
Intelligent Crawling of Web Applications
for Web Archiving

Muhammad Faheem
supervised by Pierre Senellart

Institut Télécom
Télécom ParisTech; CNRS LTCI

Paris, France

{muhammad.faheem, pierre.senellart}@telecom.paristech.fr

ABSTRACT
The steady growth of the World Wide Web raises challenges
regarding the preservation of meaningful Web data. Tools
used currently by Web archivists blindly crawl and store Web
pages found while crawling, disregarding the kind of Web
site currently accessed (which leads to suboptimal crawling
strategies) and whatever structured content is contained
in Web pages (which results in page-level archives whose
content is hard to exploit). We focus in this PhD work
on the crawling and archiving of publicly accessible Web
applications, especially those of the social Web. A Web
application is any application that uses Web standards such
as HTML and HTTP to publish information on the Web,
accessible by Web browsers. Examples include Web forums,
social networks, geolocation services, etc. We claim that the
best strategy to crawl these applications is to make the Web
crawler aware of the kind of application currently processed,
allowing it to refine the list of URLs to process, and to
annotate the archive with information about the structure
of crawled content. We add adaptive characteristics to an
archival Web crawler: being able to identify when a Web
page belongs to a given Web application and applying the
appropriate crawling and content extraction methodology.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—Web-based services; H.5.4 [Information
Interfaces and Presentation]: Hypertext/Hypermedia

General Terms
Design, Languages, Performance

Keywords
Web application, archiving, crawling, extraction, XPath

1. PROBLEM
Since the introduction of Web 2.0, the social Web is becom-

ing an important resource for content extraction. There are
millions of users who are using the social Web as a medium

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2012 Companion, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1230-1/12/04.

for publishing information, discussing political issues, sharing
videos, posting comments, managing blogs, and also stating
their personal opinion in ongoing discussions. Currently the
social Web is not only used by ordinary users but is also
getting much attention from political leaders. Nowadays it is
getting quite common in the USA and the UK to answer par-
liamentary questions using Twitter. Recently, on 6 July 2011,
President Barack Obama became the first US president to
use Twitter as a tool for public communication [13]. Thus the
social Web is also becoming a part of political campaigns as
well as driving the future political agenda. This strengthens
the necessity to preserve social Web data.
But archiving Web data from the social Web in an in-

telligent manner is still an ongoing challenge. Our aim is
to deal with this challenge by introducing a new adaptive
approach which relies basically on a knowledge base about
the different kind of (social) Web applications. A Web appli-
cation is any HTTP-based application that utilizes the Web
and Web browser technologies to publish information. We
focus in particular on social aspects of the Web, which are
heavily based on user-generated content, social interaction,
and networking, as can be found for instance in Web forums,
blogs, or on Twitter.
To understand how current archiving tools are not fully

up to the task of social Web archiving, consider the sim-
plified architecture of a traditional Web crawler (such as
Heritrix [23]) depicted in Figure 1. A Web crawler (also
known as Web spider or robot) is a computer program that
inspects the Web in a methodical manner and retrieves tar-
geted documents. Traditional Web crawlers crawl the Web
in a conceptually very simple way. They start from a seed
list of the URLs to be stored in a queue (e.g., the starting
URL may be the homepage of a Web site). Web pages are
then fetched from this queue one after the other and links
are extracted from these Web pages. If they are in the scope

Queue
Manage-
ment

Page
Fetching

Link Ex-
traction

URL
Selection

Figure 1: Traditional processing chain of a Web
crawler

WWW 2012 – PhD Symposium April 16–20, 2012, Lyon, France

127



of the archiving task, the newly extracted URLs are added
to the queue. This process ends after a specified time or
when no new interesting URLs can be found.
This approach does not confront the challenges of Web

application crawling: the nature of the Web application
crawled is not taken into account to decide the crawling
strategy or the content to be stored; Web applications with
dynamic content (e.g., Web forums, blogs, etc.) may be
crawled inefficiently; some content may be missed when it
is only accessible through complex crawling actions (AJAX
requests, form submissions).
For instance, Web forums hold dynamic characteristics

which mean that, for extracting semantic content or for crawl-
ing optimization, the nature of these Web forums needs to
be understood. Usually the content of a Web forum is stored
in a database. When a user makes a request, the response
page is automatically generated using a predefined template.
When two requests require the same piece of content, the
server will return two dynamic pages with same or similar
content but with two different URLs. These dynamic pages
create redundancy that may be harmful, both because they
will require more resources to be crawled, and because the
final archive will be of worse quality. Blog systems also
contain redundant information: there may be for instance
both monthly and yearly archives, that contain duplicate
content organized slightly differently. When crawling Web
forums and blogs with the traditional crawler approach, we
will encounter many of these redundant cases. In extreme
cases, the crawler can fall in a spider trap because it has
infinitely many links to crawl. There are also several noisy
links such as to a print-friendly page or advertisement, etc.,
which would be better to avoid during the constitution of the
archive. Traditional approaches are also unable to crawl data
from highly scripted Web applications or from the deep Web
(data accessible behind forms). Finally, classical archiving
crawlers do not attempt any form of data extraction whereas
archivists and archive users would like to have access to more
semantics about the content of the archive, such as times-
tamps of blog messages, identifiers of contributors, etc., even
using complex page navigation for structuring the related
information across several pages. For instance, a Web ap-
plication that organizes its content in a way that one needs
to navigate through the calendar to extract the targeted
information or, in the case of a Web forum, where one thread
can have several posts consisting of several pages and one
needs to extract this related information using effective page
navigation, the traditional approach will face limitation to
do so efficiently, i.e., spending more time in crawling for few
interesting pages with no semantics about content.
We briefly discuss next the state of the art. Then we

present in Section 3 the proposed approach: to introduce
an application-aware helper in the crawling process, that
assists the crawler throughout the crawling process and will
ensure that data is crawled efficiently. In Section 4 we
describe our methodology in more detail by describing our
Web application detection patterns, a possible structure for a
Web application knowledge base, and which kind of crawling
actions we want the crawler to perform. We evoke in Section 5
preliminary results and end this paper with a discussion of
our future research.

2. STATE OF THE ART
Web crawling is a well-studied problem with still ongo-

ing challenges. Julien Masanès in [18] surveys the field of
Web archiving and Web archiving crawling. He discusses in
particular crawling the deep Web and stresses the need of
archiving the data from both the surface and deep Web for
the necessity of Web preservation.
A focused, or goal-directed, crawler, crawls the Web ac-

cording to a predefined set of topics [7]. This approach is a
different way of influencing the crawler behavior, not based
on the structure of Web applications as is our aim, but on
the content of Web pages. Our approach does not have the
same purpose as focused crawling: it aims instead at a better
approach for known Web applications. Both strategies for
improving a traditional crawler are thus complementary.
Content in Web applications or content management sys-

tems are arranged with respect to a template (e.g., template
components include left or right side bar of the Web page,
page navigation bar, header and footer, main content, etc.)
Among the various works on template extraction, Gibson,
Punera, and Tomkins [10] have carried out some analysis
on the spread of template-based content on the Web. They
have found that 40–50% of the Web content (in 2005) is
template-based, i.e., part of some Web application. Their
findings also suggested that template-based Web pages are
growing at the rate of 6–8% per year. This research is a
strong hint at the benefit for a crawler to handle in a specific
manner Web application crawling.
Though application-aware crawling in general has not yet,

to the best of our knowledge, been addressed, there are some
efforts on content extraction from Web forums [11, 6]. The
first approach, dubbed Board Forum Crawling (BFC) [11],
leverages the organized structure of Web forums and sim-
ulates user behavior in the extraction process. BFC deals
with the problem effectively, but is still confronted with limi-
tations as it is based on a simple rule and can only deal with
forums with some specific organized structure. The second
approach [6], however, does not depend on Web forum struc-
ture. Their iRobot system assists the extraction process by
providing the sitemap of the Web application being crawled.
The sitemap is constructed by randomly crawling a few pages
from the Web application. This process helps in identifying
the rich repetitive regions and then further clusters them
according to their layouts [25]. After sitemap generation,
iRobot obtains the structure of the Web forum in the form
of a directed graph consisting of vertices (Web pages) and di-
rected arcs (links between different Web pages). Furthermore
a path analysis is performed to provide an optimal traversal
path which leads the extraction process in order to avoid
duplicate and invalid pages. Our goal would be to develop
similar techniques but for arbitrary Web applications, not
only Web forums.
As we shall explain, our approach relies on a generic mech-

anism for detecting the kind of Web application currently
crawled. Again there has been some work in the particular
cases of blogs or forums. In particular, [14] uses support vec-
tor machines (SVM) to detect whether a given page is a blog
page. Support vector machines [5, 19] are widely used for
text classification problem. In [14], SVMs are trained using
various traditional feature vectors formed of the content’s
bag of words or bag of n-grams, and some new feature for
blog detection are introduced such as the bag of linked URLs
and the bag of anchors. Relative entropy is used for feature
selection. According to the experiments shown in [14], blog

WWW 2012 – PhD Symposium April 16–20, 2012, Lyon, France

128



identification was most effective by using features consisting
of a combination of URLs, anchors, and meta tags.
Still on the topic of Web application detection, there are

some approaches for detecting deep Web sources [3, 4]. The
former effort, named form-focused crawler [3], was introduced
for detecting online databases. This technique uses a focused
crawler for a given topic with the assistance of a link classifier
which detects searchable forms and prioritizes detected links.
This technique, however, has a few limitations: manual
tunning, link classifier dependency, and heterogeneous results.
The latter approach [4] introduced a more adaptive approach
(an adaptive crawler for hidden-web entities) that addresses
these limitations. It efficiently explores the entry points to
the hiddenWeb with an unknown pattern, then automatically
adding this experience to the learning process.
More generally, a few works [1, 16, 15] aim at identifying

a general category (e.g., blog, academic, personal, etc.) for a
given Web site, using classifiers based on structural features
of Web pages that attempt to detect the functionalities
of these Web sites. This is not directly applicable to our
setting, first because the classification is very coarse, and
second because these techniques function at the Web site
level (e.g., based on the home page) and not at the level of
individual Web pages.
Observe that all these application identification techniques

heavily rely on trained classifiers. This is a possible direction
for our Web application detection mechanism.

3. PROPOSED APPROACH
Our main claim is that different crawling techniques should

be applied to different types of Web applications. This means
having different crawling strategies for different forms of
social Web sites (blogs, wikis, social networks, social book-
marks, microblogs, music networks, Web forums, photo net-
works, video networks, etc.), for specific content management
systems (e.g., WordPress, phpBB), and for specific sites (e.g.,
Twitter, Facebook). Our proposed approach will detect the
type of Web application (general type, content management
system, or site) currently processed by the crawler, and the
kind of Web pages inside this Web application (e.g., a user
profile on a social network) and decide on further crawling
actions (following a link, using an API, submitting a form,
extracting structured content) accordingly.
To adapt the behavior of traditional crawlers according to

our requirements, we have chosen to extend the traditional
architecture of a Web crawler in the way depicted in Figure 2.
Here the page fetching module (see Figure 1) is replaced by
some more elaborate resource fetching component that is able
to retrieve resources that are not just accessible by a simple
HTTP GET request (but by a succession of such requests,
or by a POST request, or by the use of an API), or that
are individual Web objects inside a Web page (e.g., a blog
post, a comment, a poster’s name). An application-aware
helper module is then introduced in place of the usual link
extraction function, in order to identify the Web application
that is currently being crawled, and decide and categorize
crawling actions that can be performed on this particular
Web application.

These modifications will be implemented in two Web
crawlers: the proprietary crawler of the Internet Memory
Foundation, with whom we are closely collaborating, and
into a customized version of Heritrix [23], developed by
the ATHENA research lab in the framework of the AR-

Queue
Manage-
ment

Resource
Fetching

Application
Aware
Helper

Resource
Selection

Figure 2: Extended architecture of the Web crawler

COMEM project [2]. The following section will describe the
application-aware helper module with more detail.

4. METHODOLOGY
This section introduces the application-aware helper mod-

ule. This module assists the archiving crawler for acquiring
content from the social Web in an intelligent and adaptive
manner. This module enriches the functionalities of the
crawler, and makes the crawling process more efficient.

Knowledge base of Web applications. The crawler will
be assisted by a knowledge base of Web applications that
describes how to crawl a Web site in an intelligent manner.
This knowledge base will specify how to detect specific Web
applications and which crawling actions should be executed.
The knowledge base will be arranged in a hierarchical man-
ner, from general categorizations to specific instances (Web
sites) of this Web application. For example the social media
Web sites can be categorized into blogs, Web forums, mi-
croblogs, video networks, etc. Then we can further categorize
these specific types of Web applications on the basis of the
content management system they are based on. For instance,
Wordpress, Movable Type, etc., are examples of blog content
management system, whereas phpBB and vBulletin, etc, are
examples of Web forum content management systems.
Moreover, a given Web application usually consists of

different kinds of Web pages: in a Web forum, there are
pages that display lists of forums, pages that display the
list of posts under specific forums, and pages that point to
individual posts with their comments. Thus, the knowledge
base will describe the different kinds of Web pages under
a specific Web application and then, based on this, we can
define different crawling actions that should be executed
against this specific page level.
The knowledge base is to be specified in a declarative

language, so as to be easily shared and updated, hopefully
maintained by non-programmers, and also possibly automat-
ically learned from examples. The W3C has normalized a
Web Application Description Language (WADL) [12] that
allows describing resources of HTTP-based application in
a machine processable format. WADL is used for describ-
ing the set of resources, their relationship with each other,
the method that can be applied on each resource, resource
representation formats, etc. WADL may be a candidate
component and export format, of our knowledge base, but
does not satisfy all our needs: description of Web application
recognition patterns, and Web application interactions that
go beyond simple GET and POST requests. Consequently,
our knowledge-based will be described in custom XML for-
mat, well-adapted to the tree structure of the hierarchy of
Web applications and page levels.

WWW 2012 – PhD Symposium April 16–20, 2012, Lyon, France

129



Web application detection module. One main challenge
in intelligent crawling and content extraction is to identify
the Web application and then perform the best crawling
strategy accordingly. There is not much work done on the
Web application identification, but there are a few efforts
for classifying Web pages under different categorized Web
applications [1, 16, 15].
To detect a particular Web application, our knowledge

base allows describing several rules, based on URL patterns,
HTTP metadata, textual content, XPath patterns, references
to a classifier, and, possibly, Web-graph–based features. The
identification of the page level inside a Web application can
also be done by categorizing the page according to structural
properties.
Let us take the example of the vBulletin Web forum con-

tent management system, that can for instance be identi-
fied by searching for a reference to a vbulletin_global.js
JavaScript script by using a simple //script/@src XPath
expression. Pages at the level of “list of forums” are iden-
tified1 when they match the //a[@class="forum"]/@href
XPath expressions.

Crawling and extraction. After detecting the application
to whom the current Web page belongs, the next stage is
to determine the corresponding crawling actions. Crawling
action scopes go beyond just a list of URLs to add to the
queue. It can be any action that involves using APIs to
extract relevant data from the social network sites, such as
Twitter, or performing complicated interactions with AJAX-
based applications, or identifying Web objects in particular
Web application. More specifically, crawling actions are of
two kinds:

Navigation actions: to navigate to another Web page or
Web resources.

Extraction actions: to extract individual semantic objects
from Web pages (e.g., timestamp, the blog post, the
comments).

We similarly want a declarative language for describing all
crawling actions (again, the hope is to have an easily main-
tainable knowledge base, including machine maintainability).
We therefore need a navigation and extraction language able
to access data from the deep Web as well as regular URLs.
We will use OXPath [9]. OXPath is an extension of XPath,
with added facilities for interacting with Web applications
and extracting relevant data. It allows the simulation of user
actions to interact with scripted multipage interfaces of the
Web application (the evaluator relies either on a Mozilla-
based or Webkit-based browser). It inherits from XPath as
well as allows to use CSS-based selectors. It makes possi-
ble to navigate through different pages by using clicks and
even allows to extracting information from previous pages.
An open-source implementation is available, that will be
integrated into our system.
As an example, a simple OXPath action that can be per-

formed on the vBulletin example is

//a.forum/@href/{click/}

1The example is simplified for the sake of presentation; in
reality we have to deal with several different layouts that
vBulletin can produce.

that “clicks” on every link to an individual Web forum.
We refer to [9] for more elaborate examples of OXPath
expressions.
We have also studied a few alternatives to OXPath, espe-

cially [17, 20, 21, 22, 24]. These approaches, except [24], do
not deal with deep Web interaction such as form submissions
and page navigation. [22] uses Datalog as a programming
language for extracting data from Web pages. This approach
introduces the Xlog language as an application of Datalog,
which includes predefined extraction predicates. This tech-
nique opens the window for the researcher to use Datalog
as a base for the extraction process, but still requires some
amount of effort to deal with the deep Web. [21] faces the
same challenge. This approach also extracts the content
from simple pages or from bibliographic pages. It does not
simulate any action for form filling or page navigation. They
introduced a wrapping language named as Wraplet, that
extracts structured data from Web pages (written in HTML).
This language is based on wraplet expressions written as a
script (a data extraction expression), takes an HTML doc-
ument as an input, and produces output in the form of
XML. But unfortunately this approach can be applied only
to singleton pages, which do not hold the dynamic nature
of the Web. The technique which is most similar to OX-
Path and facilitates functionalities such as form submission
and navigation is [24]. This paper, written in a very simple
tone, provides several examples to clarify the concepts. The
authors have introduced a system named browser-oriented
data extraction system (BODE) that extracts the informa-
tions from Web pages and uses URL links to navigate to
the next page for information extraction. BODE harvests
Web applications even when they which are using scripting
functions such as JavaScript or AJAX for accessing the next
page. It also simulates user actions to deal with the deep
Web. In despite of all these advantages, BODE does not
consider memory management constraints, which makes it
unsuitable for our system where we want to continuously
crawl and archive large volumes of data: browser instances
are replicated for multiple page navigation, which raises the
issue of performance. In our system, we will deal with-large
scale object extraction, and for that we need a system which
takes care of performance and memory management. OX-
Path deals with this properly and scales well in time and
memory.

5. RESULTS
Since this PhD work has only been started a few months

ago, we have focused on developing an architecture and the
methodology described in the previous section. A basic pro-
totype of the application-aware helper has been implemented,
with a proof of concept that it is indeed feasible, with recog-
nition for a couple of Web applications. For instance, the
prototype has been evaluated against the vBulletin applica-
tion, on a variety of Web sites using this content management
system. For now, the system is able to detect the type of
the Web application, the level in the Web application, and
executes the corresponding crawling actions. Recently, we
have integrated the YFilter system [8] (a NFA based filter-
ing system) for efficient indexing of detection patterns, in
order to quickly find the relevant Web applications. Now
the system is able to extract more interesting pages with
a minimum effort as compared to traditional crawling ap-
proach. We still need to execute crawling actions by using

WWW 2012 – PhD Symposium April 16–20, 2012, Lyon, France

130



an OXPath evaluator (or directly convert them into URLs or
XPath expressions when possible) and interface our helper
with the crawler, but the initial results are satisfactory and
promising for our future research.

6. FUTURE WORK
A number of interesting challenges warrant further investi-

gation and will be our agenda for the rest of this PhD:

(1) Using XPath 1.0 expressions for detection patterns faces
some expressiveness limitations: in some cases, for in-
stance, regular expressions may be required to identify
a Web application. We have the option of switching to
XPath 2.0 expressions or to add extension functions for
this purpose, but we should strive also at keeping a lan-
guage that is as declarative as possible for optimization
purposes.

(2) One significant challenge is to investigate the possible
automatic, unsupervised, learning of new Web applica-
tions (by the inference of common patterns), and the
adaptation to slight changes in the templates that render
the wrappers unusable.

(3) We also must ensure throughout our work the possible
fine integration with the crawler(s) by developing mecha-
nism for interacting with the other components. Among
the challenges here is the fact that the crawler should still
be responsible for all Web interactions, in order to main-
tain politeness constraints, whereas, for instance, some
crawling actions may require going through an external
program (an API crawler, or an OXPath evaluatior).

Obviously, an additional challenge throughout this work is
to come up with metrics that allow formal evaluation of the
performance of our system (both in terms of effectiveness and
efficiency) with respect to classical Web crawling approaches.

7. ACKNOWLEDGMENTS
The described work was funded by the European Union

Seventh Framework Programme (FP7/2007–2013) under
grant agreement 270239 (ARCOMEM). We are also grateful
to Julien Masanès (Internet Memory) for discussions on the
topic of this PhD.

8. REFERENCES
[1] E. Amitay, D. Carmel, A. Darlow, R. Lempel, and

A. Soffer. The connectivity sonar: Detecting site
functionality by structural patterns. In HT, 2003.

[2] ARCOMEM Project. http://www.arcomem.eu/,
2011–2014.

[3] L. Barbosa and J. Freire. Searching for hidden-Web
databases. In WebDB, 2005.

[4] L. Barbosa and J. Freire. An adaptive crawler for
locating hidden-web entry points. In WWW, 2007.

[5] B. E. Boser, I. Guyon, and V. Vapnik. A training
algorithm for optimal margin classifiers. In COLT,
1992.

[6] R. Cai, J.-M. Yang, W. Lai, Y. Wang, and L. Zhang.
iRobot: An intelligent crawler for Web forums. In
WWW, 2008.

[7] S. Chakrabarti, M. van den Berg, and B. Dom. Focused
crawling: A new approach to topic-specific Web
resource discovery. Computer Networks, 31(11–16),
1999.

[8] Y. Diao, M. ALTINEL, M. J. Franklin, H. Zhang, and
P. Fischer. Path sharing and predicate evaluation for
high-performance XML filtering. ACM TODS, 2003.

[9] T. Furche, G. Gottlob, G. Grasso, C. Schallhart, and
A. J. Sellers. OXPath: A language for scalable,
memory-efficient data extraction from web applications.
PVLDB, 4(11), 2011.

[10] D. Gibson, K. Punera, and A. Tomkins. The volume
and evolution of web page templates. In WWW, 2005.

[11] Y. Guo, K. Li, kai Zhang, and G. Zhang. Board forum
crawling: A Web crawling method for Web forums. In
WIC, 2006.

[12] M. Hadley. Web application description language.
http://www.w3.org/Submission/wadl/.

[13] International Business Times.
http://www.ibtimes.com/articles/175488/
20110706/obama-twitter-townhall.htm, 2011.

[14] P. Kolari, T. Finin, and A. Joshi. Svms for the
Blogosphere: Blog Identification and Splog Detection.
In AAAI, 2006.

[15] C. Lindemann and L. Littig. Coarse-grained
classification of Web sites by their structural properties.
In CIKM, 2006.

[16] C. Lindemann and L. Littig. Classifying Web sites. In
WWW, 2007.

[17] M. Liu and T. W. Ling. A rule-based query language
for HTML. In DASFAA, 2001.

[18] J. Masanès. Web archiving. Springer, 2006.
[19] E. Osuna, R. Freund, and F. Girosi. An improved

training algorithm for support vector machines. In
Workshop on Neural Networks for Signal Processing,
1997.

[20] A. Sahuguet and F. Azavant. Building light-weight
wrappers for legacy Web data-sources using W4F. In
VLDB, 1999.

[21] N. Sawa, A. Morishima, S. Sugimoto, and H. Kitagawa.
Wraplet: Wrapping your Web contents with a
lightweight language. In SITIS, 2007.

[22] W. Shen, A. Doan, J. F. Naughton, and
R. Ramakrishnan. Declarative information extraction
using Datalog with embedded extraction predicates. In
VLDB, 2007.

[23] K. Sigurðsson. Incremental crawling with Heritrix. In
IWAW, 2005.

[24] J.-Y. Su, D.-J. Sun, I.-C. Wu, and L.-P. Chen. On
design of browser-oriented data extraction system and
plug-ins. In JMST, 2010.

[25] S. Zheng, R. Song, J.-R. Wen, and D. Wu. Joint
optimization of wrapper generation and template
detection. In SIGKDD, 2007.

WWW 2012 – PhD Symposium April 16–20, 2012, Lyon, France

131

http://www.arcomem.eu/
http://www.w3.org/Submission/wadl/
http://www.ibtimes.com/articles/175488/20110706/obama-twitter-townhall.htm
http://www.ibtimes.com/articles/175488/20110706/obama-twitter-townhall.htm

	Problem
	State of the Art
	Proposed Approach
	Methodology
	Results
	Future work
	Acknowledgments
	References



