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Abstract—Non-local total variation (NLTV) has emerged as a
useful tool in variational methods for image recovery problems.
In this paper, we extend the NLTV-based regularization to
multicomponent images by taking advantage of the structure
tensor (ST) resulting from the gradient of a multicomponent
image. The proposed approach allows us to penalize the non-
local variations, jointly for the different components, through
various `1,p-matrix-norms with p ≥ 1. To facilitate the choice
of the hyper-parameters, we adopt a constrained convex opti-
mization approach in which we minimize the data fidelity term
subject to a constraint involving the ST-NLTV regularization.
The resulting convex optimization problem is solved with a
novel epigraphical projection method. This formulation can be
efficiently implemented thanks to the flexibility offered by recent
primal-dual proximal algorithms. Experiments are carried out
for color, multispectral and hyperspectral images. The results
demonstrate the interest of introducing a non-local structure
tensor regularization and show that the proposed approach
leads to significant improvements in terms of convergence speed
over current state-of-the-art methods, such as the Alternating
Direction Method of Multipliers.

Index Terms—Convex optimization, image restoration, non-
local total variation, structure tensor, singular value decompo-
sition, hyperspectral imagery, epigraph, multicomponent images.

I. INTRODUCTION

MULTICOMPONENT IMAGES consist of several spatial
maps acquired simultaneously from a scene. Well-

known examples are color images, which are composed of
red, green, and blue components, or spectral images, which
divide the electromagnetic spectrum into many components that
represent the light intensity across a number of wavelengths.
Multicomponent images are often degraded by blur and
noise arising from sensor imprecisions or physical limitations,
such as aperture effects, motion or atmospheric phenomena.
Additionally, a decimation modelled by a sparse or random
matrix can be encountered in several applications, such as
compressive sensing [1]–[3], inpainting [4]–[6], or super-
resolution [7]. As a consequence, the standard imaging model
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consists of a blurring operator [8] followed by a decimation
and a (non-necessarily additive) noise.

The main focus of this paper is multicomponent image
recovery from degraded observations, for which it is of
paramount importance to exploit the intrinsic correlations
along spatial and spectral dimensions. To this end, we adopt a
variational approach based on the introduction of a non-local
total variation structure tensor (ST-NLTV) regularization and
we show how to solve it practically with constrained convex
optimization techniques. In addition to more detailed theoretical
developments, this paper extends our preliminary work in [9]
by considering a regularization based on nuclear, Frobenius and
spectral norms, by providing a performance evaluation w.r.t.
two state-of-the-art methods in imaging spectroscopy [10], [11],
and by presenting a comparison in terms of execution times
with a solution based on the Alternating Direction Method of
Multipliers method.

A. ST-NLTV regularization

The quality of the results obtained through a variational
approach strongly depends on the ability to model the regularity
present in images. Since natural images are often piecewise
smooth, popular regularization models tend to penalize the
image gradient. In this context, total variation (TV) [12], [13]
has emerged as a simple, yet successful, convex optimization
tool. However, TV fails to preserve textures, details and fine
structures, because they are hardly distinguishable from noise.
To improve this behaviour, the TV model has been extended
by using some generalizations based on higher-order spatial
differences [14], [15], higher-degree directional derivatives [16],
[17], or the non-locality principle [18]–[20]. Another approach
to overcome these limitations is to replace the gradient with
an operator that yields a more suitable sparse representation of
the image, such as a frame [21]–[26] or a learned dictionary
[27]–[29]. In this context, the family of Block Matching 3-D
algorithms [30], [31] has been recently formulated in terms of
analysis and synthesis frames [32], substantiating the use of
the non-locality principle as a valuable image modeling tool.

The extension of TV-based models to multicomponent
images is, in general, non trivial. A first approach consists
of computing TV channel-by-channel and then summing up
the resulting smoothness measures [33]–[36]. Since there is no
coupling of the components, this approach may potentially lead
to component smearing and loss of edges across components.
An alternative way is to process the components jointly, so
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as to better reveal details and features that are not visible in
each of the components considered separately. This approach
naturally arises when the gradient of a multicomponent image is
thought of as a structure tensor (ST) [37]–[45], i.e. a matrix that
summarizes the prevailing direction of the gradient. The idea
behind ST-based regularization is to penalize the eigenvalues
of the structure tensor, in order to smooth in the direction of
minimal change [33]. A concise review of both frameworks
can be found in [44], where an efficient ST-TV regularization
was suggested for color imagery.

In order to improve the results obtained in the color and
hyperspectral restoration literature based on structure tensor,
our first main contribution consists of applying the non-locality
principle to ST-TV regularization.

B. Constrained formulation

Regarding the variational formulation of the data recovery
problem, one may prefer to adopt a constrained formulation
rather than a regularized one. Indeed, it has been recognized
for a long time that incorporating constraints directly on the
solution often facilitates the choice of the involved parameters
[15], [46]–[51]. The constraint bounds may be related to
some knowledge on the degradation process, such as the noise
statistical properties, for which the expected values are known
[50]. When no specific information about the noise is available,
these bounds can be related to some physical properties of the
target signal. For example, a reasonable upper bound on the TV
constraint may be available for certain classes of images, since
TV constitutes a geometrical attribute that exhibits a limited
variance over, e.g., views of similar urban areas in satellite
imaging, tomographic reconstructions of similar cross sections,
fingerprint images, text images and face images [13].

One of the difficulties of constrained approaches is that a
closed form of the projection onto the considered constraint
set is not always available. Closed forms are known for convex
sets such as `2-balls, hypercubes, hyperplanes, or half-spaces
[52]. However, more sophisticated constraints are usually
necessary in order to effectively restore multicomponent images.
Taking advantage of the flexibility offered by recent proximal
algorithms, we propose an epigraphical method allowing us to
address a wide class of convex constraints. Our second main
contribution is thus to provide an efficient solution based on
proximal tools in order to solve convex problems involving
matricial `1,p-ball constraints.

C. Imaging spectroscopy

Spectral imagery is used in a wide range of applications,
such as remote sensing [53], astronomical imaging [54], and
fluorescence microscopy [55]. In these contexts, one typically
distinguishes between multispectral (MS) and hyperspectral
(HS) images. In general, HS images are capable to achieve
a higher spectral resolution than MS images (at the cost of
acquiring a few hundred bands), which results in a better
spectral characterization of the objects in the scene. This gave
rise to a wide array of applications in remote sensing, such as
detection and identification of the ground surface [56], as well
as military surveillance and historical manuscript research.

The primary characteristic of hyperspectral images is that
an entire spectrum is acquired at each point, which implies a
huge correlation among close spectral bands. As a result, there
has been an emergence of variational methods to efficiently
model the spectral-spatial regularity present in such kind of
images. To the best of our knowledge, these methods can be
roughly divided into three classes.

A first class of approaches consists of extending the regularity
models used in color imagery [44], [57]. To cite a few examples,
the work in [7] proposed a super-resolution method based on a
component-by-component TV regularization. To deal with the
huge size of HS images, the authors performed the actual super-
resolution on a few principal image components (obtained
by means of PCA), which are then used to interpolate the
secondary components. In [25], the problem of MS denoising
is dealt with by considering a hybrid regularization that induces
each component to be sparse in an orthonormal basis, while
promoting similarities between the components by means of
a distance function applied on wavelet coefficients. Another
kind of spectral adaptivity has been proposed in [10] for
HS restoration. It consists of using the multicomponent TV
regularization in [42] that averages the Frobenius norms
of the multicomponent gradients. The same authors have
recently proposed in [11] an inpainting method based on the
multicomponent NLTV regularization. The link between this
method and the proposed work will be discussed later.

A second class of approaches consists of modeling HS
images as three-dimensional tensors, i.e. two spatial dimensions
and one spectral dimension. First denoising attempts in this
direction were pursued in [58], [59], where tensor algebra was
exploited to jointly analyze the HS hypercube considering vec-
torial anisotropic diffusion methods. Other strategies, based on
filtering, consider tensor denoising methods such as multiway
Wiener filtering (see [60] for a survey on this subject).

A third class of approaches is based on robust PCA [61] or
low-rank and sparse matrix decomposition [62]. These methods
proceed by splitting a HS image into two separate contributions:
an image formed by components having similar shapes (low-
rank image) and an image that highlights the differences
between the components (sparse image). For example, the
work in [3] proposed a convex optimization formulation for
recovering an HS image from very few compressive-sensing
measurements. This approach involved a penalization based
on two terms: the `∗ nuclear norm of the matrix where each
column corresponds to the 2D-wavelet coefficients of a spectral
band (reshaped in a vector) and the `1,2-norm of the wavelet-
coefficient blocks grouped along the spectral dimension. A
similar approach was followed in [63], even though the `∗/`1,2-
norm penalization was applied directly on the HS pixels, rather
than using a sparsifying linear transform.

A third contribution of this work is to adapt the proposed
ST-NLTV regularization in order to efficiently deal with
reconstruction problems (not only denoising) in the context
of imaging spectroscopy. The resulting strategy is based on
tensor algebra ideas, but it uses variational strategies rather
than anisotropic diffusion or adaptive filtering. Moreover,
comparisons with recent works have been performed.
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D. Outline

The paper is organized as follows. Section II describes the
degradation model and formulates the constrained convex
optimization problem based on the non-local structure tensor.
Section III explains how to minimize the corresponding
objective function via proximal tools. Section IV provides an
experimental validation in the context of color, MS and HS
image restoration. Conclusions are given in Section V.

E. Notation

Let H be a real Hilbert space. Γ0(H) denotes the set of
proper, lower semicontinuous, convex functions from H to
]−∞,+∞]. Remember that a function ϕ : H → ]−∞,+∞]
is proper if its domain domϕ =

{
y ∈ H

∣∣ ϕ(y) < +∞
}

is
nonempty. The subdifferential of ϕ at x ∈ H is ∂ϕ(x) ={
u ∈ H

∣∣ (∀y ∈ H) 〈y − x | u〉+ ϕ(x) ≤ ϕ(y)
}

. The epi-
graph of ϕ ∈ Γ0(H) is the nonempty closed convex subset of
H× R defined as epiϕ =

{
(y, ζ) ∈ H × R

∣∣ ϕ(y) ≤ ζ
}

, the
lower level set of ϕ at height ζ ∈ R is the nonempty closed
convex subset of H defined as lev≤ζ ϕ =

{
y ∈ H

∣∣ ϕ(y) ≤ ζ
}

.
The projection onto a nonempty closed convex subset C ⊂ H is,
for every y ∈ H, PC(y) = argminu∈C ‖u− y‖. The indicator
function ιC of C is equal to 0 on C and +∞ otherwise. Finally,
Id (resp. IdN ) denotes the identity operator (resp. the identity
matrix of size N ×N ).

II. PROPOSED APPROACH

A. Degradation model

The R-component signal of interest is denoted by x =
(x1, . . . , xR) ∈ (RN )R. In this work, each signal component
will generally correspond to an image of size N = N1 ×N2.
In imaging spectroscopy, R denotes the number of spectral
bands. The degradation model that we consider in this work is

z = B(Ax) (1)

where z = (z1, . . . , zS) ∈ (RK)S denotes the degraded
observations, B : (RK)S → (RK)S models the effect of a
(non-necessarily additive) noise, and A = (As,r)1≤s≤S,1≤r≤R
is the degradation linear operator with As,r ∈ RK×N , for every
(s, r) ∈ {1, . . . , S}× {1, . . . , R}. In particular, this model can
be specialized in some of the applications mentioned in the
introduction, such as super-resolution and compressive sensing,
as well as unmixing as explained in the following.

(i) Super-resolution [7]. In this scenario, z denotes B mul-
ticomponent images at low-resolution and x denotes the
(high-resolution) multicomponent image to be recovered.
The operator A is a block-diagonal matrix with S = BR
while, for every r ∈ {1, . . . , R} and b ∈ {1, . . . , B},
AB(r−1)+b,r = DbTWr is a composition of a warp matrix
Wr ∈ RN×N , a camera blur operator T ∈ RN×N , and
a downsampling matrix Db ∈ RK×N with K < N .
The noise is assumed to be a zero-mean white Gaussian
additive noise. It follows that B different noisy decimated
versions of the same blurred and warped component are

available. This yields the following degradation model:
for every r ∈ {1, . . . , R} and b ∈ {1, . . . , B},

zB(r−1)+b = DbTWr xr + εB(r−1)+b (2)

where εB(r−1)+b ∼ N (0, σ2 IdK).

(ii) Compressive sensing [3]. In this scenario, z denotes
the compressed multicomponent image and x is the
multicomponent image to be reconstructed. The operator
A is a block-diagonal matrix where S = R, for every
r ∈ {1, . . . , R}, Ar,r = Dr, and Dr ∈ RK×N is a
random measurement matrix with K � N . The noise
is assumed to be a zero-mean white Gaussian additive
noise. This leads to the following degradation model:

(∀r ∈ {1, . . . , R}) zr = Dr xr + εr (3)

where εr ∼ N (0, σ2 IdK).

(iii) Unmixing [64]–[66]. In this scenario, z models an
HS image with K = N having several components
whose spectra, denoted by (Sr)1≤r≤R ∈ (RS)R, are
supposed to be known. The goal is to determine the
abundance maps of each component, thus the unknown x
models these abundance maps. R denotes the number of
components and S the number of spectral measurements.
The matrix A has a block diagonal structure that leads to
the following mixing model: for every ` ∈ {1, . . . , N},

z
(`)
1
...
z
(`)
S

 =

R∑
r=1

x(`)r Sr + ε(`), (4)

where x
(`)
r is the pixel value for the r-th component,

z
(`)
s is the pixel value for the s-th spectral measurement,

and ε(`) ∼ N (0, σ2 IdS) denotes the additive noise. In
this work however, we will not focus on hyperspectral
unmixing that constitutes a specific application area for
which tailored algorithms have been developed.

B. Convex optimization problem

A usual solution to recover x from the observations z is to
follow a convex variational approach that leads to solving an
optimization problem such as

minimize
x∈C

f(Ax, z) s.t. g(x) ≤ η, (5)

where η > 0. The cost function f(·, z) ∈ Γ0

(
(RK)S

)
aims

at insuring that the solution is close to the observations. This
data term is related to the noise characteristics. For instance,
standard choices for f are a quadratic function for an additive
Gaussian noise, an `1-norm when a Laplacian noise is involved,
and a Kullback-Leibler divergence when dealing with Poisson
noise. The function g ∈ Γ0

(
(RN )R

)
allows us to impose

some regularity on the solution. Some possible choices for this
function have been mentioned in the introduction. Finally, C
denotes a nonempty closed convex subset of (RN )R that can
be used to constrain the dynamic range of the target signal,
e.g. C = ([0, 255]N )R for standard natural images.
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Note that state-of-the-art methods often deal with the
regularized version of Problem (5), that is

minimize
x∈C

f(Ax, z) + λg(x), (6)

where λ > 0. Actually, both formulations are equivalent
for some specific values of λ and η. As mentioned in the
introduction, the advantage of the constrained formulation is
that the choice of η may be easier, since it is directly related
to the properties of the signal to be recovered.

C. Structure Tensor regularization

In this work, we propose to model the spatial and spectral
dependencies in multicomponent images by introducing a
regularization grounded on the use of a matrix norm, which is
defined as(

∀x ∈ (RN )R
)

g(x) =

N∑
`=1

τ`‖F`B`x‖p, (7)

where ‖·‖p denotes the Schatten p-norm with p ≥ 1, (τ`)1≤`≤N
are positive weights, and, for every ` ∈ {1, . . . , N},

(i) block selection: the operator B` : (RN )R → RQ2×R

selects Q×Q blocks of each component (including the
pixel `) and rearranges them in a matrix of size Q2×R,
so leading to

Y(`) =


x
(n`,1)
1 . . . x

(n`,1)
R

...
...

x
(n`,Q2 )

1 . . . x
(n`,Q2 )

R

 (8)

where W` = {n`,1, . . . , n`,Q2} is the set of positions
located into the window around `, and Q > 1;1

(ii) block transform: the operator F` : RQ2×R → RM`×R

denotes an analysis transform that achieves a sparse
representation of grouped blocks, yielding

X(`) = F`Y(`), (9)

where M` ≤ Q2.
The resulting structure tensor regularization reads

g(x) =

N∑
`=1

τ` ‖X(`)‖p. (10)

Let us denote by

σX(`) =
(
σ
(m)

X(`)

)
1≤m≤M̃`

, with M̃` = min{M`, R}, (11)

the singular values of X(`) ordered in decreasing order. When
p ∈ [1,+∞[, we have

g(x) =

N∑
`=1

τ`

 M̃∑̀
m=1

(
σ
(m)

X(`)

)p1/p

, (12)

whereas, when p = +∞,

g(x) =

N∑
`=1

τ` σ
(1)

X(`) . (13)

1The image borders are handled through symmetric extension.

When p = 1, the Schatten norm reduces to the nuclear norm.
In such a case, the structure tensor regularization induces a
low-rank approximation of matrices (X(`))1≤`≤N (see [67] for
a survey on singular value decomposition).

The structure tensor regularization proposed in (9) gen-
eralizes several state-of-the-art regularization strategies, as
explained in the following.

1) ST-TV : We retrieve the multicomponent TV regulariza-
tion [10], [42], [44] by setting F` to the operator which, for
each component index r ∈ {1, . . . , R}, computes the difference
between x

(`)
r and its horizontal/vertical nearest neighbours

(x
(`1)
r , x

(`2)
r ), yielding the matrix

X(`)
TV

=

[
x
(`)
1 − x

(`1)
1 . . . x

(`)
R − x

(`1)
R

x
(`)
1 − x

(`2)
1 . . . x

(`)
R − x

(`2)
R

]
(14)

with M` = 2. This implies a 2 × 2 block selection operator
(i.e., Q = 2). Special cases of ST-TV regularization can be
found in the literature when p = 2 [10], or when F` = Id
and p = 1 [68]. We will refer to the regularization in [10] as
Hyperspectral-TV in Section IV. Moreover, the regularization
in [45] can be seen as an extension of ST-TV arising by setting
X(`) = [X(n)

TV
]n∈W`

, yielding a matrix of size 2 × RQ2 (see
below (8) for the definition of W`). Finally, note that the
regularization used in [7] is intrinsically different from ST-TV,
as the former amounts to summing up the smoothed TV [69]
evaluated separately over each component.

2) ST-NLTV: We extend the NLTV regularization [18] to
multicomponent images by setting F` to the operator which, for
each component index r ∈ {1, . . . , R}, computes the weighted
difference between x

(`)
r and some other pixel values. This

results in the matrix

X(`)
NLTV

=
[
ω`,n(x(`)r − x(n)r )

]
n∈N`,1≤r≤R

, (15)

where N` ⊂ W` \ {`} denotes the non-local support of the
neighbourhood of `. Here, M` corresponds to the size of this
support. Note that the regularization in [11] appears as a special
case of the proposed ST-NLTV arising when p = 2 and the
local window is fully used (M` = Q2). We will refer to it as
Multichannel-NLTV in Section IV.

For every ` ∈ {1, . . . , N} and n ∈ N`, the weight ω`,n > 0
depends on the similarity between patches built around the
pixels ` and n of the image to be recovered. Since the
degradation process in (1) may involve some missing data,
we follow a two-step approach in order to estimate these
weights. In the first step, the ST-TV regularization is used in
order to obtain an estimate x̃ of the target image. This estimate
subsequently serves in the second step to compute the weights
through a self-similarity measure as follows:

ω`,n = ω̃` exp
(
−δ−2 ‖L`x̃− Lnx̃‖22

)
, (16)

where δ > 0, L` (resp. Ln) selects a Q̃× Q̃×R patch centered
at position ` (resp. n) after a linear processing depending on
the position ` (resp. n), and the constant ω̃` > 0 is set so
as to normalize the weights (i.e.

∑
n∈N`

ω`,n = 1). Note that
the linear processing is applied to improve the reliability of
the self-similarity measure, and thus to insure better image
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recovery performance. In the simplest case, it consists of point-
wise multiplying the selected patches by a bivariate Gaussian
function [70]. A more sophisticated processing may involve
a convolution with a set of low-pass Gaussian filters whose
variances increase as the spatial distance from the patch center
grow [71]. For every ` ∈ {1, . . . , N}, the neighbourhood N` is
built according to the procedure described in [72]. In practice,
we limit the size of the neighbourhood, so that M (`) ≤ M
(the choices of Q, Q̃, δ and M are indicated in Section IV).

III. OPTIMIZATION METHOD

Within the proposed constrained optimization framework,
Problem (5) can be reformulated as follows:

minimize
x∈C

f(Ax, z) s. t. Φ x ∈ D, (17)

where Φ is the linear operator defined as

Φ: x 7→ X =


F1B1x

...

FNBNx


} X(1)

} X(N)

(18)

with X ∈ RM×R and M = M1 + · · ·+ MN , while D is the
closed convex set defined as

D =
{

X ∈ RM×R
∣∣ N∑
`=1

τ`‖X(`)‖p ≤ η
}
. (19)

In recent works, iterative procedures were proposed to deal with
an `1- or `1,2-ball constraint [73] and an `1,∞-ball constraint
[74]. Similar techniques can be used to compute the projection
onto D, but a more efficient approach consists of adapting the
epigraphical splitting technique investigated in [15], [75]–[77].

A. Epigraphical splitting

Epigraphical splitting applies to a convex set that can be
expressed as the lower level set of a separable convex function,
such as the constraint set D defined in (19). Some auxiliary
variables are introduced into the minimization problem, so
that the constraint D can be equivalently re-expressed as the
intersection of two convex sets. More specifically, different
splitting solutions need to be proposed according to the involved
Schatten p-norm:

(i) in the case when p = 1, since

X ∈ D ⇔
N∑
`=1

M̃∑̀
m=1

τ`

∣∣∣σ(m)

X(`)

∣∣∣ ≤ η, (20)

we propose to introduce an auxiliary vector ζ ∈ RM̃ , with
ζ = (ζ(`,m))1≤`≤N,1≤m≤M̃`

and M̃ = M̃1 + . . . + M̃N ,
in order to rewrite (20) as

(∀` ∈ {1, . . . , N})
(∀m ∈ {1, . . . , M̃`})

∣∣∣σ(m)

X(`)

∣∣∣ ≤ ζ(`,m),

N∑
`=1

M̃∑̀
m=1

τ` ζ
(`,m) ≤ η.

(21)

Consequently, Constraint (20) is decomposed in two
convex sets: a union of epigraphs

E =
{

(X, ζ) ∈ RM×R × RM̃
∣∣ (∀` ∈ {1, . . . , N})

(∀m ∈ {1, . . . , M̃`}) (σ
(m)

X(`) , ζ
(`,m)) ∈ epi | · |

}
,

(22)
and the closed half-space

W =
{
ζ ∈ RM̃

∣∣ N∑
`=1

M̃∑̀
m=1

τ` ζ
(`,m) ≤ η

}
. (23)

(ii) in the case when p > 1, since

X ∈ D ⇔
N∑
`=1

τ` ‖σX(`)‖p ≤ η, (24)

we define an auxiliary vector ζ = (ζ(`))1≤`≤N ∈ RN of
smaller dimension N , and we rewrite Constraint (24) as

(∀` ∈ {1, . . . , N}) ‖σX(`)‖p ≤ ζ(`),
N∑
`=1

τ` ζ
(`) ≤ η.

(25)

Similarly to the previous case, Constraint (24) is decom-
posed in two convex sets: a union of epigraphs

E =
{

(X, ζ) ∈ RM×R × RN
∣∣ (∀` ∈ {1, . . . , N})

(σX(`) , ζ(`)) ∈ epi ‖ · ‖p
}
, (26)

and the closed half-space

W =
{
ζ ∈ RN

∣∣ N∑
`=1

τ` ζ
(`) ≤ η

}
. (27)

B. Epigraphical projection

The epigraphical splitting technique allows us to reformulate
Problem (17) in a more tractable way, as follows

minimize
(x,ζ)∈C×W

f(Ax, z) s. t. (Φ x, ζ) ∈ E. (28)

The advantage of such a decomposition is that the projections
PE and PW onto E and W may have closed-form expressions.
Indeed, the projection PW is well-known [78], while prop-
erties of the projection PE are summarized in the following
proposition, which is straightforwardly proved.

Proposition III.1. For every ` ∈ {1, . . . , N}, let

X(`) = U(`)S(`)
(
V(`)

)>
(29)

be the Singular Value Decomposition of X(`) ∈ RM`×R, where
• (U(`))>U(`) = Id

M̃`
,

•
(
V(`)

)>
V(`) = Id

M̃`
,

• S(`) = Diag(s(`)), with s(`) = (σ
(m)

X(`))1≤m≤M̃`
.

Then,

PE(X, ζ) =
(

U(`)T(`)
(
V(`)

)>
, θ(`)

)
1≤`≤N

, (30)

where T(`) = Diag(t(`)) and,
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(i) in the case p = 1, for every m ∈ {1, . . . , M̃`}

(t(`,m), θ(`,m)) = Pepi |·|(s
(`,m), ζ(`,m)), (31)

(ii) in the case p > 1,

(t(`), θ(`)) = Pepi ‖·‖p(s(`), ζ(`)). (32)

The above result states that the projection onto the epigraph
of the `1,p matrix norm can be deduced from the projection
onto the epigraph of the `1,p vector norm. It turns out that
closed-form expressions of the latter projection exist when
p ∈ {1, 2,+∞} [75]. For example, for every (s(`), ζ(`)) ∈
RM̃` × R,

Pepi ‖·‖2(s(`), ζ(`)) =


(0, 0), if ‖s(`)‖2 < −ζ(`),
(s(`), ζ(`)), if ‖s(`)‖2 < ζ(`),

β(`)
(
s(`), ‖s(`)‖2

)
, otherwise,

(33)

where β(`) =
1

2

(
1 +

ζ(`)

‖s(`)‖2

)
. Note that the closed-form

expression for p = 1 can be derived from (33). Moreover,

Pepi ‖·‖∞(s(`), ζ(`)) = (t(`), θ(`)), (34)

where, for every t(`) = (t(`,m))
1≤m≤M̃`

∈ RM̃` ,

t(`,m) = min
{
σ
(m)

X(`) , θ
(`)
}
, (35)

θ(`) =
max

{
ζ(`) +

∑M̃`

k=k`
ν(`,k), 0

}
M̃` − k` + 2

. (36)

Hereabove, (ν(`,k))
1≤k≤M̃`

is a sequence of real numbers

obtained by sorting (σ
(m)

X(`))1≤m≤M̃`
in ascending order (by

setting ν(`,0) = −∞ and ν(`,M̃`+1) = +∞), and k` is the
unique integer in {1, . . . , M̃` + 1} such that

ν(`,k`−1) <
ζ(`) +

∑M̃`

k=k`
ν(`,k)

M̃` − k` + 2
≤ ν(`,k`) (37)

(with the convention
∑M̃(`)

k=M̃(`)+1
· = 0, i.e. the sum is equal

to zero when the subscript is greater than the superscript).
Note that the computation of the SVD can be avoided when

p = 2, as the Frobenius norm is equal to the `2-norm of the
vector of all matrix elements.

C. Proposed algorithm

The solution of (28) requires an efficient algorithm for deal-
ing with large scale problems involving nonsmooth functions
and linear operators that are non-necessarily circulant. For this
reason, we resort here to proximal algorithms [79]–[96]. The
key tool in these methods is the proximity operator [97] of a
function φ ∈ Γ0(H) on a real Hilbert space, defined as

(∀u ∈ H) proxφ(u) = argmin
v∈H

1

2
‖v− u‖2 + φ(v). (38)

The proximity operator can be interpreted as an implicit
subgradient step for the function φ, since p = proxφ(u) is
uniquely defined through the inclusion u−p ∈ ∂φ(p). Proximity
operators enjoy many interesting properties [80]. In particular,

they generalize the notion of projection onto a closed convex set
C, in the sense that proxιC = PC . Hence, proximal methods
provide a unifying framework that allows one to address a wide
class of convex optimization problems involving non-smooth
penalizations and hard constraints.

Among the wide array of existing proximal algorithms, we
employ the primal-dual M+LFBF algorithm recently proposed
in [92], which is able to address general convex optimization
problems involving nonsmooth functions and linear operators
without requiring any matrix inversion. This algorithm is able
to solve numerically:

minimize
v∈H

φ(v) +

I∑
i=1

ψi(Tiv) + ϕ(v). (39)

where φ ∈ Γ0(H), for every i ∈ {1, . . . , I}, Ti : H → Gi is a
bounded linear operator, ψi ∈ Γ0(Gi) and ϕ : H → ]−∞,+∞]
is a convex differentiable function with a µ-Lipschitzian
gradient. Our minimization problem fits nicely into this
framework by setting H = (RN )R × RL with

L =

{
M̃ if p = 1,

N if p > 1,
(40)

and v = (x, ζ). Indeed, we set I = 2, G1 = RM×R × RL and
G2 = (RK)S in (39), the linear operators reduce to

T1 =

[
Φ 0
0 IdL

]
, T2 =

[
A 0

]
, (41)

and the functions are as follows

(∀(x, ζ) ∈ (RN )R × RL) φ(x, ζ) = ιC(x) + ιW (ζ),

(∀(X, ζ) ∈ RM×R × RL) ψ1(X, ζ) = ιE(X, ζ),

(∀y ∈ (RK)S) ψ2(y) = f(y, z),

(∀(x, ζ) ∈ (RN )R × RL) ϕ(x, ζ) = 0.
(42)

The iterations associated with Problem (28) are summarized in
Algorithm 1, where A> and Φ> designate the adjoint operators
of A and Φ. The sequence (x[t])t∈N generated by the algorithm
is guaranteed to converge to a solution to (28) (see [92]).

D. Approach based on ADMM

Note that an alternative approach to deal with Problem (17)
consists of employing the Alternating Direction Method of
Multipliers (ADMM) [98] or one of its parallel versions [86],
[87], [99]–[102], sometimes referred to as the Simultaneous
Direction Method of Multipliers (SDMM). Although these
algorithms are appealing, they require to invert the operator
Id +Φ>Φ+A>A, which makes them less attractive than primal-
dual algorithms for solving Problem (17). Indeed, this matrix
is not diagonalizable in the DFT domain (due to the form
of Φ), which rules out efficient inversion techniques such as
those employed in [100], [103], [104]. To the best of our
knowledge, this issue can be circumvented in specific cases
only, for example when Φ denotes the NLTV operator defined
in (15). In this case, one may resort to the solution in [25],
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Algorithm 1 M+LFBF for solving Problem (28)

Initialization
Y[0]

1 ∈ RM×R, ν[0]1 ∈ RL

y[0]
2 ∈ (RK)S

x[0] ∈ (RN )R, ζ [0] ∈ RL

θ =
√
‖A‖2 + max{‖Φ‖2, 1}

ε ∈]0, 1
θ+1

[
For t = 0, 1, . . .

γt ∈
[
ε,

1− ε
θ

]
(

x̂[t], ζ̂ [t]
)

=
(

x[t], ζ [t]
)
− γt

(
Φ>Y[t]

1 + A>y[t]
2 , ν

[t]
)(

p[t], ρ[t]
)

=
(
PC(x̂[t]), PW (ζ̂ [t])

)(
Ŷ

[t]

1 , ν̂
[t]
1

)
=
(

Y[t]
1 , ν

[t]
1

)
+ γt

(
Φx[t], ζ [t]

)(
Ỹ

[t]

1 , ν̃
[t]
1

)
=
(

Ŷ
[t]

1 , ν̂
[t]
1

)
− γtPE

(
Ŷ

[t]

1 /γt, ν̂
[t]
1 /γt

)(
Y[t+1]

1 , ν
[t+1]
1

)
=
(

Ỹ
[t]

1 , ν̃
[t]
1

)
+ γt

(
Φ(p[t] − x[t]), ρ[t] − ζ [t]

)
ŷ[t]
2 = y[t]

2 + γtAx[t]

ỹ[t]
2 = ŷ[t]

2 − γt prox
γ−1
t f

(
ŷ[t]
2 /γt

)
y[t+1]
2 = ỹ[t]

2 + γtA(p[t] − x[t])(
x̃[t], ζ̃ [t]

)
=
(

p[t], ρ[t]
)
− γt

(
Φ>Ỹ

[t]

1 + A>ỹ[t]
2 , ν̃

[t]
1

)(
x[t+1], ζ [t+1]

)
=
(

x[t] − x̂[t] + x̃[t], ζ [t] − ζ̂ [t] + ζ̃ [t]
)

[105], which consists of decomposing Φ as follows:

Φ = Ω

 G1

...
GQ2−1


︸ ︷︷ ︸

G

, (43)

where, for every q ∈ {1, . . . , Q2 − 1}, Gq : (RN )R → RN×R
is a discrete difference operator and Ω ∈ RM×N(Q2−1) is
a weighted block-selection operator. So doing, Problem (17)
can be equivalently reformulated by introducing an auxiliary
variable ξ = Φx ∈ RM×R, yielding

minimize
(x,ξ)∈C×D

f(Ax, z) s. t. (Gx, ξ) ∈ V, (44)

where V =
{

(X, ξ) ∈ RN(Q2−1)×R × RM×R
∣∣ ΩX = ξ

}
. The

iterations associated to SDMM are illustrated in Algorithm 2.
It is worth emphasizing that SDMM still requires to compute

the projection onto D, which may be done by either resorting
to specific numerical solutions [73], [74], [106], [107] or
employing the epigraphical splitting technique presented in
Section III-A. However, according to our simulations (see
Section IV-C), both approaches are slower than Algorithm 1.

IV. NUMERICAL RESULTS

A. Color photography

In this section, we numerically evaluate the ST-NLTV
regularization proposed in Section II and compare it with
a standard channel-by-channel (CC) regularization [34], [75]:

gcc(x) =

R∑
r=1

N∑
`=1

τ`‖X(`)
r ‖p, (45)

Algorithm 2 SDMM for solving Problem (44)

Initialization
y[0]
1 ∈ (RN )R,Y[0]

2 ∈ RM×R, y[0]
3 ∈ (RK)S

y[0]
1 ∈ (RN )R,Y

[0]
2 ∈ RM×R, y[0]

3 ∈ (RK)S

χ
[0]
1 ∈ RM×R, χ[0]

2 ∈ RM×R

χ
[0]
1 ∈ RM×R, χ[0]

2 ∈ RM×R
H = Id +G>G + A>A

For t = 0, 1, . . .

γt ∈ ]0,+∞[

x[t] = H−1
[
y[t]
1 − y[t]

1 + G>(Y[t]
2 − Y

[t]
2 ) + A>(y[t]

3 − y[t]
3 )
]

ξ[t] = 1
2

(
χ
[t]
1 − χ

[t]
1

)
+ 1

2

(
χ
[t]
2 − χ

[t]
2

)
y[t+1]
1 = PC

(
x[t] + y[t]

1

)
χ
[t+1]
1 = PD

(
ξ[t] + χ

[t]
1

)
(
Y[t+1]

2 , χ
[t+1]
2

)
= PV (Gx[t] + Y

[t]
2 , ξ

[t] + χ
[t]
2 )

y[t+1]
3 = proxγtf

(
Ax[t] + y[t]

3

)
y[t+1]
1 = y[t]

1 + x[t] − y[t+1]
1

χ
[t+1]
1 = χ

[t]
1 + ξ[t] − χ[t+1]

1(
Y

[t+1]
2 , χ

[t+1]
2

)
=
(
Y

[t]
2 + Gx[t] − Y[t+1]

2 , χ
[t]
2 + ξ[t] − χ[t+1]

2

)
y[t+1]
3 = y[t]

3 + Ax[t] − y[t+1]
3

where X
(`)
r denotes the r-th column vector of matrix X(`)

defined in (9). Note that, for both CC-NLTV and ST-NLTV,
we set τ` ≡ 1, Q = 11, Q̃ = 5, δ = 35 and M = 14, as this
setting was observed to yield the best numerical results.

The first experiment is focused on color imaging, i.e. the
case R = S = 3. The noisy observations are obtained with the
degradation model in (3), where the measurement operator
(Dr)1≤r≤R denotes a decimated convolution. While it is
common for color imaging to work in a luminance-chrominance
space [108], [109], or a perceptually-uniform space [44], the
random decimation prevents us from following this approach,
because pixels having missing colors cannot be correctly
projected onto a different color space. The experiments are
thus conducted in the RGB color space, and the dynamic range
constraint set C imposes that the pixel values belong to [0, 255].
Moreover, the fidelity term related to the noise log-likelihood
is f = ‖A · −z‖22.

In the example of Fig. 1, we collect the images reconstructed
by using `p-CC-TV [34], `p-CC-NLTV [75], `p-ST-TV [42],
[44] and the proposed `p-ST-NLTV for p ∈ {1, 2,+∞}.
The results demonstrate the interest of considering non-local
structure tensor measures, `1-ST-NLTV being the most effective
regularization. Indeed, ST-NLTV regularization combines the
advantages of both ST and NLTV, as one can see a better
preservation of details and a reduction of color smearing.

B. Imaging spectroscopy

In this section, we compare `1-ST-NLTV with implemen-
tations of two state-of-the-art methods in spectral imagery:
Hyperspectral TV (H-TV) [10] (see Section II-C1), and
Multichannel NLTV (M-NLTV) [11] (see Section II-C2). To
this end, two scenarios are addressed by using the degradation
model in (3): a compressive-sensing scenario in which the
measurement operator (Dr)1≤r≤R is a random decimation,
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(a) Original. (b) Noisy. (c) Zoom.

(d) `1-CC-TV [34]: 16.15 dB. (e) `2-CC-TV [34]: 16.32 dB. (f) `∞-CC-TV [34]: 16.05 dB.

(g) `1-CC-NLTV [75]: 16.87 dB. (h) `2-CC-NLTV [75]: 17.20 dB. (i) `∞-CC-NLTV [75]: 17.22 dB.

(j) `1-ST-TV: 17.08 dB. (k) `2-ST-TV [42]: 16.84 dB. (l) `∞-ST-TV [44]: 16.43 dB.

(m) `1-ST-NLTV: 18.20 dB. (n) `2-ST-NLTV: 17.46 dB. (o) `∞-ST-NLTV: 16.67 dB.

Fig. 1. Visual comparison of a color image reconstructed with various regularization constraints. Degradation: additive zero-mean white Gaussian noise with
std. deviation equal to 10, uniform blur of size 3× 3, and 80% of decimation (N = 154401, R = S = 3 and K = 30880).
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(a) Component r = 81. (b) H-TV: 11.78 dB. (c) `1-ST-TV: 12.98 dB.

(d) Noisy. (e) M-NLTV: 12.76 dB. (f) `1-ST-NLTV: 14.36 dB.

Fig. 2. Visual comparison of the hyperspectral image hydice reconstructed with H-TV [10], `1-ST-TV, M-NLTV [11] and `1-ST-NLTV. Degradation:
compressive sensing scenario involving an additive zero-mean white Gaussian noise with std. deviation 5 and 90% of decimation (N = 65536, R = 191,
K = 6553 and S = 191).

TABLE I
SNR (DB) – MEAN SNR (DB) OF RECONSTRUCTED IMAGES (DEGRADATION: STD. DEVIATION = 5, DECIMATION = 90%).

image size H-TV [10] `1-ST-TV M-NLTV [11] `1-ST-NLTV

Hydice 256× 256× 191 10.65 – 09.87 11.93 – 11.16 11.57 – 10.76 12.98 – 12.11
Indian Pine 145× 145× 200 17.31 – 17.00 18.46 – 18.24 17.62 – 17.34 19.53 – 19.49
Little Coriver 512× 512× 7 17.81 – 18.20 18.49 – 18.83 18.46 – 18.90 19.88 – 20.18
Mississippi 512× 512× 7 18.27 – 18.07 18.60 – 18.37 18.94 – 18.59 19.56 – 19.28
Montana 512× 512× 7 22.49 – 20.97 22.68 – 21.15 22.85 – 21.29 23.31 – 21.76
Rio 512× 512× 7 16.48 – 15.29 16.65 – 15.48 16.82 – 15.64 17.20 – 16.05
Paris 512× 512× 7 14.85 – 14.31 14.94 – 14.39 15.05 – 14.53 15.36 – 14.82

TABLE II
SNR (DB) – MEAN SNR (DB) OF RESTORED IMAGES (DEGRADATION: STD. DEVIATION = 5, BLUR = 5× 5, DECIMATION = 70%).

image size H-TV [10] `1-ST-TV M-NLTV [11] `1-ST-NLTV

Hydice 256× 256× 191 13.76 – 12.90 14.30 – 13.50 13.84 – 12.98 14.84 – 14.08
Indian Pine 145× 145× 200 19.80 – 19.65 20.22 – 20.13 19.73 – 19.57 20.43 – 20.41
Little Coriver 512× 512× 7 21.35 – 21.88 21.62 – 22.01 21.31 – 22.00 21.99 – 22.49
Mississippi 512× 512× 7 21.12 – 20.29 21.21 – 20.27 21.41 – 20.52 21.65 – 20.83
Montana 512× 512× 7 24.80 – 23.37 24.82 – 23.31 24.96 – 23.53 25.18 – 23.72
Rio 512× 512× 7 18.62 – 17.50 18.57 – 17.48 18.57 – 17.60 18.87 – 17.80
Paris 512× 512× 7 16.68 – 16.55 16.80 – 16.53 16.73 – 16.60 17.05 – 16.81
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and a restoration scenario in which (Dr)1≤r≤R is a decimated
convolution. For reproducibility purposes, we use several
publicly available multispectral and hyperspectral images.2

The SNR index is used to give a quantitative assessment of
the results obtained from the simulated experiments, reporting
both the SNR computed over all the image and the average of
SNR indices evaluated component-by-component (M-SNR).

In our experiments, the fidelity term related to the noise
log-likelihood is f = ‖A · −z‖22. Before degrading the original
images, the pixels of each component are normalized in [0, 255],
hence the dynamic range constraint set C imposes that the
pixel values belong to [0, 255]. For the ST-NLTV constraints,
we set τ` ≡ 1, Q = 11, Q̃ = 5, δ = 35 and M = 14.

Extensive tests have been carried out on several images
of different sizes. The SNR and M-SNR indices obtained
by using the proposed `1-ST-TV and `1-ST-NLTV regular-
ization constraints are collected in Tables I and II for the
two degradation scenarios mentioned above. In addition, a
comparison is performed between our method and the H-TV
and M-NLTV algorithms mentioned above (using an M+LFBF
implementation). The hyper-parameter for each method (the
bound η for the ST constraint in our algorithm) was hand-tuned
in order to achieve the best SNR values. The best results are
highlighted in bold. Moreover, a component-by-component
comparison of two hyperspectral images is made in Fig. 3,
while a visual comparison of a component from the image
hydice is displayed in Fig. 2.

The aforementioned results demonstrate the interest of
combining the non-locality principle with structure-tensor
smoothness measures. Indeed, `1-ST-NLTV proves to be the
most effective regularization with gains in SNR (up to 1.4 dB)
with respect to M-NLTV, which in turn is comparable with
`1-ST-TV. The better performance of `1-ST-NLTV seems to be
related to its ability to better preserve edges and thin structures
present in images, while preventing component smearing.

C. Comparison with SDMM

To complete our analysis, we compare the execution time
of Algorithm 1 with respect to three alternative solutions:
• M+LFBF applied to Problem (17) by computing the

projection onto D via the procedure in [73];
• SDMM applied to Problem (44) by computing the pro-

jection onto D via the procedure in [73] (Algorithm 2);
• SDMM applied to Problem (44) after that the constraint
D is replaced by the constraints E and W .

We would like to emphasize that all the above algorithms solve
exactly Problem (17), hence they produce equivalent results
(i.e. they converge to the same solution). Our objective here
is to empirically demonstrate that the epigraphical splitting
technique and primal-dual proximal algorithms constitute a
competitive choice for the problem at hand.

We present the results obtained with the image indian pine,
since a similar behaviour was observed for other images. The
stopping criterion is set to ‖x[i+1] − x[i]‖ ≤ 10−5‖x[i]‖. We
developed in MATLAB the basic structure of the aforemen-
tioned algorithms, while the most “complex” operations (such

2https://engineering.purdue.edu/∼biehl/MultiSpec/hyperspectral.html

as the non-local gradient and projection computations) were
implemented in C using mex files. In order to compute the
projection onto D, we used the `1-ball projector described in
[73, Algorithm 2],3 as it avoids the expensive sorting operation
(a review of several `1-ball projectors can be found in [110]).
Our codes were executed in Matlab R2011b with an Intel Xeon
CPU at 2.80 GHz and 8 GB of RAM.

Fig. 4 shows the relative error ‖x[i] − x[∞]‖/‖x[∞]‖ as
a function of the computational time, where x[∞] denotes
the solution computed with a stopping criterion of 10−5.
These plots indicate that the epigraphical approach yields a
faster convergence than the direct one for both SDMM and
M+LFBF, the latter being much faster than the former. This
can be explained by the computational cost of the subiterations
required by the direct projection onto the `1-ball. Note that
these conclusions extend to all images in the dataset.

The results in Fig. 4 refer to the constraint bound η that
achieves the best SNR indices. In practice, the optimal bound
may not be known precisely, although a reasonable estimate
may be available for certain classes of images based on statistics
of databases [13]. While it is out of the scope of this paper
to investigate an optimal strategy to set this bound, it is
important to evaluate the impact of its choice on our method
performance. In Tables III and IV, we compare the epigraphical
approach with the direct computation of the projections (via
standard iterative solutions) for different choices of η. For better
readability, the values of η are expressed as a multiplicative
factor of the ST-TV and ST-NLTV semi-norms of the original
image. The execution times indicate that the epigraphical
approach yields a faster convergence than the direct approach
for SDMM and M+LFBF. Moreover, the numerical results show
that errors within ±5% from the optimal value for η lead to
SNR variations within 1.2%. We refer to [75] for an extensive
comparison between the epigraphical and direct approaches.

V. CONCLUSIONS

We have proposed a new regularization for multicomponent
images that is a combination of non-local total variation and
structure tensor. The resulting image recovery problem has
been formulated as a constrained convex optimization problem
and solved through a novel epigraphical projection method
using primal-dual proximal algorithms. The obtained results
demonstrate the better performance of structure tensor and non-
local gradients over a number of multispectral and hyperspectral
images, although it would be interesting to consider other
applications, such as the recovery of video signals or volumetric
images. Our results also show that the nuclear norm has
to be preferred over the Frobenius norm for hyperspectral
image recovery problems. Furthermore, the experimental part
indicates that the epigraphical method converges faster than the
approach based on the direct computation of the projections
via standard iterative solutions. In both cases, the proposed
algorithm turns out to be faster than solutions based on the
Alternating Direction Method of Multipliers, suggesting that
primal-dual proximal algorithms constitute a good choice in
practice to deal with multicomponent image recovery problems.

3The mex-file is available at www.cs.ubc.ca/∼mpf/spgl1
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Fig. 3. Quantitative comparison of two hyperspectral images reconstructed with H-TV [10], `1-ST-TV, M-NLTV [11] and `1-ST-NLTV. Degradation:
compressive sensing scenario involving an additive zero-mean white Gaussian noise with std. deviation 5 and 90% of decimation.
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Fig. 4. Comparison between epigraphical and direct methods: ‖x
[i]−x[∞]‖
‖x[∞]‖

vs time (Degradation: std. deviation = 5, decimation = 90%).

TABLE III
RESULTS FOR THE `1-ST-TV CONSTRAINT AND SOME VALUES OF η. DEGRADATION: STD. DEVIATION = 5, DECIMATION = 90%.

(“SPEED UP” IS THE RATIO BETWEEN “DIRECT” AND “EPIGRAPHICAL” TIMES)

η SNR (dB) – M-SNR (dB)

SDMM M+LFBF

direct epigraphical speed up direct epigraphical speed up
# iter. sec. # iter. sec. # iter. sec. # iter. sec.

0.35 18.41 – 18.19 547 767.51 471 466.80 1.64 466 471.95 389 339.24 1.39
0.40 18.46 – 18.24 838 1066.24 698 701.03 1.52 733 735.36 621 558.37 1.32
0.45 18.26 – 18.02 1000 1353.13 1000 990.76 1.37 1000 1018.58 1000 902.00 1.13

TABLE IV
RESULTS FOR THE `1-ST-NLTV CONSTRAINT AND SOME VALUES OF η. DEGRADATION: STD. DEVIATION = 5, DECIMATION = 90%.

(“SPEED UP” IS THE RATIO BETWEEN “DIRECT” AND “EPIGRAPHICAL” TIMES)

η SNR (dB) – M-SNR (dB)

SDMM M+LFBF

direct epigraphical speed up direct epigraphical speed up
# iter. sec. # iter. sec. # iter. sec. # iter. sec.

Neighbourhood size:Q = 3
0.25 19.15 – 19.05 1000 4384.38 1000 3583.57 1.23 190 494.77 190 448.22 1.11
0.30 19.39 – 19.32 1000 4414.94 1000 3417.18 1.29 243 649.31 236 534.50 1.21
0.35 19.36 – 19.28 875 4175.52 1000 3482.80 1.20 319 839.86 308 726.50 1.16

Neighbourhood size:Q = 5
0.25 19.43 – 19.38 1000 14412.86 1000 10167.34 1.42 216 977.95 212 871.80 1.12
0.30 19.55 – 19.51 1000 14338.36 1000 10174.68 1.41 275 1257.71 268 1143.35 1.10
0.35 19.53 – 19.49 1000 14365.92 1000 10356.73 1.39 358 1631.17 347 1424.72 1.14
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[107] J. M. Fadili and G. Peyré, “Total variation projection with first order
schemes,” IEEE Trans. Image Process., vol. 20, no. 3, pp. 657–669,
Mar. 2011.

[108] L. Condat and S. Mosaddegh, “Joint demosaicking and denoising
by total variation minimization,” in Proc. Int. Conf. Image Process.,
Orlando, USA, Sept. 2012.

[109] L. Condat, “A generic proximal algorithm for convex optimization -
application to total variation minimization,” IEEE Signal Proc. Letters,
vol. 21, no. 8, pp. 1054–1057, Aug. 2014.

[110] L. Condat, “Fast projection onto the simplex and the l1 ball,” 2014,
http://hal.archives-ouvertes.fr/hal-01056171.

Giovanni Chierchia received the engineering degree
in computer science from University of Naples
Federico II, Italy, in 2010. From 2010 to 2011,
he worked as research engineer at Institut Mines-
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with Université Paris XI, Paris. In 1999, she joined
Philips Research France, Suresnes, France, where she
worked for two years as a Research Scientist, then
as a Project Leader, in scalable video coding. Since
Oct. 2000 she is with Télécom ParisTech (formerly,
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research interests are in source coding, scalable, robust and distributed video
compression and sparse representations.

Dr. Pesquet-Popescu was an EURASIP BoG member (2003-2010), and
an IEEE Signal Processing Society IVMSP TC member and MMSP TC
associate member. She serves as an Associate Editor for IEEE Trans. on Image
Processing, IEEE Trans. on Multimedia, IEEE Trans. on CSVT, Elsevier Image
Communication, and Hindawi Int. J. Digital Multimedia Broadcasting journals
and was till 2010 an Associate Editor for Elsevier Signal Processing. She was
a Technical Co-Chair for the PCS2004 conference, and General Co-Chair for
IEEE SPS MMSP2010, EUSIPCO 2012, and IEEE SPS ICIP 2014 conferences.
Beatrice Pesquet-Popescu is a recipient of the “Best Student Paper Award” in
the IEEE Signal Processing Workshop on Higher-Order Statistics in 1997, of
the Bronze Inventor Medal from Philips Research and in 1998 she received a
”Young Investigator Award” granted by the French Physical Society. She holds
23 patents in wavelet-based video coding and has authored more than 290
book chapters, journal and conference papers in the field. In 2006, she was
the recipient, together with D. Turaga and M. van der Schaar, of the IEEE
Trans. on Circuits and Systems for Video Technology “Best Paper Award”.

Jean-Christophe Pesquet (S’89–M’91–SM’99–
F’12) received the engineering degree from Supélec,
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Conférences at the Université Paris-Sud, and a
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