data-driven. Given a model of the signal, such as one given by a parametric or
data-driven dictionary, it is possible to denoise it or solve inverse problems such as decon-
volution or super-resolution, which amounts to performing undersampled, and therefore
faster, acquisitions.

Background. Several recent works have applied sparse techniques with reduced sampling
to DWI (Lee and Singh, 2010; Merlet and Deriche, 2010; Cheng et al., 2011; Aboussouan
et al., 2011; Michailovich et al., 2011; Menzel et al., 2011; Rathi et al., 2011; Dolui et al.,
2011; Landman et al., 2012; Bilgic et al., 2012b; Mani et al., 2012; Paquette and De-
scoteaux, 2012; Ye et al., 2012). These techniques can be separated into methods for DTI
and multi-tensor techniques (Landman et al., 2012; Mani et al., 2012; Paquette and De-
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scoteaux, 2012), methods for single-shell HARDI (Cheng et al., 2011; Michailovich et al.,
2011; Dolui et al., 2011) and the rest of methods designed for DSI (Lee and Singh, 2010;
Merlet and Deriche, 2010; Aboussouan et al., 2011; Menzel et al., 2011; Bilgic et al.,
2012b) and multiple-shell HARDI (Rathi et al., 2011; Cheng et al., 2011). Although these
works are very preliminary, it seems to be possible to obtain good quality DSI data from
undersampled measurements.

Regarding denoising, which is the other focus of this paper, groups in the DWI denois-
ing community have first denoised DW data assuming a Gaussian noise on each separate
DWI channel (Manjòn et al., 2008). These techniques were then extended to take into ac-
count the Rician noise nature of the DWI signal (Coupé et al., 2010; Descoteaux et al.,
2008; Aja-Fernàndez et al., 2008; Tristán-Vega and Aja-Fernández, 2010; Aja-Fernández
et al., 2011; Brion et al., 2011) and, recently, the non-central Chi-squared distribution in
the case where parallel imaging is used (Aja-Fernández et al., 2011; Brion et al., 2011).
However, only the technique of (Tristán-Vega and Aja-Fernández, 2010) performs denois-
ing across the DWI channels, i.e. considering all DW images within a certain angular cone
around the DW image being denoised. This was done using non-local (NL) means and
linear minimum mean square error (LMMSE). Our approach is different from the afore-
mentioned denoising techniques. Our technique considers all DWI channels, searches over
all voxels to learn the atoms that best describe the underlying structure. We simultaneously
use all directions and b-values to estimate the underlying structure of the data. We also
succeed in combining multiple images corrupted by different noise levels in a common
estimation procedure, thanks to a proper whitening of the data.

Dictionary learning has recently started to appear and be used in dMRI (Merlet et al.,
2012a; Ye et al., 2012; Bilgic et al., 2012b,a). Previous contributions proposed using solvers
inspired by K-SVD. The original K-SVD relies on orthogonal matching pursuit (OMP), for
which efficient implementations are freely available, and singular value decompositions
(SVD). In (Merlet et al., 2012a), the atoms learnt are parametric diffusion profiles. The
dictionary updates are therefore not done with an efficient SVD but a non-linear optimiza-
tion over the parameter space of a family of profiles. This makes the estimation particularly
slow. In (Ye et al., 2012), K-SVD is used for dictionary learning jointly with a non-local
means for spatial smoothing and regularization. The joint estimation of the diffusion pro-
files and the spatial field is of interest, although the paper does not address the issue of
hyperparameter selection, as well as computation time to scale to full brain data. In (Bilgic
et al., 2012b), a K-SVD type method is employed with the sparse coding step performed
using iterative least squares (FOCUSS). The estimated dictionary is then used to accelerate
DSI acquisition using an undersampled q-space. The work of (Bilgic et al., 2012b) is in
close spirit to ours. However, our contribution improves over this work on four points: first,
our problem statement is truly based on the physical constraints of DSI acquisition (posi-
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tivity and symmetry); second, we use a state-of-the-art online sparse coding (Mairal et al.,
2010) technique that outperforms K-SVD in terms of computation time and memory usage;
third, we justify the quadratic data fit term used in the minimized cost function thanks to
a preprocessing whitening procedure; and fourth, we propose a principled model selection
procedure based on cross-validation in order to avoid overfitting. One should mention the
recent contribution in Ho et al. (2013), that tackles the problem of dictionary learning in
non-euclidean spaces, such as the Riemanian manifold of symmetric positive-definite ma-
trices. This work is adapted to the estimation of a code book on the reconstructed diffusion
signal, rather than the raw DSI as we propose here.

Sparse coding has been used to speed up structural MRI acquisition (Ravishankar and
Bresler, 2011). However, to the best of our knowledge, this is the first time sparse coding is
used on raw DWI with a model that takes into account symmetry and positivity. Hence, our
approach makes several contributions. First, we show how we can improve the quality of
DSI data by estimating better antipodal q-space signals compared to the ones obtained by
symmetry of the acquired DSI data, as classically done in public software such as TrackVis
(Diffusion Toolkit), public datasets as provided by the Pittsburgh Brain Competition 2009
and in several connectomics publications (Hagmann et al., 2008; Honey et al., 2009). The
field of ODFs is then denoised and its angular structure is enhanced. Second, we show
that once a DSI dictionary is learnt for a particular acquisition protocol, it can be used
on other subjects with highly undersampled DSI acquisitions. We show that using only
40 q-space measurements performs as well as state-of-the-art NL-means denoising, which
already improves over naive half-space symmetric acquisition. Therefore, using the learnt
DWI structure, our technique fills-in the missing q-space measurements. In the computer
vision and image processing community, this is called inpainting and can also be presented
as DSI super-resolution.

3. Methods

Notations. We write vectors in bold, a ∈ Rn, matrices with capital bold letters, A ∈
Rn×n. A scalar a is positive if a ∈ R+. We denote ‖A‖Fro the Frobenius norm, ‖A‖2Fro =∑n

i,j=1 A2
ij , and ‖A‖1 =

∑n
i,j=1 |Aij| the `1 norm. Column i of a matrix is written Ai.

If I is a list of |I| indices, AI is the matrix A restricted to the rows in I. I stands for
the identity matrix. Quantities estimated from the data are written Â. A matrix with non-
negative elements is denoted A ≥ 0.

3.1. Dictionary learning for DWI
We start by describing the dictionary learning model and its assumptions when applied

to dMRI data. We then discuss the strategy employed to calibrate model parameters.
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Problem statement. A dataset for one subject consists of d DWI volumes containing p
voxels. Each volume corresponds to a direction and a b-value in the q-space. Only voxels
within the brain volume are considered. Let S ∈ Rd×p

+ denote the data. DWI have positive
values.

Generative model. We consider the following model for the signal at voxel i:

Si = DWi + ei, 1 ≤ i ≤ p , (3)

with dictionary D ∈ Rd×k
+ and the coefficients W ∈ Rk×p

+ . The integer k is the number
of dictionary elements, also called atoms. The noise ei ∈ Rd

+ is known to have a Rician
distribution, for single channel imaging, or a non-central Chi-squared distribution when
parallel imaging (Aja-Fernández et al., 2011; Brion et al., 2011) is used. However, in this
work, the noise will be assumed to be Gaussian with mean µ ∈ Rd and diagonal covariance
Σ = diag((σj)j=1,...,d) ∈ Rd×d because we have a high enough SNR in our synthetic and
real datasets. We denote it ei ∼ N (µ,Σ). This modeling assumption is discussed and
justified below.

The estimation procedure detailed below uses the standard and computationally conve-
nient `2 norm for the data fit. Such a norm makes the implicit assumption of an additive
noise that is Gaussian with unit variance (see examples of Maximum a Posteriori (MAP) es-
timation with Gaussian white noise). To meet this constraint, given our modeling assump-
tion on ei, we define the whitened data Siw = Σ−1/2(Si − µ) so that Siw ∼ N (DwWi, I)
where Dw = Σ−1/2D. In practice, µ and Σ are estimated from voxels in the background
of the images. This whitening step is crucial to estimate a joint model of data with both
high and low b-values that have very different signal to noise ratios (SNR).

In order to learn the factorization DW, one needs to set priors on both D and W.

• Sparse W i.e.,: the signal in each voxel can be modeled by a linear combination of a
few atoms.

• Positivity constraint D ≥ 0 and W ≥ 0: each atom representing a diffusion pro-
file is positive and the linear combination is only cumulative (no compensation with
negative weights).

• Unit norm constraint on the columns of D to avoid scaling ambiguity.

Given a set of DSI volumes, a model satisfying the constraints above can be estimated
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by minimizing the following cost function:

(D̂w,Ŵ) = argmin
D,W

1

2
‖Sw −DwW‖2Fro + λ‖W‖1 (4)

s.t. ‖Dk‖22 ≤ 1,D ≥ 0,W ≥ 0

The parameter λ balances the reconstruction error and the `1 regularization term. A high
value of λ will promote sparser estimates of Ŵ. Following (Mairal et al., 2010), we use
an online cyclic descent to minimize Eq. 4. The optimization algorithm requires setting
two extra parameters: the batch size and the number of iterations, which corresponds to the
number of times the algorithm goes over the data. The batch size refers to the number of
voxels that are simultaneously fed to the solver before updating the dictionary. The benefit
of this online procedure is that the solver can work without storing the entire dataset in
memory, only storing small batches of voxels instead. This makes the solver very scalable,
as required for full brain data. In practice, each batch contains a random set of voxels
to avoid biaising the solver with neighbouring voxels, which can be too similar in their
structure. Experimental tests showed that both parameters, if high enough, did not have a
significant influence on the results. On full brain data, a batch size set to 500 voxels and a
number of iterations set to 100 turned out to be a good compromise between computation
time and stability of the estimated dictionary. For visualization, the estimated dictionary D̂
will be unwhitened D̂ = Σ1/2D̂w.

Denoising and subsampling. Once the dictionary D is learnt, one can use it to decompose
a new set of data, eventually using a subsampling of the directions. Let us denote I a list
of sampling directions and nI its cardinal. Given a set of whitened subsampled data SIw,
the coefficients W can be obtained by solving:

Ŵ = argmin
W

1

2nI
‖SIw −DIwW‖2Fro + ν‖W‖1 (5)

s.t. W ≥ 0

where ν > 0 balances the reconstruction error and the `1 regularization term. The opti-
mization is done using the same `1 solver used in the dictionary learning phase. The full
signal can then be obtained as: Ŝ = D̂Ŵ ∈ Rd×p.

Given a data-driven, high resolution dictionary, one can therefore perform DSI estima-
tion and ODF reconstruction from undersampled q-space data. Note that W estimated in
(4) is different from W in (5), as here we have access to a limited number of DWIs. We
therefore do not reestimate a full DSI dictionary, and only minimize over W. The rationale
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for the use of a different regularization parameter, here denoted ν, is because its setting de-
pends in practice on the number of DWIs and the noise level. In the following experiments
the q-space subsampling is not optimized, although the dMRI literature teaches us that the
sampling strategy is crucial for optimal reconstructions (Merlet et al., 2011; Caruyer and
Deriche, 2012). It is beyond the scope of this paper to explore such optimal sampling strate-
gies in the context of the proposed technique. In the following results, we undersampled
the Cartesian directions with a regular interval between neighboring indices in I. Deciding
to use half of the directions would amount to take every even index. In practice, the sub-
sampling was not always done with an integer division (see below). The consequence of
this strategy is that it preserves an approximately uniform Cartesian sampling.

Figure 1 illustrates several subsampling of measurements used in our experiments. The
samples are projected onto the sphere and colored according to their b-value in q-space.
Although the scope of this work is not to find an optimal subsampling strategy, one can see
that the samples remain relatively uniform on the sphere and across b-values.

Noise parameters. The noise parameters (µ,Σ) are obtained from regions, where the dif-
fusion signal is assumed to be only noise. On real data, we use a ROI in the background
of the images (outside the brain) and have made sure that there are at least 1,000 voxels
in the ROI. For the following simulation results, we used extra simulated voxels with no
diffusion.

Model selection and parameters estimation. The estimation procedure involves some pa-
rameters, namely: λ to learn the dictionary (4) and ν to estimate the weights given a learnt
dictionary (5). A principled way to tune these parameters is to use cross-validation. The
idea is to learn a model on a fraction of the data and see how well it can explain, or fit, the
rest of the data. Testing on data unused in the model estimation is done to avoid overfitting.

A natural way of splitting the data is to only use some voxels for model estimation,
and evaluate the model on the left-out voxels. However, the physical properties of the
problem give some insights on properties of the signal that can be exploited for better
model selection. The diffusion process is symmetric, meaning that two DWI recorded with
opposite gradient directions should be the same in the absence of noise. This suggests that
a model estimated on half of the directions H (d=258 directions) can be used to estimate a
full dictionary of 2d− 1 = 515 directions. The minimization of Eq. 4 restricted to the data
SH gives D̂H ∈ Rd×k, which can be used to generate D̂H ∈ R2d−1×k by applying mirror
symmetry through the q-space origin.

In order to assess the quality of the model without overfitting, the model selection
involves two other sets of directions: L to learn Ŵ and T to test the reconstruction error,
as illustrated in Fig. 2. The best parameters λ and ν minimize this error. It is quantified
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Figure 1: Sampling schemes represented over a single shell where color codes for the b-values and a his-
togram of the number of images across b-values for each subsampling (better seen in colors).

258 samples 129 samples 58 samples

43 samples 37 samples 29 samples

1000 2000 3000 4000 5000 6000
b-value

0

10

20

30

40

50

60

70
257

129

58

43

37

29

with the average root mean square error (RMSE):

RMSE =
1

p|T |
‖ST − D̂T Ŵ‖2Fro. (6)
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Assuming the dictionary is available, the model selection only involves the estimation of
ν, which only requires splitting the available data in 2 sets: L and T .

In the following experiments, the parameter λ was chosen in a range of five values
(1, 0.1, 0.01, 0.001, 0.0001) and ν in a logarithmic grid of 15 values between 0 and 1e−6.
In all the experiments, we made sure that the estimated λ and ν were inside these parameter
ranges. In order to quantify the performance of our method, we use as baseline the solution
that consists in applying a simple mirror symmetry to the data, as done classically (Hag-
mann et al., 2008; Honey et al., 2009). We denote the error obtained as RMSEsym . We
report the quality of our solution as a ratio between the two quantities:

ρRMSE =
RMSEsym

RMSE
(7)

A ratio above 1 indicates an improvement with respect to a symmetrization.
The following results involve two setups. An intra-subject denoising procedure and an

inter-subject procedure. We use the term intra when a dictionary is learnt on a subject and
this dictionary is used on this same subject. We use the term inter when a dictionary from
a subject is used to reconstruct the DSI signal of a different subject while undersampling.

Figure 2: The 258 directionsH used to estimate a dictionary are in green. a) For intra-subject cross-validation,
the directions L used to estimate the coefficients are in red, and the left out directions T used to evaluate the
model parameters are in blue. The white directions V are only used for validation. b) For inter-subject cross-
validation the same color code applies. There is no validation set in this case, as the validation data is obtained
from the other subject.

a)

b)

a)

b)

3.2. Synthetic Data Simulation
The simulation data consists of the 3D structured field presented at the HARDI recon-

struction challenge 20127. This structured field synthetic phantom consists in a 3D volume
made up of 5 slices of 16x16 voxels, and contains 3 different fiber bundles: two fiber bun-
dles crossing in the diagonals of the 16x16 slice at 90 degrees crossed by a third circling

7http://hardi.epfl.ch/static/events/2012_ISBI/
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and bending bundle, as seen on the ground truth ODFs of Fig. 3. In every voxel of the
dataset, the diffusion signal corresponding to the underlying fiber configuration is simu-
lated according to the same gradient list as our real DSI data. The diffusion signal, S(q),
is simulated using the classical Gaussian mixture model (Tuch, 2004; Descoteaux et al.,
2007; Canales-Rodríguez et al., 2009):

S(q) =
E(q)

E0

=
M∑
i=1

fi exp(−buTDiu) + ε, (8)

M is the number of fiber compartments, each one characterized by a self-diffusion ten-
sor Di and volume fraction of fi, such that

∑M
i=1 fi = 1. In the contest data, E0 = 1

without loss of generality and diffusivities were generated using symmetric tensors, Di =
diag(λ1, λ2, λ3), in the range of λ1 ∈ [1, 2]× 10−3 mm2/s and λ2 = λ3 ∈ [0.1, 0.6]× 10−3

mm2/s, as done in (Canales-Rodríguez et al., 2009). The datasets were corrupted with addi-
tive Rician noise, ε. We investigated two noise scenarios similar to the b = 0 image of our
real datasets; one with high SNR and another with mid-range SNR (SNR = 1/ε), namely
36 and 18, which are realistic noise levels similar to our real data acquisitions. Noiseless
data is presented in Fig. 3.

Performance of the method on simulated data was quantified by different measures:
the difference in the number of fiber compartments (DNC) and the angular error (AE)
with respect to the known ground truth. To compute the DNC and the AE, we extract the
maxima on a discrete grid with N = 4000 uniform points (Descoteaux et al., 2007) for the
estimated ODFs and compare them to the ground truth maxima. Then, the DNC becomes
the mean difference between the number of maxima extracted on the estimated ODFs and
the true number of maxima, and the AE is computed between the maxima extracted on the
estimated ODFs and the respective maxima within the ground truth. The ODF maximas
were defined as points maximal inside a 20◦ radius and with a value ≥ 0.5 on the min-
max normalized ODF. The AE is computed by finding the best match between the detected
peaks and the true peaks. This approach is slighltly biased towards underestimation of the
AE when DNC is not 0. A full comparison and discussion on this issue can be found in the
HARDI reconstruction challenge 20128.

The accuracy of the maxima reveals the ability of the method to extract the high spa-
tial frequencies that are particularly useful for fiber tracking, while a measure such mean
squared error reveals the ability to capture the full DSI signal, both its radial and angular
parts.

8http://hardi.epfl.ch/static/events/2012_ISBI/
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3.3. DSI Data Acquisitions
Two datasets were used for performance assessment and validation. The first consists

of two subjects with full DSI acquisitions (515 DWIs) that were used to learn dictionaries
of DSI atoms. The second is the publicly available Pittsburgh Brain Competition 2009 DSI
datasets, which are used for the denoising experiment only.

DSI data used for dictionary learning. The data consists of two subjects. A standard
DSI acquisition mimicking the original DSI protocol (Wedeen et al., 2005) was done in
a 3 T Trio MR Siemens system, equipped with a whole body gradient (40 mT/m and
200 T/m/s) and a 32 channels head coil. Isotropic 2 mm spatial resolution and d = 515
DW measurements were acquired, comprising q-space points of a cubic lattice within the
sphere of five lattice units in radius (see (Wedeen et al., 2005)). TE/TR=147 ms/11.5 s,
BW=1680 Hz/pixel, 96x96 matrix, 60 axial slices with a parallel reduction factor of 2, δ
and ∆ were 41 and 45 ms, bmax = 6000 s/mm2. The 515 q-encoding values were set in
the middle of a cubic lattice of size 17x17x17, with values outside the acquired 515 values
padded to zero. The total time for this acquisition was 1h40 minutes.

The SNR of the b = 0 image was 36 and the SNR of the DWI for the b = 960, 3360,
and 6000 s/mm2 datasets were estimated to 12, 7.5, and 6.5 respectively. These SNR val-
ues were computed using two manually selected regions of interests (ROI). The first region
was selected in the background of the DWI, and the second was segmented in the white
matter and corresponded to the corpus callosum (CC). The SNR was then computed as
SNR=mean(signal_CC)/std(noise), where mean(signal_CC) corresponds to the mean sig-
nal in the CC ROI, taken in the DW image which corresponds to the gradient direction
aligned with the CC fiber direction (left-right). std(noise) is the standard deviation of the
noise in the ROI taken in the background. In a sense, this corresponds to a worst case SNR
because it is in the CC region that the diffusion signal is most attenuated (see last row of
Fig. 6). We see that the lowest SNR is greater than 6, which implies that the Rician noise
distrubution is well approximated by a Gaussian distribution in this dataset. This procedure
is also described in (Descoteaux et al., 2011; Jones et al., 2012).

Pittsburgh Brain Competition 2009 datasets. In 2009, there was a fiber clustering competi-
tion held at the Human Brain Mapping (HBM) conference. This competition, known as the
Pittsburgh Brain Competition (PBC)9, provided the community with three DSI datasets
(brain0, brain1, brain2), amongst numerous other raw and processed datasets. These
datasets were also generated in a 3 T MR Siemens system with a WIP pulse program,
equipped with a 32 channels head coil. The specific imaging parameters were TE/TR=160ms/9.12 s,

9http://pbc.lrdc.pitt.edu/
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96x96 matrix, isotropic 2.4 mm resolution, 50 axial slices with a parallel reduction factor
of 2 and a maximum b-value of bmax = 7000 s/mm2. These DSI datasets include 515 mea-
surements, but only half the cubic lattice is acquired with duplicates (half the Cartesian
hemi-plane with 257 grid points acquired twice and one b = 0 at the origin). Hence, the
datasets contain only half the grid point measurements of our other datasets. The data is
thus symmetrized and then averaged to reduce noise effects. Hence, the PBC data cannot
be used for learning. It will only be used for denoising experiments.

Symmetry and denoising comparisons. For the rest of this paper, acquisition of 258 direc-
tions with simple mirror symmetry will be abbreviated HALF, as opposed to the FULL
acquisition using 515 measurements. Different symmetry completion procedure are also
included for comparison, either using Gaussian smoothing with σ = 0.35 (optimal σ in
our experiments which corresponds to 2.5 mm FWHM) and state-of-the-art non-local (NL)
means denoising (Descoteaux et al., 2008; Coupé et al., 2010) (11x11x11 search volume
and 26 neighbors local neighborhood). The denoising techniques are common and there
are publicly available implementations that one can run on the raw diffusion data10. Using
such denoising techniques, the experiment will consist in denoising half of the data and
then symmetrizing it. The better the fit is with the other half of the data, the better the
denoising will be.

Visualization. To visualize the reconstructed DSI profiles, we show the raw diffusion signal
along a particular DW direction (as in Fig. 6) or the diffusion ODF computed from the DSI
signal (Wedeen et al., 2005; Descoteaux et al., 2011), only for voxels in a white matter
mask as computed from a thresholded FA map at 0.1 (Figs. 6-8 in particular). ODFs are
finally visualized as deformed spheres, with radius deformed proportional to its ODF value.
Fields of ODFs are usually visualized with a classical RGB (red-green-blue) colormap
to highlight patient left-right (red), anterior-posterior (green), and inferior-superior (blue)
directions. Moreover, these fields of ODFs are always overlaid on a slice of generalized
fractional anisotropy (GFA) to highlight the preservation of the anisotropy and high spatial
frequencies while undersampling. GFA = STD(Ψ)/RMS(Ψ), where STD and RMS stand
for the standard deviation and root mean square of the ODF (Tuch, 2004).

4. Results

4.1. Simulation results
ODF reconstruction. Figure 3 qualitatively illustrates results on the simulation data. The
ground truth ODFs are shown in the right of the top row and the noise-free full DSI ODFs

10https://www.irisa.fr/visages/benchmarks/
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are shown on the left of the second row. In fact, this full noise-free DSI ODF is our gold
standard and is what our reconstruction based on sparse coding is competing against. The
motivation here is that we assess the error due to the subsampling of the q-space DSI grid,
and not the approximation error due to the DSI itself. Note that the full DSI data does not
perfectly recover all angular profiles. The ground truth has a better angular resolution and
most of the lower volume fraction crossing compartments (at the boundary of the middle
square structure) are missed by the gold standard.

The top left subfigure of Fig. 3 shows the diffusion ODF of the dictionary learnt using
49 atoms on the mid-range SNR 18 simulation. Atoms are ordered from left to right,
starting at the bottom left corner based on the variance they explain on the data. We note
important single-fiber profiles covering the 6 diagonals and horizontals orientations. We
also note several pure 90 degrees crossing ODF profiles, and a smaller number of lower
angle crossing or wider single-fiber profiles arising. The dictionary clearly captures the
angular information contained in the gold standard.

The second and third rows of Fig. 3 show the reconstruction obtained with sparse coding
at different level of undersampling (258, 58, 37, 29 and 18 measurements) with mid-range
noise SNR 18. The subsampling schemes are shown in Fig. 1. We can observe that most
of the ODF profiles are well recovered all the way down to 18 measurements, with the ex-
ception of the challenging crossings, which are already lost on the gold standard. However,
note that in these complex crossing configurations, our approach with 37 or more measure-
ments seem to perform better than the gold standard at reconstructing some of the lower
volume fraction crossings.

Quantitative experiment. Figure 4 shows the results in terms of angular information for
high and low SNRs using 49 atoms in the dictionary. In Fig. 4a) and b), errors are shown in
terms of DNC as a function of the number of DWI images available for full DSI estimation,
for different SNRs and number of atoms in the dictionary. We report the percentage of
voxels for which the number of maxima recovered is incorrect. For the correctly recovered
maxima, the error can be further quantified in terms of AE. The average AE when compared
to the AE obtained with all noiseless 515 DSI is below 1.5 degrees when using more than
43 DWIs at SNR 36 and when using more than 58 DWIs at SNR 18. In other words, the
subsampling deteriorates the angle estimation by less than 1.5 degrees on average.

In Fig. 4 c), black pixels illustrate perfect agreement between ground truth phantom
and the noiseless DSI, whereas pink pixels show where the noiseless DSI underestimates
one maxima with respect to the ground truth (single fiber detected instead of a two fibers
crossing). This is visually confirmed in Fig. 3. In d)-h), the comparison is between our
sparse coding approach with different undersamplings and the noiseless DSI. The noiseless
DSI acts as our gold standard. Here, pink and red pixels mean that our approach has
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Methods Gaussian NL means SC DSI for various values of k
σ = 0.35 k = 100 169 225 400 900 1600

Subject 1 1.16 1.19 1.31 1.31 1.31 1.31 1.31 1.31
Subject 2 1.13 1.16 1.28 1.25 1.23 1.30 1.30 1.29

Table 1: Intra-subject denoising. ρRMSE (Eq. 7) between simple DSI symmetry, Gaussian smoothing, NL
means and our sparse coding (SC) based denoising using k atoms. Reconstruction obtained with sparse
coding gives the best performance on the validation data.

detected a single fiber instead of a two or three fibers crossings respectively, whereas blue
pixels show where our approach with undersampling is actually better than the noiseless
DSI. There, we recover the correct two bundles crossing, as in the ground truth, whereas the
noiseless DSI had just found a single fiber (seen in c)). This explains the gain in maxima
detection performance and angular resolution of our approach.

4.2. Real DSI data
Figure 5 shows the ODFs corresponding to the dictionary learnt with 100 atoms on both

subjects. Atoms are ordered from left to right, starting at the bottom left corner based on the
variance they explain on the data. We see that the most important atoms are smooth profiles
and mostly single fiber structures. After approximately 30 atoms, crossing profiles appear.
At the end of the dictionary, more complex ODF profiles are also present. This behavior
of the learnt dictionary is similar if we increase its size k. It is interesting to observe that
dictionaries obtained on two different subjects reconstruct some ODF profiles that look
surprisingly similar. The similarity between dictionaries is however not only visual, as
confirmed by the quantitative performance evaluation below.

Intra-subject denoising. Table 1 shows how the reconstruction obtained with sparse coding
is able to accurately reconstruct the 257 unmeasured directions. The quantity represented
is ρRMSE (cf. Eq. 7), for which a value larger than one means that the DWIs reconstructed
on the other half of the the q-space are more accurate than the ones obtained with the usual
symmetrization.

One can observe that ρRMSE is consistently above one for all denoising methods, but
that our approach based on dictionary learning outperforms Gaussian smoothing and NL
means for all dictionary sizes and for both subjects. Increasing the number of atoms in
the dictionary only slightly improves the accuracy on subject 2. Hence, for the rest of
the experiments, we use dictionaries with 100 atoms. These dictionaries are illustrated in
Fig. 5.

In order to visualize how the raw DWI data is denoised by the different techniques,
Fig. 6 shows a comparison of results on a region of interest chosen in the centrum semio-
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vale, in mid-coronal slice. It can be observed that NL means (row 3) and Gaussian (row
4) denoising tend to over-smooth and blur the anatomical structures of the raw data, as
opposed to our dictionary learning approach (row 1) that succeeds in denoising, but also
enhancing the structure by preserving the high spatial frequencies (see red box).

Finally, Fig. 7 overlays ODFs to GFA maps in the centrum semiovale, where the corpus
callosum (CC) crosses with the corticospinal tract (CST) in-plane and the superior longitu-
dinal fasciculus (SLF) out of plane. The cingulum (Cg) is also visible with a green single
fiber population out of the plane. Single, two and three fibers crossings can be seen. One
can observe how Gaussian smoothing and NL Means over-smooth GFA maps, but also ap-
preciate how our dictionary learning method is able to recover ODF profiles as sharp as the
FULL raw DSI.

Inter-subject undersampling and sparse coding. One can push the sparse coding approach
one step further than raw DSI denoising. If one has a dictionary estimated on a subject,
it is possible to undersample the q-space when acquiring data for another subject, and
subsequently use the dictionary to reconstruct a full resolution DSI signal. Figs. 8 and 9
show the reconstructed ODFs and the reconstruction errors as a function of the number of
measurements using different dictionary/subject pairs, when using sparse coding.

First, Fig. 8 shows ODFs estimated from an undersampled reconstruction for subject 2,
using the dictionary learnt on subject 1 with 100 atoms (Fig. 5 left). It is impressive to see
that a DSI dictionary learnt on a subject can be used to perform undersampled DSI on a
different subject.

Figure 9 shows the RMSE ratio between simple HALF DSI with symmetry and our
sparse coding approach as a function of the number of measurements. The baseline naive
symmetry is illustrated with the pink line, whereas we also show Gaussian smoothing and
NL means error ratios for comparison.

Of course, as the number of samples decreases, the overall field of ODFs seems more
noisy, but the overall RMSE remains acceptable, as seen in Fig. 9. At a total of 37, 29, and
21 respective measurements, the results become worse than NL means, Gaussian smooth-
ing and simple symmetry DSI respectively, in terms of RMSE. On the other hand, we
observe that ODF profiles are degraded more quickly as a function of undersampling. Note
that the structured voxels with a single fiber orientation in the Cg, CC, CT and SLF are well
preserved all the way down to 29 measurements. However, although crossings are found
in all undersampling schemes, ODF peaks in crossing areas become less accurate below
approximately 43 measurements.

Pittsburgh Brain Competition datasets denoising and undersampling. Finally, Fig. 10 shows
that undersampled sparse DSI using a dictionary learnt on subject 2 with 100 atoms can
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reconstruct the DSI signal and diffusion ODFs of brain0 Pittsburgh Brain Competition.
ODFs are again shown in a region of the centrum semiovale, where we see crossing con-
figurations between the CC, CST and SLF, as well as single fiber profiles from the Cg. One
can see that our data-driven approach based on sparse coding preserves crossings, angular
resolution and structure of the ODF field while considerably undersampling. As a conse-
quence, one also sees that the underlying GFA maps are preserved while undersampling.
Qualitatively, the 37 measurements reconstruction is of similar quality as the original DSI
data. Moreover, as before, at 29 measurements, single fiber ODFs are well-preserved but
crossings become more disorganized and angular resolution is lost. Although not shown
here, similar qualitative results are obtained on brain1 and brain2, with dictionaries learnt
on subjects 1 and 2.

5. Discussion

When applied to diffusion MRI data, sparse coding, a.k.a. dictionary learning, reveals
the latent structure of the white matter voxels. It is important to realize that the results
in this paper focused on DSI data, but the technique is applicable to diffusion-weighted
imaging in general. The same technique could be used on a DTI acquisition, single-shell
HARDI scheme or more advanced multiple-shell HARDI or radial sampling schemes for
DWI acquisitions. Here, we have extensively studied the impact of our data-driven sparse
coding approach on DSI data because there is a huge potential gain in denoising, especially
at high b-values, but also a large gain in undersampling, since the classically used 515
measurements share a lot of structure.

In this work, we showed that sparse coding can be used to accurately approximate the
diffusion signal with a few dictionary elements. Here, the dictionary is non-parametric
and estimated from tens of thousands of voxels on full brain data, taking into account
the specificities of diffusion MRI data. Proper dictionary learning was made possible on
all DWIs at the same time by taking into account the varying SNR across b-values, via a
dedicated whitening procedure. Positivity was enforced to model the fact that the diffusion
signal in a voxel is the sum of the contributions from the different structures present in that
voxel.

Exploiting the estimated model of the signal, we showed how one can denoise data and
solve inverse problems such as super-resolution of q-space data. We furthermore showed
that the signal model, i.e. the dictionary, could be learnt on another subject without degrad-
ing the signal estimation. This was highlighted through careful synthetic and real data ex-
periments. The proposed technique is attractive thanks to its small modeling assumptions
and its limited number of parameters, which are automatically calibrated using a cross-
validation scheme that is based on the physical properties of the diffusion signal, namely
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its symmetry and positivity. Note that, in the context of tractography, using post-processing
techniques of the EAP profile, one can also produce asymmetric angular profile that reflect
local Y-shaped branching present in underlying structures (Barmpoutis et al., 2008).

The key benefit of our method is its ability to perform denoising across all the DWI
channels at the same time, consequently enhancing the image quality, in particular for noisy
high b-values. While the technique of (Tristán-Vega and Aja-Fernández, 2010) uses DW
images within a certain cone around the DW image being denoised, we propose estimating
the underlying structure from all directions and b-values. This is made possible by a proper
whitening of the data, which allows multiple images corrupted by different noise levels to
be combined in the estimation. However, note that the learning and denoising is done voxel-
by-voxel. As for non-local means denoising (Coupé et al., 2010) or more recent estimation
techniques using a spatial regularization term such as total variation in the minimization
problem (see 11 for several recent techniques), we could further improve the method by
using a spatial model on the signal. We chose to remain at the voxel level to perform
fair comparisons with standard DSI, and we leave the use of spatial regularization to the
tractography algorithms.

Results have showed that using just half of the data (258 DWI), we can better predict the
other 257 DWI than the classic mirror symmetry procedure. This statement also holds even
if we use as little as 40 q-space measurements, as illustrated in our root mean squared error
curves experiments (Fig. 9) and our good angular reconstructions (Fig. 4). Our sparse cod-
ing technique performs better than symmetrizing, Gaussian denoising or state-of-the-art NL
means denoising. This is an important message for the DSI and connectomics (Hagmann
et al., 2008; Honey et al., 2009) communities that are using half-space DSI acquisitions.

Finally, beyond denoising, we have showed that a dictionary learnt from one subject can
be used to reconstruct a full DSI dataset from an undersampled acquisition of a different
subject. Accuracy was quantified based on MSE on the diffusion data as well as orientation
information extracted from ODF reconstructions. We have done so using the same MR
imaging system (Siemens in this work). We expect that a different dictionary would have
to be learnt for each MR system, but this learning only needs to be done once. In a way,
this would act as a “calibration” step, which would not necessarily be limited to a single
subject. Indeed, the dictionary learning algorithm employed is very scalable and could be
done on more voxels originating from a population of subjects, healthy subjects or subjects
with a condition. Hence, from now on, we could imagine acquiring approximately 40
measurements on new subjects, and use our previously learnt dictionaries to reconstruct
a full DSI dataset. Authors in (Bilgic et al., 2012b) come up with similar conclusions.

11http://hardi.epfl.ch/static/events/2012_ISBI/workshop_program.html#proceedings
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Consequently, we can have fast acquisitions and obtain high resolution DSI data. DSI can
be estimated with the same amount of data and scanning time as HARDI.

The challenges that one might face in the exploration of the proposed technique, e.g.
in clinical settings, is the difficulty to use for patients a dictionary learnt on healthy sub-
jects. It might require a dedicated dictionary learning stage or further development, to take
for example into account the issue of movements such as head rotations between scanning
sessions. Future work will be dedicated at optimizing the dictionary learning parameters
and the q-space subsampling scheme, in order to enhance other criteria such as ODF re-
construction. Indeed a DSI sampling on a grid might not be optimal should the angular
information be the information of interest. Work will also be done to enhance the compu-
tation of other radial EAP metrics such as return-to-origin probability, mean squared dis-
placement and kurtosis. Currently, our model selection criteria is based on a mean squared
error over all signal measurements, but one can think of a different measure or weighting
to better recover and preserve high frequencies needed for higher angular resolution of the
ODF. Future work will also be dedicated to finding optimal measurement strategies and to
finding a way to inject the noise distribution, if it is different from Gaussian. One could
hope performing the subsampling in k-space to remain in the Gaussian noise regime, but
this would mean that we would also lose the symmetry and positivity constraint that are
crucial in our current problem statement. This remains a rich field for future investigation.

6. Conclusion

We have showed that it is possible to learn the latent structure of white matter based
on the symmetry and positivity physical constraints of diffusion-weighted imaging. Using
online dictionary learning, we can learn the structure of raw DWI on full brain data to either
denoise the data or use the learnt dictionary to perform undersampled acquisitions, hence
fast imaging.

In particular, we have showed that we can perform robust and fast DSI reconstruc-
tions from only 40 measurements. Our results show that one can learn the DWI structure
from one subject and use it to denoise or perform fast imaging on a different subject. The
performance of our new sparse DWI technique was investigated with a publicly available
simulation dataset and publicly available DSI datasets from the Pittsburgh Brain Competi-
tion 2009 Challenge. This work opens perspectives for better denoising and faster diffusion
imaging techniques.
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Figure 3: One slice of ground truth ODFs and DSI noiseless data exhibiting the complex geometry with 1, 2,
3 fiber crossings of the simulation data (http://hardi.epfl.ch/static/events/2012_ISBI/download.html). Rows
2-4 show sparse coding (SC) reconstructions for different undersamplings with mid-range noise SNR 18.

49 atoms from SNR18 Ground truth

Gold standard (DSI full 515) SC DSI 258

SC DSI 58 SC DSI 37

SC DSI 29 SC DSI 18
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Figure 4: Error in maxima detection. In a) and b), errors are shown in terms of percentage of voxels with
incorrect number of estimated maxima. Results are presented for various number of DWI images available
for DSI estimation, and for different SNRs and number of atoms in the dictionary. In c), black pixels illustrate
perfect agreement between ground truth phantom and DSI no noise whereas pink pixels show where DSI no
noise underestimates 1 maxima with respect to the ground truth (single fiber detected instead of a two fibers
crossing). In d)-h), the comparison is between sparse coding with different undersamplings and the noiseless
DSI. The noiseless DSI acts as our gold standard. Here, pink and red pixels mean that our sparse coding
method has detected a single fiber instead of a 2 or 3 fiber crossings respectively, whereas blue pixels show
where our approach with undersampling is actually better than DSI with no noise if this pixel is in pink in c).
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Figure 5: ODFs computed from the learnt dictionaries on the 2 subjects (100 atoms and inter-subject cross-
validation). Top is for subject 1 and bottom for subject 2. Here, the ODF colormap goes from blue to red, for
mininal to maximal ODF values on the sphere to better highlight the 3D nature of ODF glyphs.
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Figure 6: Denoising the raw DSI data with our sparse coding (SC) technique versus state-of-the-art non-local
means (NLM) and Gaussian (optimal σ = 0.35) denoising. The region of interest is chosen in the centrum
semiovale, in mid-coronal slice, as seen in an approximate blue square in the top left figure. In this region, we
see the corpus callosum (CC), the cingulum (Cg), the corticospinal tract (CST) and the superior longitudinal
fasciculus (SLF). One can appreciate in the red box how the dictionary learning approach is able to highlight
and enhance structure, less visible in the raw and other denoised datasets.
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Figure 7: Full (d = 515) DSI vs. Half DSI (d = 258) with respect to simple symmetry, Gaussian (σ = 0.35),
NL means and our sparse coding (SC) based denoising of subject 1 (k atoms) and 258 measurements. Under-
lying GFA reflects the spatial smoothing done by the different techniques, where we see that white and gray
areas have less contrast (voxels all blended together) in the Gaussian and NL means cases. Hence, Gaussian
and NL means ODFs lose some angular sharpness, compared to full DSI and sparse coding, especially seen
in the red box area.
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Figure 8: Undersampled reconstruction using the dictionary learnt on subject 1 (k = 100 atoms) to recon-
struct DSI signal and diffusion ODFs of subject 2 in the centrum semiovale similar to Fig. 7. We note that
the angular profiles in the crossing area are preserved through undersampling but become noisier below 43
measurements. Single fiber parts are well-preserved all the way down to 29 measurements.
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58 measurements 43 measurements

37 measurements 29 measurements
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Figure 9: Reconstruction error ratios for intra and inter-subject settings as a function of the number of mea-
surements (k=100 atoms). brain1/brain1 is for the intra-subject case, while brain1/brain2 is the inter-subject
case, i.e atoms learnt on subject 1 and used to estimate the full DSI data of subject 2 using only a few
measurements.  
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Figure 10: Undersampled reconstruction using a dictionary learnt with sparse coding (SC) on subject 2 with
100 atoms to reconstruct DSI signal and diffusion ODFs of brain0 of the Pittsburgh Brain Competition. Note
how the sparse coding approach maintains angular resolution and ODF field while undersampling.
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