
INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG2013/M31446

October 2013, Geneva (CH)

Source Telecom ParisTech, Thomson Video Networks, TDF, INSA-IETR on behalf of

the H2B2VS project
Status For consideration at the 106nd MPEG meeting
Title Input on WD2 of 13818-1 AMD6
Author Jean Le Feuvre, Patrick Gendron, Anne-Laure Mevel, Jean-François Travers, Pascal

Dupain, Mickael Raulet

1 Introduction	
In 105th MPEG Meeting in Incheon, a stable syntax for carriage of media timeline and external
resource location has been proposed in W13661. Following the meeting, a number of discussions
on the topic have taken place in the H2B2VS1 and other standard organizations such as DVB or
HbbTV, and some companies have raised interest on the general topic and concerns on
bandwidth overhead. This contribution reviews the bandwidth overhead introduced by TEMI and
proposes an alternate transmission mode of timing.
This contribution also proposes fixes and improvements to the working draft.

2 Bandwidth	 Requirements	 Overview	

2.1 PMT	 Signaling	
The TEMI design is to declare a PES stream carrying all needed information in the PMT and
have its timestamps rewritten by network devices when PCR gets adjusted, without requiring
modification of the TEMI payload. A TEMI stream is assigned streamType 0x25 and can be
signaled in the PMT without any further descriptor. Therefore the cost of TEMI stream
declaration is (8+3+13+4+12) = 5 bytes, which can be neglected.
There were discussions within H2B2VS whereas this could be problematic, however not
signaling the stream in the PMT would bring more complications than benefits:

- a reserved PID should be used for TEMI, thereby requiring PID inspection to detect the
presence of TEMI

- timing info from different programs would have to be carried on the same PID, which is
very problematic for transcoders which may induce different delays on different
programs

1 1 H2B2VS is a Celtic+ project which aims at investigating the hybrid Broadcast Broadband distribution of TV
programs and services, using HEVC as a compression technology. It is coordinated by Thomson Video Networks.
For more information, visit http://www.celtic-initiative.org/Projects/Celtic-Plus-Projects/2012/H2B2VS/h2b2vs-
default.asp

After careful investigations, we believe the proposed approach in the WD is the safest and
simplest one for the existing infrastructure.

2.2 Timecode	 Transport	
The current TEMI design is to send all timing and service information in a PES packet, with a
description compact enough so that this PES packet fits in a single TS packet. As a reminder,
using both a TEMI timeline descriptor and location descriptor in one single TS gives:
188 – 4 (TS hdr) – 9 (PES hdr inc. PTS) – 1 (TEMI first byte) - 11 (Timeline Desc) – 6 (basic
fields of location descriptor) = 157 bytes for the location descriptor, for which 6 bytes are used
by default, thus leaving 151 bytes to describe URL data.

Obviously, there is no requirement that each packet carries both a timeline and URL descriptor,
however since the payload has to be carried in a TS packet, the minimal bitrate for sending
media timestamps is the bitrate of one TS packet, 1.5 kb. If we consider p60 video for which
each frame timestamp has to be exactly matched to external media timeline, this induces and
overhead of: 60*1.5kbps = 90 kbps. If we now consider a typical service multiplex with 3 to 6
programs, we have an overall signaling of 270 kbps up to 540 kbps, which may fit quite a few
digital services such as radios or embedded applications.

There have been questions regarding whether the TEMI information could be carried inband
with the video streams. While obviously this makes little sense for location descriptors, it is
worth investigating for timeline descriptor. As per 138181-1 Annex H, the only places where
inband data can be injected in a PES stream are:

- adaptation field of the TS packet
- PES private_data of the PES header

The adaptation field is quite flexible and may be set large enough to contain TEMI timeline info.
However, the adaptation field is usually processed and discarded at the demultiplexer level and
might not be kept in typical transmuxing equipment, which is quite problematic. On the other
hand, the PES header will pass a transmux equipment and is likely to be passed to a transcoder;
some standard organizations have used PES_private_data to carry some specific information on
some PES streams, such as supplemental audio services (DVB TS 101 154 Annex E), and
passing PES_private_data through the transcoder might therefore be supported by most
equipment.

Before investigating how to carry this information in PES_private_data, let’s understand the
benefit of this: signaling of PES private_data costs one byte, and the PES private_data field
contains 16 bytes. In other words, we only need 17 extra bytes per frame rather than 188.

If we consider that the description part of TEMI is sent every second, this gives for p60 video:
8*(188 + 17*60) = 9.5 kbps
hence from 29 kbps to 58 kbps per multiplex

If we consider that the description part of TEMI is sent twice every second, this gives for p60
video:
8*(2*188 + 17*60) = 11 kbps
hence from 33.5 kbps to 67 kbps per multiplex

We believe that the gain is important enough to integrate this possibility in the current WD
before going to CD.

One important thing is to make sure usage of TEMI in PES private_data does not break existing
deployments, but from the best of our knowledge systems using PES private_data use escape
mechanism in the first byte(s) to identify the private data type.
The feedback we had from encoders makers was that reformatting content in a different PID than
the video one would be tricky and add complexity to the systems, whereas on the other hand
extracting a 128 bit from the video PES header and copying it over after encoding would not be
such a heavy task. This is very important since encoders may change the GOP structure on the
fly and will likely need to modify the TEMI timeline.

3 Proposal	

3.1 Fixes	 in	 existing	 WD	
The current working draft defines splicing flags and timeline_id in the location descriptor.
However, if we want to send the timing information at a higher frequency that the location
(typically because the location descriptor is big enough to result in a TEMI AU spanning across
several TS packets), we face several design issues:

- when receiving the TEMI TimelineDescriptor, we do not know which timeline it
describes, since this info is given in the LocationDescriptor. It therefore has to be also
included in the TimelineDescriptor.

- The force_reload flag should also be present in the TimelineDescriptor, as a service
provider may want to trigger reloading of the HTTP resource without having to send
back the URL

Add title to the Table

In table T-5 replace

Syntax Nb bits Mnemonic

 has_timestamp
 has_ntp_timestamp
 has_timecode
 reserved

2
1
2
3

With

Syntax Nb bits Mnemonic

 has_timestamp
 has_ntp_timestamp
 has_timecode
 force_reload
 reserved

 timeline_id

2
1
2
1
2

8

And add to semantics

force_reload: 1-bit flag indicating that add-on description shall be reloaded before attempting to map
media times or locate media components. Reloading typically happens for manifest-based add-on such as
MPEG-DASH or MPEG-MMT.

timeline_id: indicates the active timeline, as identified in a LocationDescriptor.

Additional fixes:
- the short timecode form is only 24 bytes, this should be fixed in the TimelineDescriptor.
- the name of the NTP timestamps is not aligned between table and semantics, fix to ntp_timestamp.

3.2 Inband	 carriage	 of	 timecodes	

Replace Table T-1 by

Syntax Nb bits Mnemonic

TEMI_AU {

 CRC_flag
 timing_in_PES_private_data_flag
 reserved
 for (i=0; i<N; i++) {
 temi_descriptor();
 }
 if (CRC_flag) {
 CRC_32
 }
}

1
1
6

32

uimsbf

Add to semantics:

“timing_in_PES_private_data_flag : if set to 1, indicates that the associated timing information is
carried in the PES private data of the audio or video streams of the associated program. The
syntax for the PES_private_data carrying TEMI timeline is defined in table T-7.”

In T.3.3 Timeline Descriptor, add after first sentence:

“This descriptor shall not be present in a TEMI Access Unit if the timing_in_PES_private_data_flag is
set to 1.”

Add new clause
“
T3.3 Carriage in PES_private_data

“When the TEMI Access Unit if the timing_in_PES_private_data_flag is set in TEMI access units, the
timeline information is embedded in the PES_private_data field of the PES header in audio or
video streams of the associated program. In this case, the 128 bits of private data have the
following semantics

Syntax Nb bits Mnemonic

temi_pes_private_data {
 temi_sync_word

 timeline_id

 force_reload
 sce_prevention
 timing_type
 reserved=0b111

 if (timing_type==0) {
 timescale
 media_timestamp
 }
 else if (timing_type==3) {
 reserved=0xFFFFFFFF
 ntp_timestamp
 }
 else if ((timing_type==1) || (timing_type==2)) {
 drop
 frames_per_tc_seconds
 duration
 if (timing_type==1) {
 short_time_code
 reserved=0xFFFFFFFFFF
 } else {
 long_time_code
 }
 }
}

16

8

1
1
2
3

32
64

32
64

1
15
16

24
40

64

uimsbf

uimsbf
uimsbf

uimsbf
uimsbf

uimsbf
uimsbf

uimsbf
uimsbf

uimsbf

Semantics

temi_sync_word is a 2-byte sync word that shall be set to 0x5449 (hexa for “TI”: Timecode
Information).
timing_type indicates the nature of the timestamp included in the payload: media ticks, NTP
clock or timecode as specified in RFC5484.

sce_prevention indicates that the timing value T (media_timestamp, ntp_timestamp,
short_time_code or long_time_code) has been inverted in order to prevent emulation of the
packet_start_code_prefix (0x000001). The original timestamp can be recovered by inverting
each bit in the given word. For example, if the short time code value for the frame is 0x000001
(first frame), the resulting coded field is short_time_code=0xFFFFFE

timeline_id, force_reload, timescale, media_timestamp, ntp_timestamp, drop,

frames_per_tc_seconds, duration, short_time_code and long_time_code have the
same semantics as in T-3.2
”

To help other bodies understand the impact and benefits of using TEMI in their systems, we
suggest adding in the overview a summary on:

- Purpose of TEMI
- Timecode carriage possibilities: PES only , PES + private_data , private_data only if no

service signaling is needed

- signaling expressivity: add-ons location compactness, splicing signaling, reloading of
manifests, announcement of resources

- bitrate considerations

3.3 Carriage	 of	 PTP	 stamps	
The IEEE 1588 Precision Time Protocol (PTP) defines a higher precision timing protocol than
NTP, and codes its timestamps on 48+32 bits. These timestamps can fit in TEMI Timeline
Descriptor or in temi_pes_private_data, and there are enough extension code points to use them.
It could be useful to ask NBs about the usage of PTP for the purpose of TEMI, by adding an
editor’s note to the WD.

“EDITOR’S NOTE:
PTP (IEEE 1588) timestamps could be added to TEMI Timeline Descriptor or in
temi_pes_private_data. WG11 welcomes feedback on this matter for the next meeting to clarify
the need for PTP.”

4 Conclusion	
We suggest inclusion of the proposed tool for in-band carriage of timecode in the current text
and issue PDAM6 of ISO/IEC 13818-1:2013 at the 106th MPEG meeting.

