SecBus, a software/hardware architecture for
securing external memories

Salaheddine Ouaarab
CNRS LTCI
Télécom Paristech
Institut Mines-Télécom
Sophia-Antipolis, France
ouaarab @telecom-paristech.fr

Jeremie Brunel
CNRS LTCI
Télécom Paristech
Institut Mines-Télécom
Sophia-Antipolis, France
brunel @telecom-paristech.fr

Abstract—Embedded systems are ubiquitous nowadays. In
many cases, they manipulate sensitive applications or data and
may be the target of logical or physical attacks. On systems
that contain a System-on-Chip connected to an external memory,
which is the case of numerous medium to large-size embedded
systems, the content of this memory is relatively easy to retrieve
or modify. This attack can be performed by probing the memory
bus, dumping the content of the memory using a memory
analyzer or by exploiting flaws in DMA-capable devices. Thus,
if the embedded system manipulates sensitive applications or
data, the confidentiality and the integrity of data in memory
shall be protected. SecBus is a combined hardware/software
architecture that guarantees these two security properties. This
paper describes the different software components that are in
charge of the management of the SecBus platform, from the
early initialization to their use by the sensitive applications.

I. INTRODUCTION

Since the internal security mechanisms of the Xbox Mi-
crosoft game console has been compromised [/1]], the protection
of the content of external memories has become an important
research topic. The memory buses are vulnerable to probing
attacks. These attacks, while sometimes challenging, are less
expensive and complex than on-chip probing. They threaten
both the confidentiality and the integrity of the data transmitted
on the bus.

The XOM [2] project protects the program execution in the
processor both in integrity and confidentiality. In XOM, the
operating system and the external memory are not considered
as trustworthy. The trust zone is limited to on-chip operations.
New instructions are added to the processor to protect the run-
time environment. Modifications within the processor and the
software toolchains are required. The integrity protection is
based on Message Authentication Codes (MAC) only; as a
consequence, replay attacksﬂ cannot be detected.

CryptoPage [3]-[5]], a project similar to XOM, also adds
new processor instructions to secure the program execution. It
is robust against replay attacks and does not rely on a trusted
OS. However the processor and the toolchain must be modify.

MESA [6]] is based on a security architecture that protects
software in confidentiality and integrity. MESA ties crypto-
graphic properties and security attributes to memory instead

A replay attack consists in substituting a data by an older, outdated one

Guillaume Duc
CNRS LTCI
Télécom Paristech
Institut Mines-Télécom
Paris, France
duc@telecom-paristech.fr

Renaud Pacalet
CNRS LTCI
Télécom Paristech
Institut Mines-Télécom
Sophia-Antipolis, France
pacalet@telecom-paristech.fr

of individual user processes. Various virtual memory segments
are associated with different security protections.

The PE-ICE [7|] hardware cryptographic engine is dedicated
to the protection against board level probing attacks. The
scheme consists in a monolithic protection of the whole
memory. The software is not involved in the management of
the security of the memory bus. The main drawbacks of PE-
ICE are that it is hardly scalable to large external memory and
the performance overhead applies even on non-critical data.

The AEGIS project [8]], [9] aims at building a secure
execution environment to protect software processes from
memory bus attacks and from each other.

In this paper, we present a solution to ensure the security
both in confidentiality and integrity of the memory bus (and
so the memory itself). The goal is to guarantee a fully secure
boot of the platform and to insure that no adversary has
compromised the system during its loading. We propose a
complete software architecture to ensure, after start-up, that
the executed applications will be correctly protected and no
adversary can tamper with their instructions or data.

The rest of this paper is organized as follows. Section
gives the main characteristics of the SecBus hardware mod-
ule and the security model; section defines the SecBus
hardware architecture; in section we describe the specific
software architecture of SecBus; section presents some
results and analysis based on SystemC simulation.

II. SECBUS AIMS

In the SecBus project the approach is rather different than in
the above-mentioned related works. Four strong requirements
have been set:

o the SecBus architecture is scalable and the size of the
protected external memory is not be limited by SecBus,

o the processor unit does not require modifications: the
acceptability of solutions relying on such modifications
is usually low; the software development kit does not
require modification,

« the software applications that are not SecBus-aware run
natively on the system: software which does not require
security is left unmodified,

o the SecBus granularity is thin enough to have time
penalty only when security is required

A. Threat model

Adversaries can be very different in terms of equipment,
money, skills and time, from absolute beginners to large crimi-
nal organisations or governments. The techniques used to reach
the security objectives depend on the considered attackers.
SecBus considers adversaries with complete physical access to
the target embedded system, except the internals of the main
SoC: SecBus does not deal with on-chip hardware attacks
(side channels, fault attacks, on-silicon probing). On-silicon
attacks are very difficult to defeat but they usually require
complex and sophisticated equipments; it is thus unlikely that
they are used against low to medium value secrets like the
ones found in game consoles, set top boxes, Internet Services
Provider’s boxes... Moreover, a lot of research works address
these threats with completely different and complementary
counter-measures. SecBus follows a modular approach, where
each problem is dealt with as independently as possible from
the others.

On the software side SecBus considers embedded systems
on which arbitrary applications can be loaded and launched,
even by adversaries.

With a complete physical access to the hardware and
software components the adversary is able to spy and control
the system (data injection and modification, communication in-
terception, applications execution, etc.) by using either purely
software exploits or hardware attacks or a combination of
the two. A typical example of combined attack could be the
attacker populating as much external memory as allowed with
custom code and probing the memory bus to flip an address
bit while the embedded system runs in the highest privileged
mode, forcing the embedded system to run the custom code
in privileged mode and leading to a privilege escalation.

SecBus is a countermeasure against:

e on-board probing of the external memory bus (logic
analyzer...)

o physical attacks on the memory components (cold
boot [[10], ...)

o software exploits of DMA capable peripherals (NIC,
HDD, DVD, CDrom, USB, PCI_e, GPU...)

B. Requirements

The SecBus architecture shall protect the communication
between the processor unit and the external memory. That
is why we need an hardware support: we need to add a
hardware module intercepting the read/write operations on the
bus between the processor and the memory controller. This
module must be as autonomous and transparent as possible.
The Hardware Security Manager (HSM) shall embed crypto-
graphic engines to encipher and decipher the written and read
data, to check the integrity of read data and, on write accesses,
to compute the digests against which the integrity is checked.
Fig. [1] represents a SoC with its HSM. The HSM is driven

by its software counterpart: the Software Security Manager
(SSM).

A SecBus-equipped SoC

CPU

on-chip

RAM
$1 MMU

$§ £ 8

on-chip interconnect

on-chip
ROM

10
4
£
¢ £
g5
= Memory
Controller
. | | J
Vg exposed busses {}
<3 =

Figure 1: The HSM in its host SoC

III. SECBUS HARDWARE ARCHITECTURE
A. Principles, memory organization

The model of cooperation between the SSM and the HSM
is similar to that between a OS memory manager and a
Memory Management Unit (MMU): depending on the security
requirements of the different software components, the SSM
dynamically manages Security Policies (SP) defining confi-
dentiality and integrity protection levels and tables of Page
Security Parameter Entries (PSPE) that bind every physical
memory page to a Security Policy (SP). These SPs and PSPEs
are stored in the Master Block (MB), an external memory
area. Upon memory accesses the HSM performs a PSPE table
walk, fetches the corresponding SP and runs the specified
security algorithms (encryption, decryption and/or integrity
protection and checks). This clean and simple organization
eases the design of the SSM and of the HSM. It also allows
to protect only sensitive memory pages, with the best available
cryptographic primitives for the defined security policy.

In order to optimize performance and cost Read-Only (RO)
and Read-Write (RW) memory pages are handled differently.
When confidentiality is required, RO pages are enciphered
with a block cipher in Counter (CTR) mode, because it
allows the parallelization of the cryptographic computations

and the memory latency on read accesses, while RW pages
are protected in Cipher Block Chaining (CBC) mode because
the CTR mode is not applicable to modifiable data. Similarly,
integrity is checked against CBC-MACs for RO pages while
MAC trees are used for RW pages. The SP bound to each
memory page packages a confidentiality mode (None, CTR,
CBC), an integrity mode (None, CBC-MAC, MAC tree) and
secret keys.

In addition to the Master Block, when integrity protection is
required on a memory page, extra security-related information
is stored in external memory: a set of CBC-MACs for RO
pages or a Merkle MAC tree for RW pages. They are stored in
dedicated memory pages, allocated by the SSM. The memory
space thus contains four different types of pages: regular RO
or RW pages, pages of CBC-MAC sets and pages of Merkle
MAC trees. Finally, the SP and PSPE tables stored in the
Master Block are integrity-protected by a dedicated Merkle
MAC tree, the Master MAC Tree (MMT) that is a part of
the Master Block. Its root is stored inside the SoC and never
leaves it.

B. Internal Architecture

The internal architecture of the HSM is composed of five
blocks and several registers. Figure [2]illustrates these different
components.

Secbus Hardware Module

Global registers

Integrity
Controller
S it 1 b}
ecurity ; 8
Context — ‘Hash Tree englne‘ — E
Manager S
N (SCM) ‘ MAC engine ‘ L;
2 Module Security E
g ~@=p Manager Manager g
I (MM) (SM)
Confidentiality
Controller
-~ (CC)
Ciphering

Figure 2: Hardware Security Module architecture

o The Module Manager (MM): regulates the memory ac-
cesses and requests the Security Context Manager and
the Security Manager.

e The Security Context Manager (SCM): searches the se-
curity context bound to the requested memory page. It is
able to browse the different PSPE levels to retrieve the
right SP corresponding to the physical address.

o The Security Manager (SM): supervises the security
protection using different cryptographic operations. t is
the central block of the HSM, and it manages the different

o The Integrity Controller (IC): applies the integrity pro-

tection, MAC and MAC trees.

o The Confidentiality Controller (CC): applies the confi-

dentiality protection, CTR and CBC.

The HSM works as follows: when a memory access is
issued by the processor, MM requests SCM to retrieve the
SP for the target memory page. After a PSPE tables walk,
the SCM fetches the SP and stores it in internal registers.
Afterwards, MM passes the memory address requested by
the processor to SM. According to the security parameters
(SP), SM uses IC (if integrity is required) and/or CC (if
confidentiality is required). SM passes back the result to MM
which responds the processor.

C. Data structure

The SecBus specific data structures (SP and PSPE tables)
are initialized and updated under supervision of the SSM, with
the help of a small set of HSM operations. Like an MMU
embeds a Translation Lookaside Buffer (TLB) to cache a small
number of recently used page table entries, the HSM embeds
small caches to store recently used PSPEs and SPs. The HSM
is capable of walking through the SP and PSPE tables, without
assistance from the SSM, when the information required to
process a regular memory access is not available in its internal
caches.

1) Security Policies: A SP contains:

o A cnfkey confidentiality secret key used for enciphering
and deciphering in counter mode when SP.cnfmode =
ctr or in CBC mode when SP.cnfmode = cbe.

e A intkey integrity secret key used for CBC-MAC com-
putations when SP.intmode = mac or SP.intmode =
mactree.

e A cnfmode confidentiality mode indicator (cn fmode €
{none, ctr, cbc}).

e A intmode integrity mode indicator (intmode
{none, mac, mactree}).

e A valid boolean flag (valid € {false,true}) indicat-
ing whether the SP is usable or not. The HSM raises an
interrupt when a memory access is performed in a page
bound to a SP with SP.valid = false.

The SPs are organized as an array and stored in a contiguous
memory region protected in confidentiality and integrity by the
MMT. Their number is implementation dependent. In other
data structures they are referred to by their index. The SP
stored at the lowest address in memory has index 0. Their bit-
width depends on the key lengths, that is, on the selected block
cipher. If the resulting bit-width is not a multiple of a CBC
chain, it is extended to the next multiple by zero padding. The
listing [1] gives an example of SP data structure for a SecBus
architecture using the DES-X block cipher and CBC chains
of four blocks (256 bits). It is zero-padded to 2 x 256 = 512
bits.

S

i| typedef struct {

read and write accesses to and from the MB and the

useful memory pages.

4

uint139_t dummy = z139;
uint64_t cnfkl; // Conf. DES—X key #I
uint56_t c¢nfk2; /1 Conf. DES—X key #2

uint64_t cnfk3; // Conf. DES—X key #3
uint64_t intkl ; // Int. DES—X key #l
uint56_t intk2; /1 Int. DES—X key #2
uint64_t intk3; // Int. DES—X key #3
uint2_t cnfmode; // Conf. mode (NONE/CTR/CBC)
uint2_t intmode; // Int. mode (NONE/MAC/MACTREE)
uintl_t valid ; /! Valid flag (TRUE/FALSE)
2| } SP512;

Listing 1: The SecBus SP data structure

2) Page Security Parameters Entry: The PSPEs are not
exactly organized in a hierarchy of tables as MMU page table
entries. Instead they are all present, in a frozen, natural order,
and they embed a size indicator that is used to decide which
page size they are associated with. In a system with two page
sizes, 4kB and 4MB, for instance, a PSPE corresponding to a
page aligned on a 4MB boundary can be that of a 4kB page
(the 4MB page is broken in 1024 4kB pages) or of the 4MB
page (the 4MB page exists). The size indicator disambiguates
this. All other PSPEs can only be 4kB pages PSPEs because
they correspond to non 4MB-aligned memory pages. PSPEs
also carry a valid flag indicating whether they are valid or
not. Note that, in order to be valid, a PSPE must not be in
the scope of a PSPE of a large page that is also valid and that
would take precedence.

There are two different PSPE formats: master and slave.
Master PSPEs bind regular memory pages to SPs. When
integrity is required they point to a MAC set or MAC tree
page (and to a specific MAC set or MAC tree in the page).
Slave PSPEs are associated to the MAC set or MAC tree pages.
For MAC tree pages they contain the root of the MAC trees.
The listing [2] presents an example of master and slave PSPE
data structures.

typedef union {
MASTER_PSPE64 m;
SLAVE_PSPE64 s

} PSPE64; // 64 bits

typedef struct {

uint20_t msmtadd; // MAC set or tree page
uint2_t msmtidx; // MAC set or tree index in page
uint20_t ivadd; /!l IV set page
uint2_t ividx; // IV set index in page
uintl6_t spidx; /! Security Policy index
uint2_t size; /] Page size
uintl_t prot; /!l Protected flag (TRUE/FALSE)
uintl _t valid; /! Valid flag (TRUE/FALSE)

} MASTER_PSPE64 ;

typedef struct {
MAC63_WITH_NULL mac;
uintl_t valid; // Valid flag (TRUE/FALSE)

} SLAVE_PSPE64;

Listing 2: The SecBus PSPE data structures

Walking in the PSPE tables consists in fetching first the
PSPE of the largest possible page size in which the requested
address could fall, and checking its size indicator and valid
flag. If it is valid and its size indicator extends up to the
requested address, the search is over. Else, fetch the PSPE
of the next largest possible page size,... until a PSPE is valid
and its size indicator extends up to the requested address.

IV. SOFTWARE ARCHITECTURE

The aim of this section is to detail the software part of the
SecBus architecture: how the bootloader guarantees that the
SSM is properly loaded and how applications interact with
the SSM.

A. Bootloader

The bootloader is the first software component to be
launched when the system is powered up. In the SecBus
architecture, the bootloader initializes the HSM, loads, checks
and starts the kernel (and the SSM). It is a critical element
in the security of the platform because it is responsible for
verifying that the right SSM is loaded. An adversary who
would be capable of replacing the SSM with her own piece
of software could, for instance, configure the HSM to apply
no protection at all to the whole memory and thus bypass the
security.

At this stage, the HSM is not configured yet, so it cannot
protect the code of the bootloader and the data it manipulates
against an adversary. The bootloader must thus be executed
entirely on-chip where, by hypothesis, it can not be tampered
with. The code of the bootloader is stored in a non-volatile
memory inside the SoC (ROM or flash). As the external
memory is not yet protected, the bootloader also uses a small
internal RAM to store the data it manipulates.

For all these reasons this tiny software stack is critical and
difficult or even impossible to replace; it must be flawless.

The first task of the bootloader is to initialize in external
memory the data structure used by the HSM: the Master Block
(MB). It marks all the Page Security Policy Entryﬂ (PSPE) and
SP invalid. It requests the HSM to build the root MAC tree
that protects the integrity of the MB: the Master MAC Tree.

Next, the bootloader prepares the external memory pages
in which the kernel is to be loaded and configures the HSM
to protect them: it creates a SP with integrity protection and
configures the PSPEs to bind it to the memory pages.

Kernel :
Copy from external - Integrity
A Ten; storage 1o internal RAM digest
block
Signature €<—
p Copy to external
~ RAM

Figure 3: Kernel block’s path during its initialization

The bootloader then loads the kernel from a non-volatile,
external, mass storage (flash, ROM, hard drive, network, etc.)
in the external memory (as shown in Fig. [3); it computes
on the fly the kernel’s signature. The computation of this
signature is performed either in software (flexible) or using

2the data structure that binds a SP to a memory page

the cryptographic primitives exported by the HSM (faster but
less flexible). This signature is used to verify that the kernel
(and so the SSM) has not been tampered with by an adversary.
An important point is that it must be possible to update the
kernel (for instance to fix a flaw in the SSM) and it must
be impossible for an adversary to use an old version of the
kernel after an update (downgrading). Two options can be used
to guarantee this boot to boot integrity:

o The signature can be compared with a reference signature
stored in a non-volatile memory in the SoC. This refer-
ence signature is updated when the kernel is updated so
it always contains the reference signature of the latest
version of the kernel. This solution is the one currently
implemented.

« The bootloader can communicate with an external trusted
entity (smart-card, network server, etc.) to check whether
the signature is correct or not. In this case the protocol
used between the bootloader and the trusted entity must
allow the bootloader to authenticate the trusted entity and
must be protected against replay attacks. This solution
increases the footprint of the bootloader because it must
embed, for instance, a secure network stack. As the
bootloader is stored and executed on chip this has an
impact on the hardware cost.

Once the kernel is verified and loaded into a protected area
in the external memory, the bootloader passes the control to
the kernel.

The boot procedure ensures that an adversary cannot load
a modified version of the SSM (due to the signature and
verification mechanism) or tamper with it during the boot
(the kernel and the SSM are stored in an area of the memory
protected in integrity by the HSM).

B. Software Security Manager

The SSM manages the configuration of the HSM according
to the security needs of the operating system and the applica-
tions. On the Fig.] we introduce the software architecture
of SecBus. The left part of the scheme presents a regular
software architecture, on the right part we show the new
modules required for a fully SecBus compliant software sys-
tem. The applications loader and the memory manager of the
operating system need to be modified. Some security features
are exported for applications with a new user APIL.

1) Application interface: When an application is not de-
signed to use the SecBus architecture, all its pages are pro-
tected using a default Security Policy. This default policy is
configured by the SSM and must be adapted to the specific
system’s needs. For instance, the default policy could be to
protect everything in confidentiality and integrity (conserva-
tive) or nothing at all (performance).

The application’s designer knows which Security Policy is
required by the different parts of her application. On behalf
of the application, the SSM binds the application’s memory
pages to the right Security Policies through a dedicated system
call. When receiving this system call, the SSM configures the
HSM to apply the given Security Policy to the newly allocated

|
|
[Applications |]
|
[Standard API) | (SecBus API)
(User A | A)
syscalls | syscalls
4 N\
A 4 | \ 4
r N\ \ c D
o |
Kernel Application
Services Loader |
\ J \ J 1 Software
[| Security
(Y (ISecBus IF[€T> Manager
Kernel Memo
Hardware y |
Manager
Managment |
\ 7 | 7 " J
\Kernel | 1 Y,
|
4 A
| \ 4
[Processors)(—l—)(HSM)
\Hardware 1)

Standard platform ' Secure platform

Figure 4: Global SecBus Software architecture

page(s). So the interface between the applications and the SSM
is small and simple.

Some software mechanisms are more difficult to handle in
the context of the SecBus architecture. One of these mecha-
nisms is dynamically-linked libraries. Applications often use
the same libraries (at least the standard C library for instance).
This classical mechanism ensures that the code of a given
library is loaded only once in memory and that all applications
that need this library use this single instance thanks to virtual
memory. In the SecBus architecture, when two applications
need the same library but with two different security policies
(for instance one application needs no security and the other
needs integrity), several solutions are possible:

o The first solution is not to use dynamically-linked li-
braries in applications that have security needs, but only
statically-linked libraries.

o The second solution is to load in memory several in-
stances of the same library, each one with a different se-
curity policy. For example, one instance with no security
and one instance with integrity protection. Applications
that do not need security use the first instance while
applications that need integrity protection use the second
instance.

o A last solution is to load only one instance of the library
in memory and to apply it the maximum security policy
required by the different applications. For instance, if one
application needs no security and one needs integrity, the
security policy applied to the library would be integrity.

The choice between these three solutions depends on a
trade-off between performance and the memory footprint.
The same holds with several Inter-Process Communication

(IPC) mechanisms such as shared memory.

2) Applications loader: When an application is loaded, its
different memory segments are stored in the external memory.
In our case, the application designer would like to add some
indications about the security policy to apply on each segment.

We distinguish three kinds of applications in our point of
view:

e SecBus unaware applications

o Applications with static security requirements: the

provider knows which security policy to apply to which
memory segments. The security requirements are added
after design, as a set of meta-information.

o Fully SecBus-aware applications, with well defined, dy-

namic security requirements.

One of our requirements is that a regular application can
be executed on a SecBus-equipped system without any trans-
formation. We provide default security policies for SecBus
unaware applications.

In order for the system to enforce the right security policy,
the application loader as to read the policy from the application
binary file.

The next subsection deals with the memory used during
software execution.

3) Dynamic Memory: For some data, the security needs can
be different. With the SecBus architecture software designer
can select a different security policy for each allocated memory
block.

During its execution, a program will use a certain amount
of memory. In most cases it relies on a stack (e.g. used for
function calls or when the amount of registers is exceeded)
but also a heap, for dynamical memory allocations.

As the main stack is created before the application ex-
ecution, it should be protected during the loading of the
application. Each stack allocated for a thread creation can be
protected with the security policy selected by the software
designer.

The software designer can select a default policy to be
applied on each memory block allocated during the software
execution life. As each thread can manipulate different kind
of data, it is also useful to apply a default security policy
for each entire thread. For some data, the security needs can
be different, the software designer should be able to select a
different security policy for each allocated memory block.

V. EXPERIMENTS AND RESULTS

Results were obtained from simulations with a SystemC
[11] model. The complete hardware system has been built with
SocLib [12]/SystemC. The initial SecBus model from [[13],
[14] has been deeply reworked to make it usable with our
Software Security Module.

SocLib provides hardware bricks as processors (based on
ISﬂ model), cache controller, on-chip bus, memories, 10
controllers and so on. Those bricks are based on the CABAM]
modeling rules.

3Instruction Set Simulator
4Cycle Accurate Bit Accurate

The scheme of the hardware platform used for those sim-
ulations is given by Fig. 5] The processor used is a Mips32,
so we assume that the platform is in 32 bits. The memory
controller does not exist in SocLib, the RAM access are
modeled using read/write on the VCI protocol with a given
latency. The external memory flash contains the kernel. The
external harddrive contains a filesystem with user applications.

r \
SoC
ISS Mips32
Xicu Ram Rom
XCacheWrapper
A A A A
\ 4 \ 4 \ 4 \ 4
Vgmn
A A A
\ 4 \ \ 4
BlockDevice BlockDevice SecBus
E Memory
+ Controller
. * 7

Figure 5: SystemC/SocLib platform with HSM

A. Secure Bootloader

Before the external memory is protected, every software
operations has to be done on the internal RAM. So the first
thing to do is to defined the stack pointer on the internal RAM.
The next operation is to initialize the hardware drivers ; in our
case, the drivers are:

o Block device driver - used for the kernel storage
o TTY device driver - used to print information/debug
o HSM driver

After this initialization we load the first kernel memory
block in the internal RAM, we compute its signature.

In order to minimize the bootloader memory footprint, we
did not used an ELF binary format. We wrote a short header
format which describes the different memory sections of the
kernel, four are necessary:

e instructions
e RO datas

« RW datas
e stack

This information is written in the first 256 bits memory
block of the kernel binary. The security policy linked to
those segments are defined in the bootloader, they can not
be changed after writing the bootloader in the internal ROM.

After reading this security information, we properly protect
the external RAM segments used to store the kernel. Then we
read each memory block of the kernel stored in the ROM, we
compute the kernel signature and we copy it on the protected
external RAM.

For our tests, we used a maximum protection as the software
security module can manipulate cryptographic tools (encryp-
tion keys, authentication keys), we assume that RO segments
are encrypted with a OTP algorithm, protected in integrity by
MAC set and RW segments are encrypted in CBC mode and
protected in integrity by MAC Trees.

1) Memory footprint: We have simulated the SecBus plat-
form and executed the bootloader with three different integrity
systems, two with software (sha256 and DES-X) and one with
the HSM coprocessor. On the Fig. [6] we evaluate the memory
needed to store the bootloader on the ROM; on the Fig. [/} we
evaluate the internal RAM usage.

25

integrity maHagement —
libc s

drivers m—

secbus management

20

15

10

Memory footprint (kbytes)

sha256 HW desx

Integrity algorithms 1

desx

Figure 6: Bootloader memory footprint

1800

T
RW data segment
memory stack | 9
dynamic memory m—

1600 -

1400

1200

1000

800

600

400

Memory in RAM footprint (bytes)

200

HW desx 20

sha256

desx
Integrity algorithms

Figure 7: Bootloader memory footprint during execution on
internal RAM .

25
26

The solution with hardware integrity computation is less
expensive in term of memory storage, no software algorithm *
is used (only calls to the HSM) and no data are required for
integrity computation.

This bootloader fits in a ROM of 8kB when using the HW
integrity checking otherwise it can fit in a ROM of 32kB (with
the software integrity checking). The internal RAM needed to
properly execute the bootloader is a 2kB RAM (the Xenon
processor of the XBox 360 has 64kB of SRAM).

B. Software Security Module

The Software Security Module works with the operating
system kernel. We selected Mutekh kernel for several
reason: it is a small, very modular kernel (called hexo kernel),
it has the support for SocLib platform (CPU and implemented
IPs in SocLib project).

1) Application loader: For applications with security re-
quirements a meta-section is added to the ELFE] file. The ELF
format is flexible as it has been designed to store various
kind of sections. Some of the sections are loaded in memory,
other sections contains meta information like symbol names,
additional sections can be freely added without disturbing tools
and loaders.

In our case, a . secbus named section defines the security
policies to apply to the other loadable sections. The SecBus
aware application loader is responsible for the parsing of this
additional meta-section.

This section contains a list of entries which associates a
section name to a 4 bits security policy value. Bits 0 and
1 encode the confidentiality policy, possible values are: none,
OTP or CBC. Bits 2 and 3 encode the integrity policy, possible
values are: none, MAC and MAC tree.

2) User API: The user API exposed for the application
development is defined by the listing [3]

enum secbus_integrity_mode_e
{
// no integrity protection
secbus_i_no ,
// integrity by MAC (for RO datas)
secbus_i_mac ,
// integrity by HashTree (for RW datas)
secbus_i_ht

}s
enum secbus_confidentiality_mode_e

/!l no confidentiality

secbus_c_no ,

/! confidentiality with a One Time Pad scheme (for
RO datas)

secbus_c_otp

/! confidentiality with a Cipher Block Chaining
scheme (for RW datas)

secbus_c_cbc ,

enum secbus_type_request_e

/] default policy apply for

secbus_default_policy ,

// policy apply on the next

secbus_thread_stack_policy ,

/! policy apply on each allocated memory block
a thread

secbus_thread_policy ,

the entire process

creating thread stack

in

SExecutable and Linkable Format. This format is used in every Unix-like
Operating System.

3| /%% @secbus_create_policy

/! policy apply on the next
secbus_next_policy

b

allocated memory block

generates a new secbus
policy =/
secbus_err_t secbus_create_policy (
enum secbus_integrity_mode_e i,
enum secbus_confidentiality_mode_e c,
secbus_sp_t xsp

)

/+% @secbus_policy_request adds a new
request for the current execution

secbus_err_t secbus_policy_request(

secbus_sp_t sp,

enum secbus_type_request_e type

)3

security
context x/

Listing 3: The SecBus user API

This API is clear and simple and does not require deeply
modifications on applications with security needs. For a single
application without thread, you can create and apply, for
example, one security policy by adding this routine:

secbus_err_t err;
secbus_sp_t my_policy;
if (err = secbus_create_policy(secbus_i_ht,
secbus_c_no ,
&my_policy))
return err;

if (err = secbus_policy_request(my_policy,
secbus_default_policy))
return err;

Listing 4: Short example for applying a security policy

VI. CONCLUSION

In this paper we presented a complete secure software
architecture for embedded systems with external memory.
The security is assured during the whole execution time:
to the startup of the platform up to the user applications
execution. This security is based on different modules. At the
beginning, the bootloader insures the correct configuration of
the hardware security module and verifies the software first
level integrity. The kernel interacts with the Security Software
Module: when it has a need of security for applications loading
or for the memory manager. The user applications can also
interact with the SSM via the user API and therefore can
use the security properties of the HSM. The next works are:
to formally prove that both the bootloader and the SSM
are flawless, as for now we have only done simulations
and we have validated our approach, we need an hardware
implementation to perform real performance measurements.
The mutekh kernel is small and easy to apprehend, the next
step is to replace it with a Linux kernel to have a complete
software stack and to perform performance measurements on
a concrete system.

VII. ACKNOWLEDGMENT

This work was supported in part by the ENIAC Joint
Undertaking, within the Trusted Computing for European

Embedded Systems (TOISE) project, call ENIAC-2010-1,
proposal n® 282557-2. The research leading to these results
has received funding from the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agree-
ment TRESCCA n° 318036.

REFERENCES

[1] A. Huang, “Keeping secrets in hardware: The microsoft xbox™
case study,” in Revised Papers from the 4th International Workshop
on Cryptographic Hardware and Embedded Systems, ser. CHES ’02.
London, UK, UK: Springer-Verlag, 2003, pp. 213-227. [Online].
Available: http://dl.acm.org/citation.cfm?id=648255.752707
[2] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz, “Architectural support for copy and tamper resistant
software,” in Proceedings of the Ninth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS IX), Oct. 2000, pp. 168-177.
[3] C. Lauradoux and R. Keryell, “CryptoPage-2 : un processeur sécurisé
contre le rejeu,” in Symposium en Architecture et Adéquation Algorithme
Architecture (SympAAA’2003), La Colle sur Loup, France, Oct. 2003,
pp. 314-321.
R. Keryell, “CryptoPage-1 : vers la fin du piratage informatique ?” in
Symposium d’Architecture (SympA’6), Besancon, Jun. 2000, pp. 35-44.
[5] G. Duc and R. Keryell, “CryptoPage: an efficient secure architecture
with memory encryption, integrity and information leakage protection,”
in Proceedings of the 22th Annual Computer Security Applications
Conference (ACSAC’06). 1EEE Computer Society, Dec. 2006, pp. 483—
492.
[6] W. Shi, C. Lu, and H.-H. S. Lee, “Transactions on high-performance
embedded architectures and compilers i,” P. Stenstrom, Ed. Berlin,
Heidelberg: Springer-Verlag, 2007, ch. Memory-Centric Security
Architecture, pp. 95-115. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-71528-3_7
R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin, M. Bardouillet, and
A. Martinez, “A parallelized way to provide data encryption and integrity
checking on a processor-memory bus,” in Proceeding of the 43rd
ACM/IEEE Design Automation Conference, Jul. 2006, pp. 506-509.
G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “Aegis:
Architecture for tamper-evident and tamper-resistant processing,” in
Proceedings of the 17th International Conference on Supercomputing
(ICS’03), Jun. 2003, pp. 160-171.
[9]1 G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas, “Design and
implementation of the Aegis single-chip secure processor using physical
random functions,” in Proceedings of the 32nd Annual International
Symposium on Computer Architecture (ISCA’05). 1EEE Computer
Society, Jun. 2005, pp. 25-36.
J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Cal, A. J. Feldman, and E. W. Felten, “Least we remember: Cold
boot attacks on encryption keys,” in In USENIX Security Symposium,
2008.
“Systemc website.” [Online]. Available: http://www.accellera.org
“Soclib website.” [Online]. Available: http://www.soclib.fr
L. Su, “Confidentialité et intégrité du bus mémoire,” Ph.D. dissertation,
Télécom ParisTech, Mar. 2010.
L. Su, S. Courcambeck, P. Guillemin, C. Schwarz, and R. Pacalet,
“Secbus: Operating system controlled hierarchical page-based memory
bus protection,” in Design Automation & Test in Europe (DATE 2009),
Apr. 2009, pp. 570-573.
“Mutekh website.” [Online]. Available: http://www.mutekh.org

[4

flnai

[7

—

[8

—

[10]

[11]
[12]
[13]

[14]

[15]

http://dl.acm.org/citation.cfm?id=648255.752707
http://dx.doi.org/10.1007/978-3-540-71528-3_7
http://dx.doi.org/10.1007/978-3-540-71528-3_7
http://www.accellera.org
http://www.soclib.fr
http://www.mutekh.org

	Introduction
	SecBus Aims
	Threat model
	Requirements

	SecBus Hardware architecture
	Principles, memory organization
	Internal Architecture
	Data structure
	Security Policies
	Page Security Parameters Entry

	Software Architecture
	Bootloader
	Software Security Manager
	Application interface
	Applications loader
	Dynamic Memory

	Experiments and Results
	Secure Bootloader
	Memory footprint

	Software Security Module
	Application loader
	User API

	Conclusion
	Acknowledgment
	References

