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ABSTRACT
Despite the demonstrated benefits of multi-finger input, to-
days gesture vocabularies offer a limited number of postures
and gestures. Previous research designed several posture sets,
but does not address the limited human capacity of retain-
ing them. We present a multi-finger chord vocabulary, in-
troduce a novel hand-centric approach to detect the iden-
tity of fingers on off-the-shelf hand-held tablets, and report
on the detection accuracy. A between-subjects experiment
comparing ’random’ to a ‘categorized’ chord-command map-
ping found that users retained categorized mappings more
accurately over one week than random ones. In response
to the logical posture-language structure, people adapted to
logical memorization strategies, such as ‘exclusion’, ‘order’,
and ‘category’, to minimize the amount of information to re-
tain. We conclude that structured chord-command mappings
support learning, short-, and long-term retention of chord-
command mappings.
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INTRODUCTION
Tablet computers are typically deployed to browse content
rather than to perform complex data manipulation. Still,
touch-enabled tablet interfaces have been replacing many
uses of the traditional keyboard and mouse. To avoid com-
plexity, application designers reduce the number of menu
items when porting applications from PC to tablet environ-
ment. For example Adobe Photoshop’s1 menu is reduced
from 648 menu commands on a PC to 35 commands on a
tablet. Among other reasons this is done for simplification to

1http://www.photoshop.com/products/photoshopexpress
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cope in gestural interfaces with the lack of hotkeys that sim-
plify in conventional interfaces the access to repetitive menu
use.

Through hand postures and gestures, multi-touch promises
more flexible input than traditional WIMP interfaces
(Windows-Icons-Menus-Pointer). Yet, today’s commercial
tablet interfaces provide a limited set of input gestures. Ges-
tural interface design for multi-touch interfaces is still emerg-
ing; we face similar challenges and goals today as design-
ers did for keyboard-and-mouse interfaces in the 80s: (1) in-
crease input expressivity, e.g. by providing keyboard short-
cuts, or adding additional buttons or wheels to mouse devices;
and (2) design task-action mappings that facilitate learning
and memorization [22, 23], e.g. using mnemonics such as
holding down ‘CTRL’ + ‘C’ to ‘copy’ a document. This paper
addresses both points in the context of multi-touch enabled
hand-held tablets; (1) we extend input expressivity by propos-
ing an approach to distinguish among a set of hand postures;
and (2) investigate posture-command mappings, addressing
the limited capacity of human memory.

By taking advantage of the rich dexterity of our hands, we can
obtain large sets of postures and gestures [4, 6, 15]. Gesture
designers of such multi-touch technology need to work on
very limited information about the user’s hand posture: e.g.,
capacitive touch technology provides the number and position
of touch, but not the finger’s identity. Existing solutions have
resorted to clumsy external hardware such as gloves or cam-
eras [24], or additional time-consuming registration gestures
[3]. We propose a method for recognizing a set of what we
call multi-finger chords on off-the-shelf hand-held tablets. We
use this term to describe a positioning of particular fingers on
a screen relative to the hand. Similar to playing piano-chords,
some fingers touch the surface, some are lifted up. Fingers are
not spread or flexed; instead they remain extended in a relaxed
position. This position is based on the shape of the hand and,
thus, easily detectable and reproducible. We present a novel
approach to distinguishing among multi-finger chords using
hand-shape characteristics to derive a hand model.

An effective posture language, however, must also face the
limited human capacity of retaining a large number of chord-
command mappings. People move back and forth between
mobile device, tablet, and desktop interfaces: input gestures
should be easy to remember even when not constantly per-
formed or practiced. Some previous studies proposed natural
gesture sets [20, 30]. ’Natural’ refers to a mapping between
gesture and command, which is rooted in language, culture,
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or experience in the physical world. Since natural gesture-
command mappings use prior knowledge, it can improve the
memorization of such mappings. However, abstract gesture
or posture sets and abstract domain-specific commands do not
have such desirable properties: how should we design chord-
command mappings in such cases?

George Miller [18] contributed a famous insight to the un-
derstanding of information processing in human memory: or-
ganizing and grouping items into ‘chunks’ can increase the
capacity of human memory. We investigate the effect of
grouped chord-command mappings on memorization: simi-
lar input multi-finger chords map to similar commands. We
demonstrate that structured chord-command mappings sup-
port recall even if a given gesture had not been performed for
a long period of time.

RELATED WORK

Increase Input Expressivity
Knowing which user is interacting where on the surface offers
a powerful means to design personalized interfaces and in-
corporate social protocols in interface dialogs. Some tabletop
interfaces make use of built-in table cameras [25, 27, 28] or
additional hardware, e.g. cameras [24] or proximity sensors
in the table-frame [2], to infer touch-ownership in addition
to touch-position. However, to increase expressiveness of a
single user, we are also interested in techniques to provide
information beyond simple touch.

Previous work proposes a number of techniques to make
touch more distinctive; Finger-count [5] uses the number of
touches; MicroRolls [26] detects specific patterns in the tra-
jectory of touch events while users perform small roll mo-
tions with their fingers; and SimPress [9] analyses the fingers
contact area. Wang et al. [28] used constraints due to the
anatomy of the human hand to identify which touches belong
to the same hand. However, none of these approaches ad-
dresses touch-to-finger ownership.

One simple approach is the Lift-and-Stroke technique [15];
users place all five fingers of their hand on the surface and
then lift the ones not required for a given chord. Unfor-
tunately lifting certain fingers while simultaneously holding
others down is difficult to perform [15]. Similarly, Au et al.
[3] proposed a technique that requires the registration of all
fingers; first, users hold down all fingers; instead of lifting
some fingers, users lift the whole hand and then select items
from the appearing on-screen menu. However, their approach
requires visual attention and might be impractical in cases
where the attention is focused on external devices, e.g. large
displays.

On multi-touch tables, the built-in camera can infer the finger-
ownership of touch from the hand’s halo [15] by analyzing –
a shadow casted by hands seen by the camera – where the
touch event occurs relative to the hand. In fact, most ex-
isting approaches for user-, hand-, and finger- identification
[29] require external hardware. We contribute an approach
for finger-identification for off-the-shelf tablets. We present a
basic posture vocabulary of nine postures and propose space-
and time-multiplexed ways for extension.

Mappings in Interfaces
Compared to the diversity of investigations studying ways of
augmenting mere touch input and proposing gesture sets [4,
15, 20, 30], there is relatively little literature on the choice
of mapping between gestures and commands. Challenges in
gesture interfaces comprise (1) discoverability and (2) mem-
orability. Discoverability had been addressed, e.g., by feed-
forward systems such as OctoPocus [7] or Arpėge [13], that
guide the user with visual clues to perform gestures or pos-
tures.

Memorization is addressed in the context of ‘natural’ ges-
tures. Wobbrock et al. [30] applied user-elicitation methods
to gather gestures with large agreement across users. They
found that participants preferred user-authored gestures over
those created by HCI experts [20]. Natural gestures take ad-
vantage of pre-established associations which support mem-
orization, and even more so when those associations are per-
sonally assigned by the user [21]. However, in the absence of
such cultural references, linguistic associations, or metaphor-
ical links, how should abstract posture sets be integrated into
the interface so that they become easy to use?

We need to account for the lack of ‘natural’ associations of
postures. Previous work showed that the method of orga-
nizing menu structures has an effect on visual search perfor-
mance [17]. Indeed, we are used to virtual information being
structured: we group tools in palettes, categorize menu items
by meta-attributes, and save documents in tree-structures.
Similarly Buxton [11] presents examples of grouping input
gestures in human-computer dialogs into meaningful units
following two aspects: (1) gestures have a kinaesthetic con-
nection that match the logical structure of two tokens and
(2) the choice of the follow-up gesture is limited to a single
choice reducing cognitive load. Users are forced to follow a
proper syntax, e.g. select then position. Yet, we lack suffi-
cient guidance for applying it to the design of posture sets.

In psychology, organization is assumed to be a necessary
condition for memory [16]. Most gesture work in HCI in-
vestigated short-term retention of gestures [6, 7]. However,
we agree with previous discussions [1, 21] that gesture sets
should also be studied with respect to long-term recall in or-
der to truly understand gesture memorability. In the following
sections, we introduce a novel multi-finger chord vocabulary
for off-the-shelf tablets. Postures of our vocabulary can be
categorized into three families of postures due to similarities
among input movements. We then explore the effect of cat-
egorized chord-command mappings on long-term memoriza-
tion: does it improve long-term retention if the structure of
performed input movements matches the virtual menu struc-
ture?

DESIGNING A MULTI-FINGER CHORD VOCABULARY
Multitouch-enabled technologies, can detect the location and
number of touch contacts with our hands. Without additional
technology, however, they cannot identify the specific finger,
which is touching the surface. Two-finger gestures have be-
come pervasive in tablet gesture languages. But two fingers
cannot suffice for identifying fingers reliably because they
only define a segment of a line. The hand has a polygonal
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Figure 1. Minimum requirement of three touches: an example of two
identical touch events triggered by two hand postures.

shape whose vertices are the fingertips. Depending on the
orientation of the hand (see Fig. 1), a two-finger segment
can match many segments of the hand-shape polygon. By
contrast, three fingers define two segments which relative ge-
ometric properties guarantee a unique match in well chosen-
cases. At least three fingers are needed for the simplest de-
termination of the hand posture of the hand. Three fingers
determine postures for a reasonably large set of noncontorted
postures. The hand could curl fingers under or raise one up to
increase the size of this vocabulary, but this would generate
variability and decrease accuracy. We would require a more
complex model of the hand to be accurate.

In the following, we present hand measurements for a clas-
sifier enabling us to identify the fingers performing a chord.
We present three observations (O1, O2, O3) of human hand-
shape characteristics [19] and simple ways of measuring
them. These measurements are entirely based on relative
measurements designed to be insensitive to variations in the
actual size of users’ hand.

We propose three families of simple-to-sense, hand-size in-
sensitive input postures: (1) Neighboring Fingers (NF),
(2) Thumb-Pinky Base (T-Pinky), (3) Thumb-Index Base (T-
Index). In the process of designing classifiers for the posture
families, each hand-shape characteristic contributes one rela-
tive measurement that distinguishes that particular posture in
its posture family. Used together, these angle and geometric
measurements can distinguish all postures. In the following
sections, we introduce the posture families and summarize
the rationale behind our design decisions.

O1: Relative Distance between Neighboring Fingers
One observation is that index, middle, and ring finger have
a relative position to their neighboring fingers; e.g. the in-
dex finger (see NF[INDEX] in Fig. 2) is positioned towards the
middle finger, thus more distant to the thumb (D2 < D1). We
call the three chords in Figure 2 elements of the neighboring
fingers (NF) family. We suggest the relation between D1 and
D2 as relative measurement independent of actual hand sizes.

O2: Relative Length of Fingers
The thumb-index base (T-Index) family addresses the obser-
vation that fingers of our hand have common patterns in
length; e.g., the middle finger is usually longer than the index
finger and the pinky is usually shorter than the ring finger. We
suggest the angle between (1) the line going through thumb
and index basis and (2) the line between index and the third

D1

D2 D1 D2 D1

D2

NF[index] NF[middle] NF[ring]

touch event on tablet D: relative distance between  touch events

D1
D2 > 1 D1

D2 ~ 1
D1
D2 < 1

Measurement:

Figure 2. Neighboring fingers (NF) family: relative distances are differ-
ent between the three touches.

T-Index[middle] T-Index[ring] T-Index[pinky]

α

touch event on tablet

~110°
Measurement:

α

α α

α α~ 130° ~ 90°

α angle of two lines through three touches

Figure 3. Thumb-index base family (T-Index): relative angle to the basis
between thumb and index shrinks from middle to pinky finger.

identifying finger as relative measurement to identify the ap-
propriate posture (see Fig. 3).

To distinguish T-INDEX[MIDDLE] from NF[INDEX], we de-
signed this as a two-step posture: users have to simultane-
ously hold down the thumb-index basis first and then add
the third finger touch in a second step. Compared to previ-
ous approaches, e.g. holding down and lifting up all five fin-
gers [31], steps are rapidly performed in sequence (≈ 150ms
apart). Moreover, this process highlights the structure of the
command and the fact that it relies on the completion of the
thumb-index basis.

P
P P

T-Pinky[index] T-Pinky[middle] T-Pinky[ring]

touch event on tablet
0

1
0.3~

0

10.7~
0

1
0.9~

P: relative position between 
      thumb and pinky

a) Measurement 1:

D1

Db

D2 D3

Db Db

b) Measurement 2: D3
Db

D1
Db

D2
Db

< <

Figure 4. Thumb-Pinky basis family (T-Pinky): a) index, middle and
ring finger are at a common relative position between thumb and pinky.
b) relative distances between basis fingers and third finger are different.

O3: Order of fingers
The thumb-pinky base (T-Pinky) family is based on the ob-
servation that index, middle and ring finger are attached to
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the palm in a consistent order. We suggest to measure (1) the
relative position (P) of each finger on the basis line between
thumb and pinky (see Fig. 4a) and (2) the distance of ‘P’ to
the basis line in relation to the length of the basis line (see Fig.
4b). The relative position ‘P’ is calculated by an orthogonal
projection of the third touch to the basis line.

To distinguish T-PINKY[INDEX] from T-INDEX[PINKY], the T-
Pinky family is designed as a two-step posture as well: users
first hold simultaneously down thumb and pinky as a basis
and then add the third finger touch in a second step.

Design Rationale
The proposed postures and families have the following con-
tributions, limitations and characteristics:

Structure:
Each family follows a simple logic that is easy to understand
and to communicate.

Technical Limitations:
Multi-touch sensors are capable of providing information
about touch shape. However, many commercial available
tablet APIs, e.g., Apple’s IOS 72, or tablet providers, e.g.,
Samsung Galaxy tab 10.13, do not provide such information
to developers. We present an approach that works on very
limited data – the position of touch – to distinguish various
multi-finger chords on all off-the-shelf hand-held tablets.

Minimal Requirement:
Each posture requires pressing at least three fingers if the
hand-held tablet provides only the location of touch contacts.
The positional information of two touch events is not suffi-
cient to infer the hand posture (note example in Fig. 1).

Limitations of our Approach:
Our relative measurements are invariant to a limited range of
rotation of the users hand relative to the interactive surface
(between 0°and 90°counter clockwise). This is an accept-
able rotational interaction range for hand-held tablets since
it would be hard to work from other angles. Further investiga-
tion could evaluate the addition of using a built-in camera for
finger orientation recognition [28] in combination with our
approach for use on interactive tabletops.

The approach is limited to a single hand since some postures
are symmetric: e.g. holding down the right hands index, mid-
dle, and ring finger at the same time is – from a system’s per-
spective – like using the left hand. This is also an acceptable
condition for hand-held tablets, since one hand is involved in
the device support and not available for such input.

Extensibility:
We present postures that meet the minimum requirement of
three touches to identify a hand posture and identify the
touching fingers. However, since our algorithm computes an
approximate position of the remaining fingers, we can extend
our simple set of postures in two ways: (1) holding more
fingers down; postures with 4-5 fingers are a super set of
2http://www.apple.com/ios/
3http://www.samsung.com/global/microsite/galaxytab

the above-introduced postures: all possible 4-finger postures
include one of the three-finger chords already detected; or
(2) designing tapping sequences with the remaining fingers
which extends the chord set with multi-step chords. Using
(1), we can extend our 9 three-finger postures by 1 five-finger
and 5 four-finger postures (sum of 15). In order to investi-
gate a final posture-set size when using (2), further studies
are required to determine a suitable tapping sequence depth.

In summary, we introduced relative measurements invariant
of users’ hand size and contribute a posture set that requires
the user to hold down a minimum of three fingers to identify
the involved fingers and approximate the position of the re-
maining hovering fingers. We introduced ways of extending
our set. The classifier is available for download4.

STUDY ONE: RECOGNITION ACCURACY
We collected data from 20 participants with varying hand size
performing all postures. We created a KNN classifier [12] and
analyzed its accuracy. We conducted several tests on our data
in order to address various real-world settings with tablets:
(1) private, (2) shared, (3) public device setup.

In a private device setup, only one user interacts with the de-
vice; a prior calibration process can collect user-specific data.
In a shared device setup, e.g., when used in multi-surface en-
vironments as controlling input device [8], each user can per-
form a prior calibration; it is, however, unknown at a given
time which user is interacting on the device. Lastly, in a (3)
public device setup tablets are used in public places and for
short period of time, e.g., in museum installations. Users
walk up and use the tablet without prior calibration or per-
sonalization process.

Participants
20 right-handed volunteers participated (13 males, average age 29
years). Their mean (± SD) anthropometric hand characteristics
were: hand length 19.19 (± 1.57 cm) and hand width 9.22 (±
0.76 cm). The hand length was measured between the middle
fingertip and the distal crease of the wrist with the hand ex-
tended, and the hand width was measured between the lateral
aspect of the index and pinky finger at the joint where the fin-
ger is attached to the palm [19]. 11/20 participants practiced
activities that train finger dexterity, e.g., playing instruments.

Apparatus
Samsung Galaxy tab, 10.1 inch × 6.9 inch × 0.3 inch depth,
565g, 149 ppi, Android version 4.0.4. The JavaML library [1]
was used to create a KNN classifier (K=3) to distinguish hand
postures.

Procedure:
The experiment lasted approximately ten minutes. When
participants arrived, they filled out a questionnaire inquiring
about habits in interacting with capacitive-touch technology
and activities that could train hand dexterity, e.g., playing in-
struments. We measured the width and height of the hand
of participants and captured the outline of their flat hand on
millimeter paper. They were instructed to keep their hands in

4http://www.medien.ifi.lmu.de/multifingerchord
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vocabulary private tablet shared tablet public tablet

Neighboring finger (NF) 96.67% 96% 93.67%
Thumb-Index (T-Index) 100% 92% 83%
Thumb-Pinky (T-Pinky) 99% 98% 91%
NF + T-Index 98.33% 94% 88.33%
NF + T-Pinky 97.66% 96.83% 91.5%
T-Pinky + T-Index 99.5% 95% 88.67%
NF + T-Pinky + T-Index 98.44% 95.22% 91.5%

Table 1. The mean accuracy of input vocabularies in private, shared and
public device setup.

a relaxed posture with neither pinched nor out-stretched fin-
gers. We conducted a 3 POSTURE FAMILY × 3 POSTURE ID within
subjects experiment. We collected a total of:

(NEIGHBORING FINGERS (NF) × [INDEX, MIDDLE, RING] +
THUMB-INDEX BASIS (T-INDEX) × [MIDDLE, RING, PINKY] +
THUMB-PINKY (T-PINKY) × [INDEX, MIDDLE, RING])
× 5 replications = 45 trials/participant.

Trials were blocked by POSTURE FAMILY and the order was al-
tered using a Latin square design on the POSTURE FAMILY factor.
The order of POSTURE ID was randomized and no two equal
postures appeared successively, to avoid the repetitive input
of the same posture by remaining in a stiff hand position. In
each trial, users were instructed to perform the appropriate
posture indicated by an instruction image on the upper left
screen corner. The experimenter and a video camera verified
that the correct posture was performed.

Training:
Before each block of POSTURE FAMILY, users performed each
posture once in a training block.

Data collection:
We collected position and size of all registered touch events
and camera video showing the subject performing the tasks.

Data post-processing:
The three finger-touches form a triangle: we extracted the
four relative measures illustrated in Figure 2-4 for each of the
three triangle-sides or corners. A total of 12 measurements (3
corners × 4 measurements) were used for the KNN classifier.

Results and Discussion: Recognition Accuracy
We used a m-fold cross validation procedure with the appro-
priate size of ‘m’ for each tablet setup: a cross validation
partitions a sample of data into a training set and test set and
validates the test set against the training set; each part of the
data becomes a test set once and the accuracy result of all val-
idations are averaged. Table 1 present the average accuracy
value by device setup and vocabulary. Figure 5 illustrates the
distribution of accuracy by vocabulary.

Private tablet setup - 5-fold cross validation by participant:
We determined one mean accuracy value by participant and
took the average across participants. As expected, the private
tablet setup has the most robust detection; most precise are
small vocabulary sizes, NF (Mean = 96.67%), T-INDEX (Mean =
100%), and T-PINKY (Mean = 99%); however, the accuracy rate
of all 9 postures is acceptable (98.44% which is > 95%).

vocabulary
All

T-Pinky+T-Index
NF+T-Pinky

NF+T-Index
T-Pinky

T-Index
NF
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cu
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Figure 5. The distribution of classifier accuracy (in %) by vocabulary
across participants in private, shared and public tablet setup.

Shared tablet setup - 20-fold cross validation:
This corresponds to the case where users share the tablet with
others but first performed an initial calibration. Although less
accurate than the private tablet setup, the global accuracy rate
remains reasonably high (95.22% which is >95%). Interestingly,
the T-INDEX family is the most accurate in the private case but
the least accurate in the shared case (see Tab. 1) compared to
both other families; T-INDEX has a low within-subject vari-
ability and a high between-subject variability. This may be
because some participants tended to perform pinched posi-
tions of the thumb and index finger instead of keeping their
hand relaxed.

Public tablet setup - 20-fold cross validation:
The NF family obtains the best result in this case (see Tab.
1). It is interesting to notice that its performance is almost
the same for the three setups, showing a low between-subject
variability. However, the global accuracy rate (91.5%) is prob-
ably not sufficient for real usage.

In summary, our classifier is accurate enough to apply the
tested nine posture vocabulary in private (98.44% accurate) and
shared tablet setups (95.22% accurate). The touch-positional
data is, however, not sufficient for a public tablet setup
(91.5%). Future work can include, e.g. camera halo or in-
creased sophisticated hand models, to enhance the accuracy
of the public tablet setup. In addition, increased data on touch
orientation might help as well if made available on a wide
range of off-the-shelf hand-held tablets [28].

STUDY TWO: MEMORIZING INPUT VOCABULARY
Structure improves memorability [16]. Previous findings in
psychology have demonstrated that people can recall more
items, e.g., ‘dog’ and ‘table’, if those items are presented
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T-Index[ring]

T-Index[middle]
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NF[ring]
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Figure 6. Participants learned 9 commands divided into 3 command-
categories using either a (1) categorical mapping (left) (chord family to
category mapping) or (2) random chord-command mapping (right).

grouped by category, e.g., ‘animal’ and ‘furniture’ [10]. In-
spired by this finding, we investigate whether such a categor-
ical structure can facilitate the learning and long-term reten-
tion of chord-command mappings.

Hypothesis
If a multi-finger chord language is structured in such a way
that it reflects the menu-structure of commands, users (H1)
learn the chord-command mappings faster and (H2) keep
those mappings more accurately in mind over a long period of
time. We test our hypothesis in the concrete case of mapping
gesture families to command categories.

Participants:
18 right-handed participants, 13 males (avg. age 27 years, SD=8
years), paid with a 10e gift card. None of these subjects had
participated in the first study.

Apparatus:
Samsung Galaxy tab (as in study one) running our posture
recognizer.

Method
We performed a between-subjects design. Subjects were ran-
domly assigned to two groups: (1) subjects taught CATEGOR-
ICAL associations, the other (2) subjects taught RANDOM asso-
ciations. All participants were instructed to learn nine com-
mands organised in three command-categories: transporta-
tion, animals, and sports. Each category has three commands,
e.g. transportation has car, train, and bike.

Stimulus:
We chose black-and-white illustrations for the nine com-
mands (see Fig. 6, ’command stimuli’).

Phase 1
calibration

Phase 2
training

Phase 3
memorization

process

Phase 4
10 minute 
distraction

Phase 5
test

Session 1

Phase 6
test

Session 2

Experiment

6-7 
days

Figure 7. The different phases of the experiment in two sessions with 6-7
days in between two sessions.

CATEGORICAL
Each chord family (Neighboring Fingers, Thumb-Pinky,
Thumb-Index) is mapped to one command-category (see Fig.
6, grey right column as one example).

RANDOM
Items were randomly assigned to one of the nine postures
such that none of the command-categories matches one chord
family (see Fig. 6, grey right column as one example).

Procedure
The experiment was divided into two sessions and lasted in
total approximately one hour. Figure 7 shows that session 1
has 5 phases; session 2 has only one test phase and takes place
6-7 days later. All participants were identically introduced to
the chord vocabulary and the set of commands through an
oral introduction of the experimenter.

Phase 1: calibration
Users performed the same trials as in the first study for cal-
ibration purpose. A per-user classifier (private tablet setup)
was created per participant.

Phase 2+3: training and memorization process
The goal of Session 1 was to make participants learn nine
chord-command mappings by heart. In Phase 2 and 3, each
block contained 9 trials, each eliciting one element of the vo-
cabulary in random order. Each block is one repetition of
all items in the vocabulary. A trial had the following proce-
dure: participants hold down a button until a stimulus image
appeared showing one of the command stimuli in Figure 6.
Participants then performed the appropriate chord that maps
to the particular stimulus. They received feedback about er-
rors: the screen flashed red and an instruction image of the
correct chord appeared. Chord-command mappings were dif-
ferent for all participants of both groups. Participants learned
a novel posture set, new command symbols and the mappings
between them; to reduce the learning effort to learning map-
pings, we showed two sheets of paper to the user: one illus-
trated all hand postures, another one showed all commands.
The chord-command mapping was not shown.

Training (phase 2):
Participants performed two blocks. To introduce the map-
ping, each trial displayed two instruction images: the stimu-
lus showing the command and the corresponding chord. Par-
ticipants had to perform the correct chord to finish the trial.

Memorization (phase 3):
Trials only displayed the stimulus and asked to recall the ap-
propriate chord. Participants continued to receive feedback
about errors and the correct chord instruction image. The
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memorization ended when participants both reached an ob-
jective and a subjective end-criterion.

Participants reached the objective end criterion of the memo-
rization phase when they successfully reproduced all chords
of the vocabulary twice in sequence (measured as two blocks
without errors). Participants reached the subjective end cri-
terion when they decided that they trained enough to be able
to reproduce the command-gesture mapping 6-7 days later in
session 2.

Phase 4: Distraction
All participants watched a 10-minute cartoon.

Phase 5+6: Test
Participants performed one block as in phase 2+3 all items of
the vocabulary were asked once; participants had to perform
the corresponding chord of their mapping for a given stimu-
lus. Phase 5 in session 1 tested the short-term retention and
phase 6, six or seven days later, tested the long-term retention.
No feedback was provided. Sessions were video recorded
to eliminate recognition errors. Chord-command mappings
were validated post-hoc by analyzing the video.

Data Collection
Reported misclassification: participants received error feed-
back during phase 2+3 and were instructed to report recogni-
tion errors.

Objective end-criterion: number of required blocks until par-
ticipants recalled correctly all items twice in sequence. Ob-
jective end-criteria are always reached before subjective end-
criteria.

Subjective end-criterion: number of required blocks until
user subjectively feels ’trained enough to successfully recall
the vocabulary one week later’.

Number of errors: the number of chord-command mappings
participants did not recall correctly.

Trial time: time from the moment a stimulus appeared to the
performance of the corresponding chord.

Results and Discussion
We analyzed our data using the IBM SPSS statistics package
version 21. We performed one-way ANOVA tests on the nor-
mally distributed subjective and objective end-criterium data,
and the non-parametric Mann-Whitney test on number of er-
rors due to a significant Levene’s test.

Classifier Precision
During the training and memorization process (phase 2+3),
we collected a total of 2421 trials, in average 134 trials by
participant (Median=126 trials, SD=53.15 trials). Participants re-
ported on average 7 misclassifications; one user reported 22
misclassifications with an accuracy of 79.63%. However, this
was a particular case: this participant had a long thumb that
triggered several touch events. This detection issue can eas-
ily be addressed by updating our hand model to ignore such
touches.
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Figure 8. The distribution of number of errors during a short-term (af-
ter 10 minutes) and long-term (after 1 week) test. Participants in the
CATEGORICAL group made no errors except two outliers (green stars) in
both retention tests, and remembered chord-command mappings better
than the RANDOM group.

Other participants had between 1 and 16 misclassifications;
the classifiers accuracy was between 81.48% and 99.35%
(Mean=94.06%, SD=5.07%) for a private tablet setup. Our clas-
sifiers accuracy decreased from 98.44% in the first study
to 94.06% in the second study; the cognitively demanding
caused probably that participants tensed up their hands.

H1: Do people learn chord-command mappings faster?
A one-way ANOVA of subjective end-criterion showed no
significant difference between groups (F1,16 = 1.4, p = 0.254):
participants in the CATEGORICAL group required in average
10.33 blocks (SD=1.11 blocks) and participants in the RANDOM

group required in average 12.67 blocks (SD=1.63 blocks).

A one-way ANOVA of objective end-criterium, however,
showed a significant difference between groups (F1,16 = 4.498,
p = 0.05): participants in the CATEGORICAL group required less
repetition to reach the objective end-criterium (Mean = 7 blocks,
SD = 3.81 blocks) compared to participants in the RANDOM group
(Mean = 11.44 blocks, SD = 5 blocks). The CATEGORICAL mapping
accelerated the learning and successful repetition of the vo-
cabulary. Both groups, however, continued the training. To
make our findings stronger, it was particularly important that
participants end the training with the confidence to recall the
items in later tests.

H2: How well can participants retain mappings?
The number of errors data is not normally distributed: a
Levene’s test shows that the variance of number of errors
was significantly different between groups for short-term re-
tention (F1,16 = 11.18, p = 0.048) and long-term retention
(F1,16 = 46.72, p < 0.0001).
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We performed a non-parametric Mann-Whitney test on num-
ber of errors in both retention tests. We found no significant
difference between groups in the short-term retention test, ‘p’
being slightly greater than 5% (U = 22.5, z = −1.94, p = 0.052,
r = −0.46): 1 participant in the CATEGORICAL group did one
error; and 5 participants in the RANDOM group did one error;
the remaining had no errors. There might be a significant dif-
ferent result with a larger sample size.

We found a significant difference between groups in the long-
term retention test: participants in the CATEGORICAL group (see
Figure. 8) made significantly less errors when tested six to
seven days after the training than participants in the RANDOM

group (U = 6.5, z = −3.21, p < 0.001, r = −0.76). We were
surprised how well participants in both conditions retained
nine mappings for approximately one week without further
training or practice; especially, since previous work indicate
difficulties in learning more than two abstract gestures [14].

Figure 8 shows the distribution of number of errors during
the short- and long-term retention test. Participants in the
CATEGORICAL group made in average. 0.11 errors (Median = 0, SD
= 0.33) in the short-term retention test and 0.22 errors (Median
= 0, SD = 0.67) in the long-term retention test 6-7 days later.
Participants in the RANDOM group made in average 0.56 (Median
= 1, SD = 0.53) errors in the short-term retention test and 3.4
(Median = 3, SD = 2.3) errors in the long-term retention test. Note
that not only the mean values are different between groups in
the long-term retention test, but also the variance (0.44 vs. 5.28).

We analyzed the errors and categorized them into three types
of errors: (1) right family wrong finger (RFWF), (2) wrong
family right finger (WFRF), and (2) completely wrong (CW).
Participants in the CATEGORICAL group had few errors: P2 had
1 RFWF in the short-term retention test and P6 had 2 RFWF in
the long-term retention test; he swapped two postures of the
same family. Participants in the RANDOM group had in com-
parison lots of errors, a total of 5 in the short-term test and
36 in the long-term retention test. We found 2 WFRF, 2 RFWF,
and 1 CW in the short-term retention test and 8 RFWF, 9 WFRF,
and 19 CW errors in the long-term retention test. Our results
indicate that a structured mapping leads to less error-prone
long-term memorization, which is highlighted by the types
of errors participants made: participants in the CATEGORICAL

group did not mix up mappings between families and menu
category, and did not perform a completely wrong posture.

Performance
We ran a full-factorial ANOVA on trial time using the factors
group, retention test, and chord family. We found a signifi-
cant effect of group (F1,312 = 10.95, p < 0.0001), chord family
(F2,312 = 6.05, p = 0.003), and retention test (F1,312 = 17.69,
p < 0.0001).

Participants in the CATEGORICAL group performed trials signif-
icantly faster (Mean = 2572ms, SD = 1940ms) than those in the
RANDOM group (Mean = 3330ms, SD = 2327ms). We analyzed the
difference between posture families: a post-hoc Tukey test
revealed that postures in the neighboring fingers (NF) family
were performed faster (Mean = 2416ms, SD = 1834ms) than thumb-
pinky basis (T-Pinky) (Mean = 3062ms, SD = 1770ms). Thumb-
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Figure 9. Interaction effect: trial time was not significantly different in
the short-term test, but significantly different in the long-term retention
test.

index basis (T-Index) was not significantly different from both
families (Mean = 3373ms, SD = 2696ms).

All participants required more time to perform postures in the
long-term retention test (Mean = 3433ms, SD = 2308ms) than in the
short-term retention test (Mean = 2469ms, SD = 1917ms). How-
ever, we found a significant interaction effect between group
and retention test: participants in the CATEGORICAL group per-
formed not significantly faster in the short-term retention tests
than the RANDOM group (Mean = 2319ms, SD = 1994ms vs. Mean =
2619ms, SD = 1839ms); however, in the long-term retention test,
participants in the CATEGORICAL group performed significantly
faster (Mean = 2824ms, SD = 1863ms) than participants in the RAN-
DOM group (Mean = 4041ms, SD = 2549ms). This supports on-
going discussions that some effects on memorization might
first show up after some time has passed [21, 1].

Qualitative Evaluation
We found that most participants preferred the NF family
(12/18) compared to the T-PINKY (4/18) and T-INDEX(2/18)
family. This result is consistent with participants rating of
postures with respect to both perceived comfort and ease-of-
use. Figure 10 illustrates participants’ rating of ease-of-use
on a 5-point Likert scale (1-very difficult, 5-very easy).

We found an interesting effect between groups on the qual-
itative rating of participants. All participants performed the
same multi-finger chords, only the mapping changed. We
found no effect between groups on participants ratings of per-
ceived comfort of postures (U = 2870, z = −1.476, p = 0.140,
r = −1.12). However, when asked about perceived ease-of-
use – directly below the question about comfort – partici-
pants answered more positive in the CATEGORICAL condition
than in the RANDOM condition (U = 2609, z = −2.47, p = 0.014,
r = −0.19). Figure 10 illustrates the difference by chord fam-
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How easy/difficult was the performance of the following posture?

0% 20% 40% 60% 80% 100%

2 4 21

0% 20% 40% 60% 80% 100%

11 5 21

0% 20% 40% 60% 80% 100%

33 7 17

0% 20% 40% 60% 80% 100%

33 7 8 9

0% 20% 40% 60% 80% 100%

11 5 10 11

0% 20% 40% 60% 80% 100%

66 6 8 7

Categorical

Random

Categorical

Categorical

Random

Random

NF

T-Pinky

T-Index

very difficult

Neutral

very easy311 22 4 5

Figure 10. Participants ranking of ease-of-use on a 5-point Likert scale
for all three chord families by condition: neighboring fingers (NF),
thumb-pinky basis (T-Pinky), and thumb-index (T-Index). Ratings were
more positive in the categorized group.

ily: we see that the solid black box around positive answers is
larger for CATEGORICAL and the dashed black box around neg-
ative answers is larger for RANDOM (except for the NF chord
family where answers are equally positive).

Participants equally rated comfort of postures independent of
group. This is not surprising, since they performed the same
postures; it is, however, interesting to note that participants
seem to rate to above demonstrated quality of the mapping as
easier to use. This might be explained through the integrality
of posture and mapping: the demonstrated advantages of the
CATEGORICAL mapping might have led to more positive rating
of perceived ease-of-use.

Memorization Strategies
Participants reported on their strategies to remember map-
pings. We classified answers into five types of memorization
strategies summarized in table 2. ‘Metaphors’ were the only
strategy we found represented in both groups. ‘Exclusion’,
‘order’, and ‘category’ were used in the CATEGORICAL group;
‘practice’ in the RANDOM group. The introduction of structure
leads to logical and ordered memorization strategies in the
CATEGORICAL group. 5/9 participants mentioned ‘exclusion’ as
strategy to minimize the amount of information to retain.

CONCLUSION
This paper presents a novel approach using relative measure-
ments of touch-positions between three fingers to determine
the hands’ posture over off-the-shelf hand-held tablets. We

strategy group participants example

Metaphors
RAND. 3/9

[I remembered all vehicles] from
left to right [Finger] by what I
can afford to use: bike, train,
[own] car. (P8)

CATEG. 7/9

I found similarities between the
pictures and the chord []: the dog
stands pointing to the left, the
chord is NF[index]. (P15)

Exclusion
RAND. 0/9 –

CATEG. 5/9
I remembered two chords and de-
ducted the third mapping. (P7)

Order
RAND. 0/9 –

CATEG. 5/9
I remembered the finger-order
for a given menu category. (P3)

Category
RAND. 0/9 –

CATEG. 7/9
”I first memorized which family
is in which category []” (P1)

Practice
RAND. 4/9

”[I] learned by repeating it.”
(P14)

CATEG. 0/9 –

Table 2. Five memorization strategies of participants: metaphors were
used by both groups; participants in the categorical group used logical
strategies (exclusion, order, category); participants in the random group
relied on practice.

present nine postures that meet the minimum requirements
for calculating a hand model and discuss further possibili-
ties for extending the vocabulary. We demonstrate that the
accuracy of our gesture recognizer is acceptable for private
(98.44%) and shared tablet setups (95.22%). It remains future
work to improve the detection accuracy in public tablet se-
tups (91.5%).

Our posture vocabulary introduces a categorical structure of
physical input movements to access items in a menu; simi-
lar input movements access similar commands. This intro-
duces an organization on two levels: (1) the posture vocabu-
lary leverages a hierarchical order and (2) the corresponding
commands are hierarchical structured. We found that a ho-
momorph structure between the input posture set and corre-
sponding command set leads to increased long-term retention
of chord-command mappings.

We compared categorical and random mappings in a
between-subjects experiment. We found that participants in
the categorical group learned quicker; they also retained a
9-item chord-command vocabulary with fewer errors for the
time period of one week. Moreover, people in the categorical
group performed trials faster and rated ’ease-of-use’ of the
identical posture set more positively than people in the ran-
dom group. The logical input structure we introduced to facil-
itate memorization has a consequence on participants’ strate-
gies to cope with the memorization task: participants adapted
their strategies correspondingly to order, category and exclu-
sion, minimizing the amount of information to retain.

This research demonstrates that large posture vocabularies
can be learned and memorized. Multi-finger gestures can
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be recognized by standard multi-touch technology and such
gesture-languages can be larger than previously thought. This
opens new ways to introduce lanuguages for multi-touch
tablets.
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