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Introduction

Introduction

Opportunistic spectrum access in cognitive radio networks

SU access freq. channels partially occupied by the licensed PU

Distributed spectrum access policies based only on past experienced
payoffs (i.e. completely uncoupled dynamics as opposed to coupled
dynamics where players can observe the actions of others)

Convergence analysis based on perturbed Markov chains
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Related Work

Related Work

Distributed spectrum access in CRN:

# SUs < # Channels: solutions based on multi-user Multi-Armed
Bandit [Mahajan07, Anandkumar10]
Large population of SUs: Distributed Learning Algorithm [Chen12]
based on Reinforcement Learning and stochastic approx., Imitation
based algorithms [Iellamo13]

Bounded rationality and learning in presence of noise:

Bounded rationality: [Foster90, Kandori93, Kandori95, Dieckmann99,
Ellison00]
Learning in presence of noise: [Mertikopoulos09]
Mistake models: [Friedman01]
Trial and Error: [Pradelski12]
Similar approaches to our algorithm in other contexts: [Marden09,
Zhu13]
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System Model

System Model I

A PU is using on the DL a set C of C freq. channels

Primary receivers are operated in a synchronous time-slotted fashion

The secondary network is made of a set N of N SUs

We assume perfect sensing
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System Model

System Model II

block t block t+1

channel i PU is active

PU is active 

with probability 1-µi

SUs share the 
available bandwidth

SUs take a decision
for the next block

time

At each time slot, channel i is free with probability µi

Throughput achieved by j along a block is denoted Tj

Expected throughput when block duration is large:
E[Tj ] = Bµsjpj(nsj )

pj(·) is a function that depends on the MAC protocol, on j and on
the number of SUs on the channel chosen by j , nsj

We assume B = 1, pj strictly decreasing and pj(x) ≤ 1/x for x > 0
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Spectrum Access Game Formulation

Spectrum Access Game Formulation

Definition

The spectrum access game G is a 3-tuple (N , C, {Uj(s)}), where N is the
player set, C is the strategy set of each player. When a player j chooses
strategy sj ∈ C, its player-specific utility function Uj(sj , s−j) is defined as

Uj(sj , s−j) = E[Tj ] = µsjpj(nsj ).

Lemma (Milchtaich96)

For the spectrum access game G, there exists at least one pure Nash
equilibrium (PNE).
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Retrospective Spectrum Access Protocol

Motivation

Find a distributed strategy for SUs to converge to a PNE

Uniform random imitation of another SU leads to the replicator
dynamics (see Proportional Imitation Rule in [Schlag96, Schlag99])

Uniform random imitation of two SUs leads to the aggregate
monotone dynamics (see Double Imitation in [Schlag96, Schlag99])

Imitation on the same channel can be approximated by a double
replicator dynamics [Iellamo13]

We now want to avoid any information exchange between SUs
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Retrospective Spectrum Access Protocol

RSAP I

Each SU j has a finite memory Hj containing the history (strategies
and payoffs) relative to the Hj past iterations.

State of the system at t:

z(t) , {sj(t − h),Uj(t − h)}j∈N ,h∈Hj

Number of iterations passed from the highest remembered payoff:

λj = min argmax
h∈Hj

Uj(t − h)

Define inertia ρj = prob. that j is unable to update its strategy at
each t [Alos-Ferrer08] (an endogenous parameter for us)

Define the exploration probability ε(t)→ 0
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Retrospective Spectrum Access Protocol

RSAP II

Algorithm 1 RSAP: executed at each SU j

1: Initialization: Set ε(t) and ρj .
2: At t = 0, randomly choose a channel to stay, store the payoff Uj(0) and

set Uj(t − h) randomly ∀h ∈ {1, ..,Hj}.
3: while at each iteration t ≥ 1 do
4: With probability 1− ε(t) do
5: if Uj(t − λj) > Uj(t)
6: Migrate to channel sj(t − λj) w. p. 1− ρj
7: Stay on the same channel w. p. ρj
8: else
9: Stay on the same channel

10: end if
11: With probability ε(t) switch to a random channel.
12: end while
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Retrospective Spectrum Access Protocol

RSAP III

Definition (Migration Stable State)

A migration stable state (MSS) ω is a state where no more migration is
possible, i.e., Uj(t) ≥ Uj(t − h) ∀h ∈ Hj ∀j ∈ N .

M. Coupechoux (TPT) Retrospective Spectrum Access Protocol 14 Jan 2014 10 / 26



Convergence Analysis

Perturbed Markov Chain I

We have a model of evolution with noise:

Z =
{
z , {sj(t − h),Uj(t − h)}j∈N ,h∈Hj

}
is the finite state space of the system stochastic process
Unperturbed chain: P = (puv )(u,v)∈Z 2 is the transition matrix of
RSAP without exploration (i.e. ε(t) = 0 ∀t)
Perturbed chains: P(ε) = (puv (ε))(u,v)∈Z 2 is a family of transitions
matrices on Z indexed by ε ∈ [0, ε̄] associated to RSAP with
exploration ε

Properties of P(ε):

P(ε) is ergodic for ε > 0
P(ε) is continuous in ε and P(0) = P
There is a cost function c : Z 2 → R+ ∪ {∞} s.t. for any pair of states

(u, v), limε→0
puv (ε)
εcuv exists and is strictly positive for cuv <∞ and

puv (ε) = 0 if cuv =∞
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Convergence Analysis

Perturbed Markov Chain II

Remarks:

ε can be interpreted as a small probability that SUs do not follow the
rule of the dynamics. When a SU explores, we say that there is a
mutation

The cost cuv is the rate at which puv (ε) tends to zero as ε vanishes

cuv can also be seen as the number of mutations needed to go from
state u to state v

cuv = 0 when puv 6= 0 in the unperturbed Markov chain

cuv =∞ when the transition u → v is impossible in the perturbed
Markov chain

The unperturbed Markov chain is not necessarily ergodic.
It has one or more limit sets, i.e., recurrent classes
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Convergence Analysis

Perturbed Markov Chain III

Lemma (Young93)

There exists a limit distribution µ∗ = limε→0 µ(ε)

Definition

A state i ∈ Z is said to be long-run stochastically stable iff µ∗i > 0.

Lemma (Ellison00)

The set of stochastically stable states is included in the recurrent classes
(limit sets) of the unperturbed Markov chain (Z ,P).
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Convergence Analysis

Ellison Radius Coradius Theorem I

Ω

D(Ω)

z

proba=1

R(Ω)

x
CR*(Ω) L1

Lr-1

Ω: a union of limit sets of (Z ,P)

D(Ω): basin of attraction, the set of states from which the
unperturbed chain converges to Ω w.p.1

R(Ω): radius, the min cost of any path from Ω out of D(Ω)

CR(Ω): coradius, maximum cost to Ω

CR∗(Ω): modified coradius, obtained by substracting from the cost,
the radius of intermediate limit sets
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Convergence Analysis

Ellison Radius Coradius Theorem II

Theorem (Ellison00, Theorem 2 and Sandholm10, Chap. 12)

Let (Z ,P,P(ε)) be a model of evolution with noise and suppose that for
some set Ω, which is a union of limit sets, R(Ω) > CR∗(Ω), then:

The long-run stochastically stable set of the model is included in Ω.

For any y /∈ Ω, the longest expected wait to reach Ω is
W (y ,Ω, ε) = O(ε−CR

∗(Ω)) as ε→ 0.

Proof idea

Uses the Markov chain tree theorem and the fact that it is more difficult to

escape from Ω than to return to Ω.
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Convergence Analysis

RSAP Convergence Analysis I

Proposition

Under RSAP, LS≡MSS, i.e., all MSSs are LSs and all LSs are made of a
single state, which is MSS, (a) in the general case with ρj > 0, or (b) in
the particular case Hj = 1 and ρj = 0, for all j ∈ N .

Proof idea

Every MSS is obviously a LS. (a) There is a positive probability that no SU

change its strategy for maxj Hj iterations. After such an event, the system is in a

MSS. (b) If the system is in a LS, every SU must switch between at most two

strategies. As the system is deterministic, the system alternates between two

states. So the LS has a unique state because every SU can choose between two

payoffs.
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Convergence Analysis

RSAP Convergence Analysis II

Remark. Every PNE can be mapped to a set of sates that are MSSs, i.e.,
LSs. Let denote Ω∗ the union of all these states corresponding to the
PNEs.

Lemma

It holds that R(ω) = 1 ∀ω /∈ Ω∗, where ω is a LS.

Proof idea

For a congestion game G with player specific decreasing payoff functions, the

weak-FIP property holds [Milchtaich96]. Using weak-FIP, we show that a single

mutation is enough to leave the basin of attraction of any MSS not in Ω∗ and to

reach a new MSS.
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Convergence Analysis

RSAP Convergence Analysis III

Lemma

CR∗(Ω∗) = 1

Proof idea

From any state, there is a path of null cost to reach a MSS and then (from

weak-FIP property) a path, which is a sequence of MSSs. Each MSS has a radius

of 1.

Lemma

R(Ω∗) > 1

Proof idea

Comes from the definition of the PNEs and of RSAP.

M. Coupechoux (TPT) Retrospective Spectrum Access Protocol 14 Jan 2014 18 / 26



Convergence Analysis

RSAP Convergence Analysis IV

Theorem (Convergence of RSAP and convergence rate)

If all SUs adopt the RSAP with exploration probability ε→ 0, then the
system dynamics converges a.s. to Ω∗, i.e. to a PNE of the game. The
expected wait until a state in Ω∗ is reached, given that the play in the
ε-perturbed model begins in any state not in Ω∗, is O(ε−1) as ε→ 0.

Remark. Our study can be readily extended to other games possessing
the weak-FIP and hence the FBRP, weak-FBRP and the FIP [Monderer96]
since FIP ⇒ FBRP ⇒ weak-FBRP ⇒ weak-FIP.
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Performance Evaluation

Simulation Settings

We compare our algorithm to Trial and Error (T&E, Pradelski’s
optimized learning parameters in [Pradelski&Young 2012]) and to the
Distributed Learning Algorithm (DLA) [Chen&Huang 2012].

We consider two networks:

Network 1: We consider N = 50 SUs, C = 3 channels characterized
by the availability probabilities µ = [0.3, 0.5, 0.8] and user specific
payoffs: Uj(.) = wj f (.), where f (.) is a decreasing function common to
all the SUs and wj is a user-specific weight. We set Hj =3 and ρj =0.3
for all j .
Network 2: We set N = 10, C = 2 and µ = [0.2, 0.8]. We set Hj =1
and ρj =0 for all j .
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Performance Evaluation

Fairness index in Network 1 I
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Figure : Weighted fairness index of RSAP and the DLA algorithm proposed in
[Chen&Huang 2012]. Each curve represents an average over 1000 independent
realizations.
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Performance Evaluation

Fairness index in Network 1 II
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Figure : Weighted fairness index of RSAP and the DLA algorithm proposed in
[Chen&Huang 2012]. Each curve represents a single realization of the two
algorithms.
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Performance Evaluation

RSAP vs T&E
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Figure : Trial and Error fairness index on Network 2 (average of 1000
trajectories).
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Performance Evaluation

RSAP vs T&E
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Figure : RSAP fairness index on Network 2.
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Conclusion and Further Work

Conclusion

We discussed the distributed resource allocation problem in CRNs

We have proposed a fully distributed scheme without any information
exchange between SUs and based on self-imitation

We have proved convergence using Ellison radius-coradius theorem

We have compared RSAP to T&E [Pradelski&Young 2012] and to
DLA [Chen&Huang 2012]
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Conclusion and Further Work

Further Work

Congestion games on graphs

More realistic models of the channel between the SU transmitter and
the SU receiver

Learning in presence of noise (SUs get only an estimate of the mean
throughput at each iteration)

Joint sensing and access problem
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