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Abstract

Let Gk,n be the family of all graphs on the same n vertices each having at least k
connected components. We are interested in the largest cardinality of a subfamily
in which the union of any two of the member graphs has at most k − 2 connected
components, and determine its exponential asymptotics.

1 Introduction

The union of two graphs with the same vertex set is a graph on their common
vertex set whose edge set is the union of the edge sets of the two. In this
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paper we continue our investigation [3] of problems from the following general
framework. Let F and D be two disjoint families of graphs on the same vertex
set [n]. We are interested in the largest cardinality M(F ,D) of a subfamily
C ⊆ F for which the union of any two different member graphs of C is in D.

The study of this class of problems was initiated by Messuti, Simonyi
and the third author in [8]. For the most part of [8] the family F = Fn

consisted of all the Hamilton paths in Kn with various choices of D. However,
in a significant special case the resulting extremal problems have roots in
nineteenth century mathematics. We will say that the graph family D is
monotone if for every graph G in D the graph G′ obtained from it by adding
some new edges between its vertices, is still in D. Now, if D is monotone and
complementary to F , i. e. D = F , then the subfamily G ⊆ F of maximum
cardinality M(F ,D) must consist of all the maximal graphs in F . A graph
is maximal in F if adding any edge to it the new graph is not in F anymore.
This implies that the union of two different maximal graphs from F is already
in F = D. For the same reason, for any family C ⊆ F , we can replace its
members with maximal graphs from F containing them. No two members of
C will be contained in the same maximal graph because their union is outside
of C. Thus M(F ,D) = M(F ,F) equals the number of maximal elements in
F . The study of this number, in certain special cases, goes back to Dedekind
[4] and has a vast literature. More precisely, we can assign to F a graph GF
whose vertices are the member graphs of F . Two vertices are adjacent in GF if
the union of the corresponding graphs is in F . Then M(F ,F) is the maximal
order of a clique in the graph GF . For the literature of this problem, we refer
the reader to [7] and the quite recent paper [5]. In these classical problems
one is concerned with the asymptotic enumeration of extremal structures. If
F is the family of all graphs of vertex set [n] and D is monotone, then it is
easily seen that

M(F ,D) = |D|+ M(D,D).

Our focus here is on problems of a different kind, in which the family D is
but a small fraction of the complement of family F . This class of problems is
related to zero–error information theory, in the sense of Shannon [9].

The present paper continues our previous investigations [3] where the fol-
lowing problem was introduced. Let k > l be two positive integers and let Gk,n

be the family of all the graphs on [n] having at least k connected components.
Further, let Dl be the family of those graphs on the same vertex sets having at
most l connected components. Hence Dl is monotone and disjoint from Gk,n.
We are interested in M(Gk,n,Dl). It was shown in [3] that for any k and l = 1
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one has

lim
n→∞

log n

√
M(Gk,n,D1) = h(1/k)

where h(t) = −t log t − (1 − t) log(1 − t) is the binary entropy function. We
will refer to this problem as that of connector families. The result just quoted
deals with its ”high end”. We are now going to determine the exponential
asymptotics of M(Gk,n,Dl) for more values of k and l, concentrating on the
”low end”. If l = k−1, we have Dk−1 = Gk,n and the easy problem of counting
the number of maximal k–disconnected graphs already discussed in [3]. This
is the number of k-partitions of an n-set. In conclusion, the first interesting
case at the low end is

l = k − 2,

the subject of the next section.

Note that logarithms and exponentials are to the base 2.

2 Results

Let Gk,n be the family of all the graphs on vertex set [n] with at least k
connected components and let Dl be that of at most l connected components.
We set l = k − 2.

Theorem 2.1 For k ≥ 4 we have

lim
n→∞

log n

√
M(Gk,n,Dk−2) = log k − 2

k

Sketch of proof. The proof of the theorem is rather long and technical
and thus it will not be included here. We limit ourselves to give some indi-
cations. As in [3], also the present problem can be reduced to one about the
Shannon capacity of a family of simple graphs. First of all, one should notice
that since Dk−2 is a monotone graph family, there is a family C ⊆ Gk,n among
those satisfying our pairwise condition with maximum cardinality, whose mem-
ber graphs are complements of complete k-partite graphs on [n]. These graphs
can be represented by k-ary sequences of length n, with the whole family C
forming a subset C of [k]n. For technical reasons, we will only consider se-
quences having the string 12 . . . k as a fixed prefix. Clearly, this restriction
will not effect our asymptotic evaluations. In order to satisfy the pairwise
union condition, any two of the elements of C should satisfy the condition
that for at least 2 different unordered pairs of distinct elements of [k] each
of these unordered pairs is present among the n pairs of coordinates of the
unordered pair of sequences. Furthermore, this condition on C ⊆ [k]n is
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equivalent to our original condition on C. Thus we now have the problem of
determining the exponential asymptotics of the maximum cardinality of a set
C ⊆ [k]n such that for any unordered pair of its sequences there are at least
2 different unordered pairs of distinct elements of [k] among their unordered
pairs of coordinates. Such a problem can easily seen to be solvable in the
framework of the Shannon capacity of a corresponding family of graphs [6].
To explain this framework, we need a few definitions.

Let G be a finite undirected graph with vertex set V . For every natural
number n let M(G, n) be the largest cardinality of a set C ⊆ V n with the
property that for any unordered pair of distinct members {x,y} ∈ (

C
2

)
there

is a coordinate i ∈ [n] with {xi, yi} ∈ E(G) where E(G) is the set of edges of
the graph. We define the always existing limit

Sh(G) = lim
n→∞

log n
√

M(G, n)

and call it the Shannon capacity of the graph G.

The limit exists by Fekete’s lemma [2]. A set of vertices C ⊆ V (G) is said
to induce a clique if any unordered pair of distinct members of C constitutes
an edge in the graph. A central concept in our proof and implicit in this
definition is the concept of co–normal power of a graph.

Definition 2.2 The n-th co–normal power Gn of the graph G is the graph
with vertex set [V (G)]n in which two vertices, x and y are adjacent if there is
a coordinate i ∈ [n] with {xi, yi} ∈ E(G).

Thus (the binary logarithm) of Shannon capacity is the asymptotic ex-
ponent of the growth of the largest clique in the powers of G. It should be
recalled that this is the somewhat unusual formulation of the capacity of a
simple graph, used in [6] and [2] for reasons explained there. In fact, this is the
right formulation leading to the natural generalization of graph capacity to
directed graphs. (Shannon’s original problem statement–to which the present
one is mathematically equivalent–is in complementary terms.)

The last basic definition we need is a generalization of Shannon capacity
from single graphs to graph families.

Definition 2.3 Let G be a finite family of simple graphs with a common finite
vertex set V. We denote by M(G, n) the largest cardinality of a set C ⊆ V n

that induces a clique in Gn for every member graph G ∈ G. We call the always
existing limit

Sh(G) = lim
n→∞

log n
√

M(G, n)

the Shannon capacity of the graph family G.
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In order to prove our main result, we will use the main theorem of [6] and
this in turn forces us to introduce more technical notions of graph capacity;
capacity within a given type.

For an arbitrary sequence x ∈ V n we shall denote by Px the probability
distribution on the elements of V defined by

Px(a) =
1

n
|{i : xi = a, i = 1, 2, . . . , n}|,

where x = x1 · · · xn. The distribution Px is called the type of x. Let V n(P, ε)
denote the set of those x ∈ V n which satisfy

|Px − P | = max
a∈V

|Px(a)− P (a)| ≤ ε.

We write V n
P = V n(P, 0). For an arbitrary directed graph G, let M(G, P, ε, n)

be the largest cardinality of any set C ⊂ V n(P, ε) that induces a clique in Gn.
We write

Sh(G, P ) = lim
ε→0

lim sup
n→∞

1

n
log M(G, P, ε, n)

and call it the Shannon capacity of G within the type P . This quantity was
introduced in [1]. It is clear that for every finite graph G

Sh(G) = max
P

Sh(G, P ).(1)

The main result of [6] is the following formula.

Theorem 2.4 [6] For an arbitrary finite family of directed graphs G on the
common vertex set V we have

Sh(G) = max
P

min
G∈G

Sh(G, P )

where P is running over the probability distributions on V.

Consider now the family G ′
k,n consisting of all those graphs with vertex set

[k] which contain at least
(

k
2

)−1 edges. It is not hard to establish by symmetry
that the maximum in maxP minG∈G′

k,n
Sh(G, P ) is attained for the uniform

distribution U on [k]. Likewise, it is clear that the minimum of the value
of Sh(G, U) is achieved by the graphs having just one edge missing. These
graphs are isomorphic and have capacity within type U equal to log k − 2

k
. In

conclusion, we have

Sh(G ′
k,n) = min

G∈G′
k,n

Sh(G, U) = log k − 2

k
(2)
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It is easy to see that limn→∞ log n
√

M(Gk,n,Dk−2) = Sh(G ′
k,n) to complete

the sketch of the proof.

�

All the other problems where l = k − c for some absolute constant c can
be solved in a similar manner, even though already for l = k − 3 substantial
complications arise.

3 Intersection problems

Our problem area seems close to intersection problems in the sense of [10].
Formally, an intersection problem, when formulated in complementary terms
(complements of the graphs and pairwise unions instead of intersections), asks
for the determination of M(F ,F). More on this relationship is explained in
[3].
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