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ABSTRACT

In this paper we study the relative phase offsets between partials in
the sustained part of harmonic sounds and investigate their suitabil-
ity for complex matrix decomposition of spectrograms. We formally
introduce this property in a sinusoidal model and visualise the phase
relations of a musical instrument. A model of complex matrix de-
composition in the time-frequency domain is derived and equations
for the estimation of the model parameters are provided in the mono-
phonic case. We illustrate the model with the analysis of a mono-
phonic saxophone signal. The results suggest that the phase offset is
able to capture inherent time-invariant phase properties of harmonic
sounds and outline its potential use for complex matrix decomposi-
tion.

Index Terms— harmonic signals, relative phase offsets of par-
tials, complex matrix decomposition, nonnegative matrix factorisa-
tion.

1. INTRODUCTION

Spectrogram factorisation techniques — particularly nonnegative
matrix factorisation (NMF) [1] — have proven to be useful methods
for the analysis of instrument sounds and have been successfully
applied for tasks such as music transcription [2], source separation
[3] and instrument recognition [4]. Most spectrogram factorisation
techniques rely on the assumption that magnitude spectra of sound
mixtures can be approximated by the superposition of the magnitude
spectra of the sound sources. Although this assumption provides rea-
sonable analysis results in practice, the linearity only holds for the
complex coefficients of the short-time Fourier transform (STFT).

Phase information is often discarded in the analysis stage, not
only because the human auditory system is considered insensitive
to absolute phase shifts of harmonic partials [5], but also because
the magnitude spectrogram is often considered more intuitive and
easier to model. For all applications in which sounds have to be
synthesised from a time-frequency representation, however, the cor-
rect estimation of phase values is crucial in order to avoid artefacts
due to phase-incoherent overlap of consecutive time frames. For the
task of instrument separation, for example, the phase information for
the synthesis of each sound source either has to be estimated from
the magnitude spectrogram [6], or the phases of the original mixture
have to be employed for each source [3]. Using the mixture phases
can lead to reasonable results when the number of sources is small
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and when most time-frequency bins are mainly influenced by a sin-
gle source. For higher numbers of sources and larger time-frequency
overlap, however, it can lead to cross-talk artefacts.

The STFT analysis phase of harmonic partials is not constant
over time. Therefore the instantaneous phase cannot be simply em-
bedded in a matrix factorisation framework, where the basis func-
tions include prototypical properties of the underlying instrument
spectra that vary little over time. Nevertheless, several approaches
have been proposed to consider phase information in matrix factori-
sation frameworks. Parry and Essa [7] propose a phase-aware non-
negative matrix factorisation. The authors model the STFT bins as
complex random variables, thereby assuming the phase to be uni-
formly distributed, and derive iterative update rules based on this
assumption. The update rules, however, still estimate the matrices
based on the magnitude spectrogram only. In a similar way, Févotte
et al. [8] show that Itakura-Saito NMF is equivalent to a maximum-
likelihood parameter estimation of a sum of complex Gaussian com-
ponents. The Gaussian components have zero mean and a diago-
nal covariance matrix, which also assumes a uniformly distributed
phase. An attempt to explicitly estimate the phase values of the
individual sources was made by Kameoka et al. [9]. Their com-
plex NMF algorithm combines the outer product of each NMF basis
function and gain vector with a phase spectrogram with the same di-
mensions as the original spectrogram. In [10], complex NMF was
shown to outperform NMF for speech separation. Complex NMF is
not a complex matrix factorisation technique, but a combination of
NMF with time-frequency phase estimates. The algorithm is heavily
overparameterised and it can be shown that an initialisation with the
original phase values leaves the phase parameters unaltered (up to
±π). Lastly, a high resolution NMF framework was introduced in
[11, 12], in order to model both the magnitude and phase of complex
or real-valued time-frequency representations. However this frame-
work does not take the phase relations of the partials into account.

In this paper, we exploit the relative phase offsets between par-
tials in the sustained part of the sounds of harmonic instruments as
a step towards complex matrix decomposition. The concept will be
reviewed and illustrated in Section 2, where we also present a math-
ematical formulation. In Section 3 we derive the model for complex
matrix decomposition and present the parameter estimation equa-
tions for the monophonic case. An example analysis of a mono-
phonic signal is provided in Section 4, and we conclude this work in
Section 5.

2. PHASE RELATIONS OF HARMONIC PARTIALS

2.1. Concept

Pitched musical instruments generally produce harmonic sounds
which can be represented by a superposition of P sinusoids at in-



teger multiples of a fundamental frequency. Each harmonic partial
can be described by its angular frequency ωp > 0, its amplitude
ap ≥ 0 and an absolute phase shift φp ∈ [−π, π): ∀t ∈ Z,

s(t) =

P∑
p=1

ape
j[ωpt+φp]. (1)

For strictly harmonic sounds, the frequency of each harmonic is
given as the p-th multiple of the fundamental frequency: ωp = pω1.
Complex exponentials are used here to reflect the fact that we only
consider the baseband of the DFT in our model.

In this paper we are interested in the relation between the abso-
lute phase shifts of the harmonic partials. To capture this relation, we
express the phase shift of each partial in relation to the instantaneous
phase of the fundamental frequency ω1:

s(t) =

P∑
p=1

ape
j[p·θ(t)+∆φp], (2)

where θ(t) = ω1t+ φ1 denotes the instantaneous phase of the fun-
damental and ∆φp = φp− p φ1 represents the phase offset between
the p-th partial and the fundamental (with ∆φ1 = 0).

Figure 1 shows a graphical illustration of the parameters in
Eq. (2). The upper part (Fig. 1a) displays the waveform of the first
three partials of a harmonic sound, and the lower part (Fig. 1b) the
instantaneous phases. The phase offsets ∆φp correspond to the
instantaneous phases of the partials at the time where θ(t) = 0.
Modifying ∆φp translates the p-th partial relative to the fundamen-
tal along the time axis. Since a translation by ∆φp is equivalent to a
translation by ∆φp + c · 2π with c ∈ Z, ∆φp is uniquely defined in
the range [−π, π). Given all phase offsets ∆φp of the partials, the
instantaneous phase of each partial can be computed at any given
time t0 based on the instantaneous phase of the fundamental θ(t0) at
that time. Note that even though we can only measure the wrapped
phase of θ(t) (i.e. in the interval [−π, π)), the correct wrapped phase
of each partial can still be calculated.

(a) Waveform of the first three harmonics.

(b) Instantaneous phases of the first three harmonics.

Fig. 1: Illustration of the model parameters.

2.2. Example

To illustrate the phase relations, we display the phase offsets ∆φp of
the partials with indices p ∈ {2, 3, 4} in a monophonic saxophone
recording of “Summertime” by G. Gershwin in Figure 2. The first
four bars of this small excerpt are displayed in Fig. 2a, and Fig. 2b
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(a) First four bars of “Summertime” by G. Gershwin.

(b) Fundamental frequencies of saxophone performance.

(c) Phase differences ∆φp over time.

Fig. 2: Visualisation of the phase relations of a musical instrument.

displays the fundamental frequency of the saxophone performance
measured by the YIN algorithm [13]. In Fig. 2c, the partial offsets
∆φp are plotted over time. Phase offsets were obtained from the
STFT and computed as the wrapped difference between the mea-
sured instantaneous phases of each partial and p times the instanta-
neous phase of the fundamental. It can be seen that the partial offsets
exhibit little variation during the steady state of each note — which is
not surprising given the fact that the sound is harmonic. In addition
to that, however, the same phase offsets occur at different notes of the
same pitch. The area shaded in dark grey highlights all renditions of
the note E4 and the light grey area highlights all occurrences of the
note D4. These observations make this property suitable for the use
in a complex matrix decomposition framework as we will illustrate
in the next section. It should be noted that the relative phase offsets
can only be defined if the partial frequencies are in a strictly har-
monic relation. For instruments with slightly inharmonic frequency
relations — such as the piano — a constant phase offset does not
exist.

3. PARAMETER ESTIMATION

3.1. Frequency domain model

We aim at estimating the parameters of the model in Eq. (2) from the
STFT which is given by

X(n, k) =

K−1∑
t=−K

x(t+ n·m) · h(t) · e−jΩkt, (3)

where x(t) is the signal under analysis and n and k represent the
time frame and frequency index, respectively. h(t) denotes the anal-
ysis window of time support [−K . . .K − 1]. The distance between
consecutive audio frames in samples (hopsize) is denoted by m.
Ωk = 2πk

N
is the normalised angular frequency of the k-th frequency

index.
The STFT of the signal s(t) from Eq. (2) is given by

S(n, k) =

P∑
p=1

apH(Ωk − pω1)ej[pΘ(n)+∆φp]. (4)



In this equation, H(Ω) =
∑K−1
t=−K h(t) · e−jΩt denotes the Fourier

spectrum of the window function h(t) and Θ(n) = θ(n ·m).
To simplify the monophonic model in Eq. (4), we assume that

each partial can be represented by the main lobe of the window func-
tion only. This assumption holds fairly well if the side lobe attenu-
ation of the window spectrum H(Ω) is sufficiently high and if the
frequency resolution of the STFT is high enough so that the main
lobes of adjacent partials do not overlap. We denote the partial index
belonging to frequency bin k by pk. We set pk = 0 for all k that lie
outside the main lobes of the partials, and set a0 = 0. This allows
us to drop the sum in Eq. (4):

S′(n, k) = apkH(Ωk − pkω1)ej[pkΘ(n)+∆φpk
]. (5)

We additionally introduce a real time-varying gain factor g(n) > 0
that enables a uniform scaling of the magnitudes in order to accom-
modate loudness variations (similar to the gains in NMF):

B̂(n, k) = g(n) · S′(n, k). (6)

Scaling ambiguities between g(n) and ap can be resolved by normal-
ising ap. Finally, the model can be extended to incorporate multiple
harmonic sounds. We denote the index of each harmonic sound by r
and append it to the quantities in Eq. (6):

V̂ (n, k) =

R∑
r=1

gr(n) · S′r(n, k) (7)

By substituting Eq. (5) into Eq. (7), we finally obtain:

V̂ (n, k) =

R∑
r=1

wr(k) · hr(n, k) (8)

where wr(k) = apk,rH(Ωk − pk,rω1,r)e
j∆φpk,r and hr(n, k) =

gr(n)ejpk,rΘr(n). The term wr(k) is not time-dependent and is
therefore referred to as a complex basis function. Accordingly, the
term hr(n, k) is referred to as a complex activation. Note that
hr(n, k) is a 2-dimensional function. Eq. (8) is therefore not a
complex matrix factorisation, but a decomposition of a complex
spectrogram V (n, k) into a matrix of complex basis functions
wr(k), a matrix of real-valued gain factors gr(n) and a matrix of
real-valued instantaneous phases of the fundamentals Θr(n).

In this paper we will not investigate the case of multiple concur-
rent sounds. Our goal is to prove that phase offsets between partials
are a viable concept for sound analysis purposes. The model param-
eters will thus be estimated in the monophonic case of Eq. (6) only.

3.2. Parameter estimation

The parameters in Eq. (6) can be estimated by minimizing the error
between the original complex spectrogram B(n, k) and the model
approximation B̂(n, k) for all n ∈ [1 . . . N ] and k ∈ [1 . . .K] with
N > 0 and K > 0. We choose to minimise the following cost
function:

J =
N∑
n=1

K∑
k=1

∣∣∣ln(B(n, k))− ln(B̂(n, k))
∣∣∣2 (9)

=

N∑
n=1

K∑
k=1

[
ln

(
|B(n, k)|

g(n) · apkH(Ωk − pkω1)

)]2

+

[∠B(n, k)−∆φpk − pkΘ(n) + 2πq(n, k)]2 (10)

where ∠B(n, k) denotes the argument of the complex number
B(n, k). The term q(n, k) ∈ Z stems from the fact that the log-
arithm of a complex number has an infinite number of solutions
which are obtained by adding integer multiples of 2π to the imagi-
nary part of the solution [14]. The integer q(n, k) is here treated as
an additional parameter that has to be estimated. In Eq. (10), H(Ω)
is assumed positive, since we only consider the main lobe of the
window function. The model parameters are estimated by means of
a coordinate descent (J is minimized w.r.t. each parameter):

g(n) =

(
K∏
k=1

|B(n, k)|
apkH(Ωk − pkω1)

) 1
K

(11)

ap =

 N∏
n=1

∏
{k|pk=p}

|B(n, k)|
g(n)H(Ωk − pω1)

 1
N·#{k|pk=p}

(12)

Θ(n) =

∑K
k=1 pk[∠B(n, k)−∆φpk + 2πq(n, k)]∑K

k=1 p
2
k

(13)

∆φp =

∑N
n=1

∑
{k|pk=p} ∠B(n, k)− pΘ(n) + 2πq(n, k)

N ·#{k|pk = p}
(14)

q(n, k) = round
(
− 1

2π
[∠B(n, k)−∆φpk − pkΘ(n)]

)
(15)

In these equations, the expression {k|pk = p} denotes the set of fre-
quency indices k at which pk = p and the operator #{. . .} denotes
the cardinality of the set. The function round() denotes the rounding
of a real number to the nearest integer.

4. ANALYSIS OF AN EXAMPLE SIGNAL

In this section we apply the estimation method to an example signal
and illustrate how it can be used for a transcription task. The signal
is the same monophonic saxophone recording of “Summertime” that
we used to illustrate the phase relations in Figure 2. It has a sample
rate of 44.1 kHz and we use the first eight bars of the recording.

The recording is split into two parts. The first part contains the
first four bars (cf. Fig. 2a) and is used as training material in which
prototypical partial amplitudes ap and phase offsets ∆φp are learned
for different pitches ω1. The spectrogram withK = 2049 frequency
bins and N = 5380 time frames is manually segmented in time into
the different notes. All spectrogram parts with the same nominal
pitch are concatenated, the fundamental frequency is estimated by
employing the YIN algorithm and ω1 is computed as the average
across all frames for each nominal pitch. g(n) is estimated from the
original spectrogram by taking the mean of the magnitudes in each
time frame. In order to compute ap we alternately apply Eq. (12)
and (11) for 10 iterations. For the computation of ∆φp, Θ(n) is
initialised by the instantaneous phase value of the frequency bin cor-
responding to the fundamental in each frame. An initial estimate for
∆φp is obtained by replacing the terms in the summation in the nu-
merator of Eq. (14) by wrap(∠B(n, k) − pΘ(n)), where wrap(α)
calculates the principal argument of α. q(n, k) is computed accord-
ing to Eq. (15) and we iterate over Eq. (13)–(15) until q(n, k) con-
verges. ∆φp is eventually given by result of Eq. (14) in the last
iteration.

The second part of the recording contains the remaining four
bars (cf. Fig. 3a) and is used as test material. The learned prototype
amplitudes ap and ∆φp for all pitches ω1 that occurred in the first
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(a) Bars 5–8 of “Summertime” by G. Gershwin. (b) Fundamental frequencies for bars 5–8.

(c) Gains g(n) for bars 5–8 for each pitch from bars 1–4. (d) Phase activations f(n) for bars 5–8 for each pitch from bars 1–4.

Fig. 3: Example analysis of a monophonic saxophone example.

part are employed to estimate g(n) and Θ(n) in the following way.
First, Θ(n) is initialised with the instantaneous phase values at the
frequency bins corresponding to ω1. Then q(n, k) is estimated ac-
cording to Eq. (15). Finally, g(n) and Θ(n) are estimated according
to Eqs. (11) and (13).

Active pitches can be estimated from both g(n) and Θ(n).
While for g(n) this is obvious — high values indicate activity, low
values indicate inactivity —, the instantaneous phase Θ(n) of the
fundamental can also be used as an activity detector. We here use
a measure inspired by the phase-based onset detection function
described in [15]. The measure is based on the unwrapped phase,
which can be assumed to be linear when the note is active and
non-linear when the note is inactive. We will denote the unwrapped
phase of Θ(n) by Θu(n). The second phase difference can be used
as a measure of phase-linearity. It is given by

∆Θu(n) = Θu(n)− 2Θu(n− 1) + Θu(n− 2). (16)

If the unwrapped phase is strictly linear, ∆Θu(n) will be close to
zero, if it is non-linear ∆Θu(n) is likely to take on values with larger
magnitudes. Additionally, ∆Θu(n) is likely to take on low values
in several consecutive active frames and more random values in con-
secutive inactive frames. We therefore compute the mean square of
∆Θu(n) over a sliding window as

σ(n) =
1

M

M
2
−1∑

n′=−M
2

∆Θ2
u(n+ n′), (17)

and define the phase-based activity measure as f(n) = − ln(σ(n)) .
In our simulations a window length of 50 ms (M = 37) was used.

The results of the estimation are displayed in Figure 3. In
Fig. 3b, the measured fundamental frequencies of the four bar ex-
cerpt are shown. Fig. 3c shows the gains g(n) and Fig. 3d the
results for the phase-based activity measure f(n). The gains clearly

show the activity of the different pitches and are very much reminis-
cent of activity measurements in NMF analyses. The results of the
phase-based activity measure also reveal the active pitches very well,
which confirms that the phase relations between harmonic partials
can actually be used to characterise pitches of certain instruments
and distinguish between them. Note that the pitch E3 does not occur
in bars 5–8, and that the note B3, the last note in Fig. 3a, is missing
because it did not occur in bars 1–4.

5. CONCLUSIONS

In this paper we have investigated the relative phase relations within
the sustained part of harmonic sounds and their potential use for
complex matrix decomposition. The phase relations between har-
monic partials have been expressed as relative phase offsets of the
partials w.r.t. the fundamental. Equations for the estimation of the
model parameters have been presented based on a complex logarith-
mic cost function between the original spectrogram and the model
approximation. With the analysis of an example signal, we demon-
strated the potential of the phase coupling property to capture inher-
ent time-independent phase characteristics of harmonic sounds.

In future work the method should be extended to deal with mix-
tures of harmonic sounds in order to obtain a complex matrix de-
composition that can be used to unmix spectral components in the
complex domain. A formulation of such a complex matrix decom-
position framework has been provided in Section 3.1. For the mono-
phonic case, the complex logarithmic cost function proved to be use-
ful, not only because logarithmic amplitudes better match the hu-
man perception than linear amplitudes, but also because it separates
the modulus and argument of the model, which allowed us to treat
them separately. In the polyphonic case however, a complex matrix
decomposition framework would need to deal with magnitudes and
phases jointly, since the sum of two complex time-frequency com-
ponents depends on both their modulus and phase.
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