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Abstract: At STOC 2010, Applebaum, Barak and Wigderson introduced three new public-key cryptosystems based on
combinatorial assumptions. In their paper, only encryption of bits has been considered. In this paper, we
focus on one of their schemes and adapt it to encrypt a constant number of bits in a single ciphertext without
changing the size of the public key. We add wire-tap channel techniques to improve the security level of our
scheme, thus reaching indistinguishability. We show that it is homomorphic for the XOR operation on bit
strings. We also suggest concrete parameters for a first instantiation of our scheme.

1 INTRODUCTION

Most public-key cryptosystems that have been pro-
posed since the introduction of public-key cryptog-
raphy (Diffie and Hellman, 1976) rely on hardness
assumptions from number theory, lattices or error-
correcting codes, e.g. (Rivest et al., 1978b; McEliece,
1978; Ajtai and Dwork, 1997). In (Applebaum et al.,
2010a), Applebaum et al. introduce three new public-
key cryptosystems based on combinatorial problems,
following other works such as (Goldreich et al., 1988;
Blum et al., 1993; Juels and Peinado, 2000; Achliop-
tas and Coja-Oghlan, 2008). Their three cryptosys-
tems share the same simple encryption and decryption
mechanisms, described in Figure 1, but the hardness
assumptions and, consequently, the key generation al-
gorithms differ.

We focus in this paper on the scheme of (Apple-
baum et al., 2010a) based on the 3LIN assumption,
that we denote by ABW in the following. This as-
sumption states that it is infeasible to solve a random
set of 3-sparse linear equations modulo 2, of which a
small fraction is noisy. It is quite close to the Learn-
ing Parity with Noise problem but considers a noise
level much higher than those used before.

The public key of this scheme is a 3-sparse matrix
M and the corresponding secret key is a small subset
of the lines of this matrix that sum up to 0. To encrypt
a bitm, the public key matrix is multiplied by a ran-
dom vectorx and noisee is added to the productM ·x,

then the first bit ofM ·x+e is flipped ifm= 1 and un-
modified otherwise. To decrypt a message, the lines
of the ciphertext corresponding to the secret key are
added modulo 2, and the result is, with high probabil-
ity, the original message. The principal components
of the cryptosystem are summed up in Fig. 1.

We show that this scheme can be used to encrypt a
constant number of bits, instead of a single bit, while
keeping the same size for the parameters. In the ABW
cryptosystem, one set of lines that sums up to 0 is
used as secret key. To encryptl bits, we suggest to
usel such subsets of lines that sum up to 0 in the pub-
lic key, each one having the same size as the subset
of lines in the ABW scheme. Moreover, the ABW
cryptosystem only guarantees a weak notion of pri-
vacy: the distributions of ciphertexts encrypting re-
spectively 0 and 1 are at a statistical distance lower
than 1/2. To improve the security level, we encode
the message to be encrypted using coset coding tech-
niques. Indeed, we draw a parallel between an adver-
sary against our cryptosystem and an eavesdropper in
the Wire-Tap channel model (Wyner, 1975), and se-
curity in the wire-tap channel can be ensured using
coset coding techniques. The resulting scheme is de-
scribed in Fig. 4. We prove that this scheme achieves
indistinguishability under chosen-plaintext attack.

We propose parameters for a concrete instantia-
tion of the protocol. They are derived from the se-
curity analysis of (Applebaum et al., 2010a; Apple-
baum et al., 2010b) and from our proofs. We estimate
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that we can achieve short-term security with a 5 GB
public key and 18-element subsets in the secret key.
We suggest to encrypt around 100 bits at the same
time. The underlying code used for coset coding is a
[128,30,29] BCH code.

1.1 Homomorphic Properties

In 1978, Rivest et al. (Rivest et al., 1978a) introduced
the notion ofhomomorphic encryption. A public-key
cryptosystem is homomorphic for an operation• if,
given any two ciphertextsc1 andc2 encrypting (resp.)
m1 andm2, it is possible to compute a ciphertextc3
encryptingm3 = m1•m2, without knowing the secret
key. An encryption scheme that is homomorphic for
any operation is called afully homomorphicscheme.

For instance, textbook RSA (Rivest et al., 1978b)
and ElGamal (Gamal, 1984) cryptosystems are multi-
plicatively homomorphic: the product of two cipher-
texts is a ciphertext of the product of the plaintexts.
The most known additively homomorphic encryption
scheme is the one of Paillier(Paillier, 1999): the prod-
uct of two ciphertexts is a ciphertext of the sum of the
plaintexts. A fully homomorphic cryptosystem has
been first proposed in 2009 by Gentry (Gentry, 2009).
Since then, intensive research is pursued in this do-
main to gain efficiency.

It is interesting to notice that the scheme of (Ap-
plebaum et al., 2010a) has been used, with modifica-
tions inspired by (McEliece, 1978), in an unsuccess-
ful attempt to build a fully homomorphic cryptosys-
tem based on codes (Bogdanov and Lee, 2011). It has
been broken differently and independently by (Gau-
thier et al., 2012) and (Brakerski, 2012)

We here focus on the homomorphism w.r.t. the
exclusive-OR (XOR) operation. The scheme of Gold-
wasser and Micali (Goldwasser and Micali, 1982),
based on the quadratic residuosity problem, enables
to homomorphically compute the XOR operation by
multiplying ciphertexts. However, only one bit at a
time can be encrypted, and thus it does not achieve
“XOR-ly” homomorphism on bit strings.

The McEliece cryptosystem (McEliece, 1978) can
be adapted to achieve XOR-ly homomorphism (see
(Strenzke, 2011, Section 2.4)). The number of XOR’s
that can be performed is however limited, the scheme
is in a sense “somewhat XOR-ly homomorphic”.

Our modified cryptosystem, thanks to the linear-
ity of the encryption/decryption operations of the ini-
tial ABW scheme and to the linearity of (linear) coset
coding, is homomorphic for the exclusive-OR op-
eration on bit strings. This can have nice applica-
tions such as the secure computation of Hamming dis-
tances.

2 THE ABW CRYPTOSYSTEM

We focus on the first of the three schemes intro-
duced in (Applebaum et al., 2010a), that is based on
the 3LIN assumption. As already noticed, all three
schemes follow the same mechanisms for encryption
and decryption, only secret key generation differs.
The approach of our paper to enable multi-bit encryp-
tion and achieve indistinguishability also applies to
the second scheme based on bothdLIN and DUE (De-
cisional Unbalanced Expansion) assumptions, though
we do not detail it here. We believe that the third
scheme is not suited for our multi-bit techniques.

In the following, a matrixM ∈ F
m×n
2 is said to be

d-sparseif each of its rows contains exactlyd ones.
We denote byMm,n,d the uniform distribution overd-
sparsem× n matrices and byTp,n,d the distribution
over 3-sparse matrices withn columns, where each
possible 3-sparse row (out of the

(n
3

)

possibilities) is
picked with probabilityp and placed randomly into
the matrix.

2.1 Security Assumptions

The first scheme of (Applebaum et al., 2010a) and our
proposal both rely on the 3LIN assumption. We sum
up definitions and assumptions concerning 3LIN that
are used in (Applebaum et al., 2010a).

Definition 1 (ε-SatisfiabledLIN Instance). A dLIN
instance with m-clauses and n variables is described
by an m-bit vector b and a d-sparse matrix M∈Fm×n

2 .
It is ε-satisfiable if there exists an assignment x for
which the weight of Mx−b is at mostεm.

Definition 2 (Search3LIN Problem). The
Search3LIN(m,ε) problem is defined as follows:
Input: A randomε-satisfiable 3LIN instance(M,b)
sampled as follows:

M ← Mm,n and b= Mx+ e, where x∈R {0,1}n

and e← Bermε (whereBermε is the distribution over m-
bit vectors where bits are independently distributed
following Bernoulli distributions with probability p).
Output: The assignment x.

We say that Search3LIN(m(n),ε(n)) is intractable
if for every probabilistic polynomial-time algorithm
A, and every sufficiently large n, A solves Search-
3LIN(m(n),ε(n)) with probability smaller than 2/3.

Assumption 1. The problem
Search3LIN(COn1.4,C1n−0.2)) is intractable for
every constants C0 > 0 and C1 > 0.
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Public Key: A 3-sparsem×n matrixM
Secret Key: A subsetS of [1, . . . ,m] such that
1∈ SandΣi∈SMi = 0 (whereMi denotes thei-th
line of M)
Encryption(m ∈ {0,1}): Pick a random vec-
tor x∈R {0,1}n and a random error vectore∈R
Bermε . Let c = M · x+e. If m = 1, flip the first
bit of c. Outputc.
Decryption(c): OutputΣi∈Sci

Figure 1: The ABW cryptosystem.

2.2 The ABW Cryptosystem based on
3LIN

The architecture of the cryptosystem, shared with the
other schemes of (Applebaum et al., 2010a), is de-
scribed in Fig. 1. We here describe the key generation
algorithm, that is specific to the cryptosystem that we
focus on.

Key Generation(m,n,q). Sample a matrixH from
H2,3

q,n , the uniform distribution over matrices withq
rows andn columns, where each row contains exactly
3 ones and each column contains either zero or two
ones.

Sample a matrixM from Tm/(n
3),n,3

.

Pick a random setS⊂ {1, . . . ,m} such that 1∈ S
and|S| = q. Replace the lines ofM indexed byS by
the lines ofH.

The public key isM, the secret key isS.

2.3 Security of the ABW Cryptosystem

We say that two sequences of distributionsX andY
areε-indsitinguishable if, for every probabilistic poly-
nomial time algorithmA, |Pr[A(X) = 1]−Pr[A(Y) =
1]|< ε.

Definition 3 (β-Privacy). A single-bit encryption
scheme E, with public key pk, isβ-private if the
distributions (pk,Epk(0)) and (pk,Epk(1)) are β-
indistinguishable.

The following theorem summarizes (Applebaum
et al., 2010a, Thm 2) and (Applebaum et al., 2010b,
Thm 5.5).

Theorem 1 (Privacy of the ABW Cryptosystem).
Let q= Θ(n0.2), m= O(n1.4) and ε = Ω(n−0.2). If
Search3LIN is intractable, the ABW cryptosystem is
(1−δ/2)-private, for some absolute constant0< δ<
1 that does not depend on n.

3 THE WIRE-TAP CHANNEL

3.1 Linear Coset Coding

Coset coding is a random encoding technique. This
type of encoding uses a[n,k,d] linear codeC with a
parity-check matrixH. Let r = n− k. To encode a
messagem ∈ F

r
2, one randomly chooses an element

among allx ∈ F
n
2 such thatm = Htx. To decode a

codewordx, one just applies the parity-check matrix
H and obtains the syndrome ofx for the codeC, which
is the messagem. This procedure is summed up in
Fig. 2.

Parameters:C a [n,n− r,d] linear code with a
r×n parity-check matrixH
Encode: m ∈ F

r
2 7→R x∈ F

n
2 s.t.Htx=m

Decode: x∈ F
n
2 7→m= Htx

Figure 2: Linear Coset-coding

3.2 The Wire-Tap Channel

The Wire-Tap Channel was introduced by Wyner
(Wyner, 1975). In this model, a sender Alice sends
messages over a potentially noisy channel to a re-
ceiver Bob. An adversary Eve listens to an auxiliary
channel, thewire-tap channel, which is a noisier ver-
sion of the main channel. It was shown that, with an
appropriate coding scheme, the secret message can be
conveyed in such a way that Bob has complete knowl-
edge of the secret and Eve does not learn anything. In
the special case where the main channel is noiseless,
the secrecy capacity can be achieved through a lin-
ear coset coding scheme. The model of the Wire-Tap
Channel is drawn in Fig. 3.

Alice Enc small (or no) noise

big noise

Bob

Eve

m c c′

c′′

Figure 3: The Wire-Tap Channel.

Security is guaranteed ifH (m|c′) = 0 and
H (m|c′′) = H (m), whereH denotes entropy. Let
us assume that the main channel is noiseless and that
the wire-tap channel is a binary symmetric channel
with probability of error equal top. It has been
proven (Wyner, 1975) that security in the Wire-Tap
channel model can be achieved if the encoding tech-
nique is a linear coset coding achieving a rate at most
h(p) =−plog(p)− (1− p) log(1− p).
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Public Key: A 3-sparsem× n matrix M and a
r× l parity-check matrixH
Secret Key: l q-size subsetsS1, . . . ,Sl of
[1, . . . ,m] such that j ∈ Sj and Σi∈Sj Mi = 0
(whereMi denotes thei-th line ofM)
Encryption(m ∈ {0,1}r): Pick a random vector
x ∈R {0,1}n, a random error vectore∈R Bermε ,
and a random vectory ∈ {0,1}l such thatH ·
y = m. Let c = M · x+e+(y1, . . . ,yl ,0, . . . ,0).
Outputc.
Decryption(c): For j = 1, . . . , l , let y j = Σi∈Sj ci .
Outputm= H ·y.

Figure 4: Our cryptosystem.

4 OUR PROPOSAL

4.1 Indistinguishability

Definition 4 (Indistinguishability). A (probabilistic)
public-key cryptosystem E achieves indistinguisha-
bility under chosen-plaintext attack if, for any two
messages m0 and m1, an adversary, given the public
key pk, cannot distinguish between the distributions
Epk(m0) and Epk(m1).

4.2 The Cryptosystem

Our proposal for a multi-bit cryptosystem is described
in Figure 4. We only need to specify the key genera-
tion algorithm.

Key Generation
Samplel matricesH j from H2,3

q,n , the uniform distribu-
tion over matrices withq rows andn columns, where
each row contains exactly 3 ones and each column
contains either zero or two ones.

Sample a matrixM from Tm/(n
3),n,3

.

Pick l random setsSj ⊂ {1, . . . ,m} such thatj ∈
Sj and |Sj | = q. Moreover, they must be such that
Sj ∩Sk = /0 for j 6= k.

For everyj ∈ {1, . . . , l}, replace the lines ofM in-
dexed bySj by the lines ofH j .

The public key is M, the secret key is
{Sj} j∈{1,...,l}.

Decryption Error
We recall that we insert in every ciphertext an error
vector where errors occur following a Bernoulli dis-
tribution with low probabilityε.

As in the ABW cryptosystem, it might happen,
with low probability, that the error vector flips bits

that are at positions indexed by theSj ’s. If the num-
ber of flips in oneSj is odd, decryption of thej-th bit
of x errs.

Each bit of the encoded message is erroneously
decrypted with probability at mostα = 1/2−1/2(1−
2ε)q < εq. Thus, the decryption of the message errs
with probability at mostβ = 1− (1−α)l < εql.

4.3 Proof of Security

We first prove that our distribution of public keys is
close enough toTm/(n

3),n,3
and use arguments of (Ap-

plebaum et al., 2010a) to prove partial privacy of our
cryptosystem. Then, we use the wire-tap model to
prove indistinguishability of our full cryptosystem.

First, let us define thej-th partial cryptosystemas
a single-bit cryptosystem, where the keys are gener-
ated in the same way as in our proposal, but where
only one bit is encrypted; more precisely, the encryp-
tion and decryption algorithms are as follows:

Encryption(m ∈ {0,1}). Pick a random vectorx∈R
{0,1}n and a random error vectore∈R Bermε . Let c=
M ·x+e. If m= 1, flip the j-th bit of c. Outputc.

Decryption(c). OutputΣi∈Sj ci

Theorem 2. Let q= Θ(n0.2), m= O(n1.4) and ε =
Ω(n−0.2). For j = 1. . . l, the j-th partial cryptosystem
is (1−δ/2)-private, where0< δ< 1 does not depend
on n.

Sketch.We rely on the proofs of (Applebaum et al.,
2010a; Applebaum et al., 2010b) regarding the pri-
vacy of their first scheme, based on 3LIN. The pri-
vacy is proved by (Applebaum et al., 2010a, Thm 2)
or (Applebaum et al., 2010b, Thm 5.5), which state
that, if the distribution of public keys andTm/(n

3),n,3
are (1− δ)-computationally indistinguishable, then
encryption is(1−δ/2)-private. The proof of this the-
orem is out of the scope of our paper, we only use its
result.

We need to prove that our key distribution is(1−
δ)-computationally indistinguishable fromTm/(n

3),n,3
,

i.e. we need an equivalent of (Applebaum et al.,
2010a, Lemma 2) or (Applebaum et al., 2010b,
Lemma 5.4), adapted to our new key distribution. The
proof of (Applebaum et al., 2010b, Lemma 5.4) relies
on arguments from (Feige et al., 2006). If the dimen-
sions of the matrix and the sizel of the private key
are as in the hypotheses of Theorem 2, then each row
of a 3-sparse matrixM sampled fromTm/(n

3),n,3
has a

probability 0< φ < 1, independent ofn, of belonging
to aq×n sub-matrix where each column contains ei-
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ther zero or two ones. (Such a sub-matrix is called an
H-type sub-matrix in the following.)

Now let us assume that the firstl rows all belong
to H-type sub-matrices. We show that the probability
that 2 (or more) of these rows belong to the same sub-
matrix is negligible. Indeed, let us see the matrixM
as a bipartite graph where the rows are on the left size,
theH-type sub-matrices are on the right side and the
edges connect the rows to the sub-matrices to which
they belong. Letq= βn0.2. With probability 1-o(1),
M contains at leastαn1.4 H-type sub-matrices, each
row of M participates in at mostγn0.2 distinctH-type
sub-matrices andM has at mostθn1.4 rows (see the
proof of (Applebaum et al., 2010b, Lemma 5.4) and
(Feige et al., 2006)). LetV be a right vertex. Let us
consider the set of vertices that are at distance (small-
est path) 4 fromV. There are at mostβn0.2 (neigh-
bours ofV) ×γn0.2 (max. number of neighbours of a
left vertex)= βγn0.4 vertices in this set. Since there
are at leastαn1.4 right vertices, the probability that
two right vertices are at distance 4 is≈ βγ

αn = o(1).
The probability that two (or more) out of the firstl
rows belong to the sameH-type sub-matrix is thus
negligible.

Consequently, with probabilityδ = φl ∈]0,1[, in-
dependent ofn, M is a possible public key. The statis-
tical distance betweenTm/(n

3),n,3
and the uniform dis-

tribution over public keys isδ. Using (Applebaum
et al., 2010a, Thm 2) or (Applebaum et al., 2010b,
Thm 5.5), we obtain the(1− δ/2)-privacy of thej-th
partial cryptosystem, for every 1< j < l .

Now we introduce linear coset coding as a way
to enhance the security of the system and to prove
indistinguishability

Theorem 3. Assuming that all j-th partial cryp-
tosystems are(1−δ/2)-private, our cryptosystem us-
ing a linear coset coding with a r/n = h(δ/4)-rate,
achieves indistinguishability.

Sketch.As proved by Theorem 2, the adversary can
distinguish every bit ofEncode(m) (whereEncode
means linear coset coding) with 1− δ/2 distinguish-
ing advantage. The power of the adversary is thus
equivalent to the power of an adversary in the wire-tap
channel model where the wire-tap channel is a binary
symmetric channel, with error probabilityp being at
leastδ/4.

Thus, as in the wire-tap channel model, to pre-
vent the adversary from learning information about
the original message, one uses linear coset coding
with a rate at mosth(δ/4). The distributions of
Enc(m0) andE(m1) are consequently indistinguish-
able, for any two messagesm0 andm1 in F

r
2.

5 “XOR-ly” HOMOMORPHIC
ENCRYPTION

5.1 Homomorphic Properties

The schemes of (Applebaum et al., 2010a) and
the adaptations that we introduce are XOR-ly ho-
momorphic. Indeed, letm1 and m2 be two r-
bit messages andy1 = (Encode(m1)||0. . .0), y2 =
(Encode(m2)||0. . .0). Let c1 = M.x1 ⊕ y1 ⊕ e1
and c2 = M.x2⊕ y2⊕ e2 be ciphertexts encrypting
them. Then, we havec1 ⊕ c2 = M.(x1 ⊕ x2) ⊕
(y1⊕ y2)⊕ e1⊕ e2 = M.(x1⊕ x2)⊕ (Encode(m1⊕
m2)||0, . . . ,0)⊕e1⊕e2, due to linearity of coset cod-
ing. Thusc1⊕ c2 encryptsm1⊕m2. We can see that
the error term weight grows at every homomorphic
XOR. Consequently, the probability of an erroneous
decryption also grows with the number of XOR’s.

5.2 Application to Secure Hamming
Distance Computation

We want to homomorphically compute the Hamming
distance between twoc-bit stringsX andY, using the
encryptions ofX andY. We first notice that obtaining
the encryption of a random messagem whose Ham-
ming weight is the Hamming distance betweenX and
Y is equivalent to obtaining an encryption of the Ham-
ming distance. We use this trick to homomorphically
compute the Hamming distance betweenX andY

We know, from the previous section, that one eas-
ily obtainsE(X⊕Y) from E(X) andE(Y) using the
homomorphic properties of the cryptosystem. Now,
if one randomly permutes the firstc bits of the ci-
phertext, one obtains an encryption of the message
m= σ(X⊕Y), whereσ is the permutation. This mes-
sage has the same Hamming weight asX⊕Y, i.e. the
Hamming distance betweenX and Y, but gives no
more information aboutX andY. This technique can
for instance be used in the following applications:

Secure 2-Party Computation of Hamming Dis-
tance. Two partiesP1 and P2 respectively hold in-
putsX andY. P1 sets a key pairsk, pk for one of the
cryptosystems described in Section 4.P2 is givenpk
and an encryption ofX. P2 can then homomorphically
compute an encryptionE of X⊕Y. P2 picks a random
permutationσ and permutes the firstc bits of the ci-
phertextE, he thus obtainsE′. P2 sendsE′ to P1 who
can decrypt it usingsk. The Hamming weight of the
decrypted result is the Hamming distance betweenX
andY. P2 learns nothing aboutX andP1 learns noth-
ing more aboutY than the Hamming distance between
X andY.
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Secure Outsourcing of Hamming Distance Com-
putation. Several data are stored encrypted on an
external server (such as a cloud). The server holds
E(X) and E(Y) and can homomorphically compute
E(X⊕Y) thenE(σ(X⊕Y)), whereσ is a randomly
chosen permutation and sends it to the client holding
the secret key. The client can then decrypt and retrieve
the Hamming distance betweenX andY without the
server learning anything about the data involved

6 TOWARDS A CONCRETE
IMPLEMENTATION

We here give a proposal for concrete parameters for
our cryptosystem that would enable to achieve short-
term security,i.e. the equivalent of a 80-bit symmetric
encryption. We first recall the relations between pa-
rameters, as required by the security of proofs of Sec-
tion 4.3 and of (Applebaum et al., 2010a; Applebaum
et al., 2010b).

We assume that the privacy of the partial cryp-
tosystems (see Section 4.3) is close to 1/2. Conse-
quently, for coset coding, we require a code whose
rate is approximatelyh(1/4) ≈ 0.81. Since we con-
sider linear binary codes, we suggest to employ BCH
codes, but others could be used, as long as their rate
is close toh(1/4).

Finally, we would like to avoid naive attacks to
recover the keys. Since allSj sets are independent,
we requireSj to be more than 80-bit sized,i.e. we
requireqlog(m) > 80. Moreover we would like to
avoid a brute-force attack where the adversary picks
every(q/2)-tuple of public key rows and then looks
for q/2 other rows such that all theseq rows sum up to
0. This attack requires at least(3m/n)q/2 operations.
We consequently require(3m/n)q/2 > 280.

If we combine everything together, we suggest to
taken = 221, m= 229, r = 98, q= 18, l = 128,ε =
10−6and a linear coset coding whose underlying code
is a [128,30,29] BCH code. This leads to a 5 GB
public key and to a 128×540-bit private key.

We do not claim here to get a ready-to-use cryp-
tosystem. Following [3] and their will to introduce
new public-key cryptosystems relying on combinato-
rial assumptions despite the fact that they are not as
efficient today as the more classical ones. Our work
can be interpreted as a first step towards more prac-
tical implementation. Our suggestions for concrete
parameters should therefore be seen as a challenge.
We strongly support the idea of cryptanalysis of our
scheme using these parameters, or evidences that we
could reduce the parameters’ size without impact on
security.
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