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MIMOSA: An Automatic Change Detection
Method for SAR Time Series

Guillaume Quin, Béatrice Pinel-Puysségur, Jean-Marie Nicolas, and Philippe Loreaux

Abstract—This paper presents a new automatic change de-
tection technique for synthetic aperture radar (SAR) time se-
ries, i.e., Method for generalIzed Means Ordered Series Analysis
(MIMOSA). The method compares only two different temporal
means between the amplitude images, whatever the length of the
time series. The method involves three different steps: 1) estima-
tion of the amplitude distribution parameters over the images;
2) computation of the theoretical joint probability density function
between the two temporal means; and 3) automatic thresholding
according to a given false alarm rate, which is the only change
detection parameter. The procedure is executed with a very low
computational cost and does not require any spatial speckle filter-
ing. Indeed, the full image resolution is used. Due to the temporal
means, the data volume to process is reduced, which is very help-
ful. Moreover, the two means can be simply updated using the new
incoming images only. Thus, the full time series is not processed
again. Change detection results between image pairs are presented
with the airborne sensor CARABAS-II, using a public data re-
lease, and with TerraSAR-X data. In the case of time series, change
detection results are illustrated using a TerraSAR-X time series.
In every case, the MIMOSA method produces very good results.

Index Terms—Change detection, Method for generalIzed Means
Ordered Series Analysis (MIMOSA), synthetic aperture radar
(SAR).

I. INTRODUCTION

THE detection of changes on Earth is an important appli-
cation of remote sensing. We can cite many applications

for change detection using satellites or airborne sensors, such
as environmental monitoring [1], [2], the observation of natural
disasters [3]–[5], or the study of changes due to human activity
[6], [7]. In this context, synthetic aperture radar (SAR) sensors
present several advantages compared with optical sensors. First,
the SAR sensors can be used during the day and during the
night. Second, the scene of interest is not masked by clouds,
which is a major problem for optical acquisitions. Because
of these two main advantages, the SAR images are some-
times the only useful data during crisis to organize emergency
rescue. Moreover, due to new satellite constellations such as
COSMO–SkyMed, it is now possible to quickly obtain large
time series over an area. The proposed change detection method

Manuscript received September 5, 2012; revised January 29, 2013, June 4,
2013, and September 25, 2013; accepted October 15, 2013.

G. Quin, B. Pinel-Puysségur, and P. Loreaux are with the Commissariat
à l’Énergie Atomique et aux Énergies Alternatives (CEA), Direction des
Applications Militaires Île-de-France (DAM DIF), 91297 Arpajon, France.

J.-M. Nicolas is with the École Nationale Supérieure des Télécommunica-
tions (Télécom ParisTech), 75013 Paris, France.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2013.2288271

reduces the data volume to process, using only two temporal
means whatever the length of the time series. Indeed, we will
see that the temporal means enable to deal with large time series
at a very low computational cost, as well as to easily take into
account a new incoming image.

Usually, change detection using repeat–pass SAR data in-
volves the analysis of two coregistered images acquired over
the same area of interest. Two main approaches have been
developed in the literature to solve this problem. The first
approach is called coherent change detection: It uses the phase
information contained in the SAR images through the study
of the coherence map [8]. The second approach, which can
be qualified of incoherent change detection, only compares the
amplitudes of the SAR images, as in the proposed method.

Several change detection techniques dedicated to SAR am-
plitude images are described in the literature. A well-known
operator is the log–ratio between two SAR amplitude images
[9]. After a speckle noise reduction step, the log–ratio image
is thresholded in order to detect changes. To improve this
technique, some automatic thresholding methods have been
developed [10]. Multiscale analysis with the log–ratio image
[11] enhances change detection and deals with heterogeneous
data. Moreover, the log–ratio detector has been also adapted
to fuzzy hidden Markov chains [12]. The first main advantage
of the log–ratio operator is its computational simplicity. The
second advantage is that automatic thresholding methods exist.
Nevertheless, the two amplitude images used to compute the
log–ratio need to be spatially filtered in order to reduce the
speckle noise, which causes a loss of resolution. Without this
prior spatial filtering, the log–ratio image is very noisy and
direct thresholding generates a high number of false detections.
Thus, a drawback of this technique is that the information
contained in the amplitude data could be destroyed during the
prior spatial filtering step if the filter is not well adapted. A
second drawback is that only two images can be compared.
Thus, the log–ratio operator is not directly adapted to deal with
time series.

The maximum likelihood approach has been adapted to the
detection of radar cross-section fluctuations through SAR time
series [13]. For this purpose, the ratio between the geometric
and the arithmetic temporal means of the amplitude time series
is computed. This statistical test, called generalized likelihood
ratio test (GLRT), is then thresholded in order to detect changes.
The proposed method also uses temporal means but in a dif-
ferent and more accomplished way than the thresholding of
the GLRT. We can mention that another maximum likelihood
approach has been also developed for the detection of step
patterns in the amplitude profiles of time series [14].

0196-2892 © 2013 IEEE
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Another technique to deal with SAR time series is the
application of the log cumulants to detect spatiotemporal dis-
continuities [15]. For this purpose, the log cumulants are com-
puted over spatiotemporal neighborhoods in order to estimate
the statistical distribution parameters in the considered voxel.
Two kinds of discontinuities are then detected simultaneously,
namely, the stable spatial features and the temporal changes.
Thus, the main drawback of this technique is that the interpre-
tation of the results may be very difficult because these two
pieces of information are merged.

A statistical similarity measure can be also used to detect
changes along SAR time series [16]. In this technique, the tem-
poral evolution of the local statistics is studied along the time
series using the Kullback–Leibler (KL) divergence. The tempo-
ral changes are then related to the evolution of the local statis-
tics between the different images, through very few statistical
parameters, which are estimated at a very low computational
cost. The main drawback of this technique is that spatial neigh-
borhoods are used to estimate the local statistical parameters.
Thus, the resolution of the change map is lower than the original
resolution. It is thus very difficult to detect small punctual
changes because of the loss of resolution. A different statistical
method involves bivariate gamma distributions (BGDs) [17],
[18] (which are simple multivariate distributions [19]) between
image pairs using the mutual information between the ampli-
tude images in order to detect the changes.

Information theoretic concepts have been also adapted to
the problem of change detection between two SAR images
[20]–[22]. This change feature is inspired by a heterogeneity
indicator [23] through the study of scatterplots between the two
considered amplitude images (equivalent to 2-D histograms).
The proposed method also uses scatterplots to detect the
changes but in a more accomplished way.

The change detection principle presented in this paper was
first briefly described in [24], only focused on the case of SAR
image pairs. In this paper, the Method for generalIzed Means
Ordered Series Analysis (MIMOSA) change detection method
is detailed in the case of SAR image pairs and time series.

This paper is organized as follows. First, the problem is
formulated through the definition of the generalized temporal
means, where a general description of the method is pro-
posed. Then, the automatic change detection procedure is
separately detailed in the two different cases of image pairs
and time series. Finally, change detection results are presented
between SAR image pairs with CARABAS-II airborne data
and TerraSAR-X Stripmap descending data. The change de-
tection results along SAR time series are also presented using
TerraSAR-X Stripmap ascending data.

II. PROBLEM FORMULATION AND GENERAL

DESCRIPTION OF THE PROPOSED METHOD

A. General Hypothesis

Preliminary steps such as image coregistration and radio-
metric calibration of the SAR images are not developed in
this paper. Nevertheless, these two steps are very important
for every change detection method because they may affect the
change detection result.

Fig. 1. Two coregistered TerraSAR-X Stripmap amplitude images acquired
over the Serre–Ponçon Lake in south of France. The amplitude changes are due
to water level differences between the two acquisitions.

We consider that the empirical amplitude distribution of each
SAR image used for change detection is modeled by a Fisher
probability density function (pdf) [25]. We can note that another
statistical model could be used as well. We will consider that an
amplitude value x in a SAR image is the resulting product of
a texture t (the ideal denoised amplitude value), and speckle
noise s

x = t · s. (1)

We consider that speckle noise s is modeled by a normalized
Rayleigh–Nakagami distribution RN [1, L] and that texture
t is modeled by an inverse Rayleigh–Nakagami distribution
RNI[μ,M ]. Thus, using the Mellin convolution �̂, the result-
ing Fisher distribution FA[μ,L,M ] of the amplitude values x
is expressed as [25]

FA[μ,L,M ] = RNI[μ,M ] �̂ RN [1, L]. (2)

The expressions of the latter distributions are detailed in
Appendix A.

B. Generalized Temporal Means of SAR Amplitude Images

Temporal means are often used to deal with SAR image time
series. For example, an average image can be computed from a
time series in order to obtain a despeckled image. In most cases,
a geometric, arithmetic, or quadratic mean is used. However,
several generalized means are defined in the literature. Let us
consider a set of N samples T = {x1, . . . , xN}, the kth order
Hölder mean [26] (or well-known “power mean”) of these
samples is defined as

Mk[T ] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k

√
1
N

N∑
i=1

xk
i , ∀ k ∈ R

∗

N

√
N∏
i=1

xi, if k = 0.

(3)

Depending on the value of parameter k, the Hölder mean
corresponds to particular means [26]. For example, the har-
monic, geometric, arithmetic, and quadratic means respectively
correspond to k = −1, 0, 1, and 2.

In order to compare the different mean images obtained with
different k values in the Hölder mean, we present in Fig. 1 two
coregistered TerraSAR-X Stripmap amplitude images acquired
over Serre–Ponçon Lake in the south of France. The amplitude
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Fig. 2. Temporal means between the two amplitude images presented in
Fig. 1, represented by x1 and x2. The differences between the four means
are enhanced in the changed areas, whereas the four means are similar in the
unchanged areas.

changes are due to water level differences between the two ac-
quisition dates. As an example, four different temporal Hölder
means between these two images are presented in Fig. 2, for
k = −1, 0, 1, and 2. Depending on parameter k, we observe
that the resulting mean image can be very different over the
changed areas. Over the unchanged areas, the four mean images
are similar. The two particular TerraSAR-X images presented in
Fig. 1 were chosen because they visually illustrate the different
properties of the mean images depending on the k value.

On this particular example using only two SAR amplitude
images, we observe an interesting behavior of the temporal
means, which enables change detection along time series by
comparing only two different temporal means. The MIMOSA
method is based on this observation.

III. AUTOMATIC CHANGE DETECTION

PROCEDURE FOR IMAGE PAIRS

A. MIMOSA Block Scheme for Image Pairs

In this section, we focus on change detection between two
coregistered amplitude images x1 and x2. We consider that the
two images share the same texture pattern t, which corresponds
to the assumption that no change occurred between the two
acquisitions. The two images x1 and x2 are only distinguished
by their speckle noise values s1 and s2, respectively. Thus, the
problem can be formulated under the following system:{

x1, t · s1
x2, t · s2.

(4)

We assume that texture t is modeled by an inverse Rayleigh–
Nakagami distribution pt(t) = RNI[μ,M ](t). We also con-
sider that the two speckle values s1 and s2 are different and

Fig. 3. Block scheme of the MIMOSA method in the case of change detection
between image pairs (N = 2; see Section III-A) and along time series (N > 2;
see Section IV-A). The geometric mean m0 and quadratic mean m2 are used.

modeled by the same normalized Rayleigh–Nakagami distribu-
tion ps(s) = RN [1, L](s).

The three steps of the MIMOSA method are presented in the
following: 1) estimation of the amplitude distributions parame-
ters; 2) estimation of the joint pdf between the two considered
temporal means; and 3) automatic threshold selection.

In order to clarify the MIMOSA method and to enable a
simple implementation by the reader, a general block scheme
of the method is presented in Fig. 3. This block scheme refers
not only to the present case of image pairs but also to the case
of time series, which is described in Section IV.

B. Step 1: Estimation of the Amplitude
Distributions Parameters

The aim of this step is to estimate the three statistical
parameters (i.e., μ, L, and M ) of the Fisher distribution in the
amplitude images. Under the assumption that both images share
the same texture t and that both speckle noise values are mod-
eled by the same distribution, the three parameters μ, L, and M
should be similar in both images. Thus, with real data where
changed pixels are often marginal among the complete SAR
images, the parameter estimation is performed over the union
of the amplitude samples contained in both images, as if it were
one single image. Indeed, the estimated parameters represent a
tradeoff between the parameters that would have been estimated
on the two images separately. This tradeoff can take into
account the presence of changed areas. Parameter estimation
is performed using a log-cumulant-based method [27], [28].

C. Step 2: Estimation of the Joint and Conditional PDF
Between the Two Considered Temporal Means

Let consider two different Hölder means m0 (the geometric
mean) and mk (with k > 0) between both images x1 and x2,
which are expressed as{

m0 = M0 [{x1, x2}] =
√
x1x2 = t · √s1s2

mk = Mk [{x1, x2}] = k

√
xk
1+xk

2

2 = t · k

√
sk1+sk2

2 .
(5)
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The aim of this step is the estimation of the joint pdf
pm0mk

(m0,mk). This pdf predicts the points repartition in
the empirical scatterplot between m0 and mk without changes
between the images. Thus, the theoretical pdf is compared with
the observed scatterplot in order to detect the changes. First, the
computation of pm0mk

(m0,mk) begins with the computation
of p12(x1, x2). Then, as described in the following, p12(x1, x2)
is transformed into pm0mk

(m0,mk) through a variable change.
As t is assumed to be known, we define the conditional

probabilities of the amplitude values x1 and x2 under the
knowledge of t, according to the multiplicative model described
in (4) {

p1(x1|t) = 1
t ps
(
x1

t

)
p2(x2|t) = 1

t ps
(
x2

t

)
.

(6)

The assumption that the texture t is known does not imply a
real texture estimation over the images. Indeed, the texture pat-
tern is only modeled by a statistical distribution and has not to
be estimated. Since the two variables x1 and x2 are independent
through the independence of their respective speckle values s1
and s2 once t has been fixed, the joint probability between x1

and x2 under the knowledge of t can be expressed as

p12(x1, x2|t)=p1(x1|t)p2(x2|t)=
1

t2
ps

(x1

t

)
ps

(x2

t

)
. (7)

By integration, we express the joint probability linking x1

and x2 without the need to know the value of t using the pt(t)
distribution

p12(x1, x2) =

+∞∫
0

ps

(x1

t

)
ps

(x2

t

)
pt(t)

dt

t2
. (8)

Using the Fisher model, the joint pdf p12(x1, x2) can be
expressed (see Appendix B) as

p12(x1, x2)=
4(x1x2L)

2L(μ2M)MA−(2L+M)Γ(2L+M)

Γ(L)2Γ(M)x1x2
(9)

where A = L(x2
1 + x2

2) +Mμ2.
In Appendix C, we show that strictly equivalent expressions

of p12(x1, x2) can be found in [17]–[19]. Indeed, in the case
of a homogeneous texture, p12(x1, x2) is a BGD. Thus, (9) is a
generalization of the BGD.

Fig. 4 shows the theoretical joint pdf p12(x1, y2) in the case
of a Fisher distribution of parameters μ = 156.22, L = 1.02,
and M = 4.44, as compared to the observed scatterplot of the
coregistered amplitude images where the Fisher parameters
were estimated. The data used here are CARABAS images. We
can note that in [20]–[22], the pdf between the two amplitude
images is estimated from the observed scatterplot. In our case,
the pdf is directly evaluated from the amplitude distribution
parameters under the hypothesis that no change occurred.

In order to achieve step 2, the transformation from
p12(x1, x2) to pm0mk

(m0,mk) is finally performed through a
variable change using the Jacobian Jk of the system presented

Fig. 4. (Left) Theoretical joint pdf p12(x1, x2) between two images follow-
ing Fisher distributions of parameters μ = 156.22, L = 1.02, and M = 4.44,
sharing the same texture. The pdf data are normalized between 0 and 1. (Right)
Associated observed scatterplot of the coregistered CARABAS amplitude
images on which the Fisher parameters were estimated.

Fig. 5. (Left) Theoretical joint pdf pm0m2 (m0,m2) for two images fol-
lowing Fisher distributions with parameters μ = 156.22, L = 1.02, and
M = 4.44, sharing the same texture. The red line represents isoline I1 (see
Section III-D). (Right) Conditional pdf pm2|m0

(m2|m0). The blue line
represents isoline I2 (see Section III-D). The pdf data are normalized between
0 and 1.

in (5). Thus, we express the joint probability pm0mk
(m0,mk)

as a function of the solutions of the system x1 and x2

pm0mk
(m0,mk) =

2 · p12(x1, x2)

|Jk(x1, x2)|
(10)

where the Jacobian operator is defined as

Jk(x1, x2) =
Mk[x1, x2]

(
xk
2 − xk

1

)
2M0[x1, x2]

(
xk
1 + xk

2

) . (11)

Note that pm0mk
(m0,mk) is limited to the part of the plane

where m0 and mk are positive.
Fig. 5 shows on the left the theoretical joint pdf

pm0mk
(m0,mk) in the case of a Fisher distribution of parame-

ters μ = 156.22, L = 1.02, and M = 4.44 in the case of k = 2.
Since the changes are located off the diagonal in the (x1, x2)
scatterplot, the changes are also located off the diagonal in the
(m0,m2) scatterplot. Near the diagonal, the points correspond
to no change. The particular m0 (geometric) and mk = m2

(quadratic) means are chosen to be consistent with the case
of time series (see Section IV), where the choice of these two
means m0 and m2 is motivated by computational constraints.
In the two-image case, other Hölder means could have been
chosen.
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Fig. 6. Observed scatterplot (m0,mk=2) for two coregistered amplitude
images following Fisher distributions with estimated parameters μ = 156.22,
L = 1.02, and M = 4.44. The red line represents the isoline of probability
I1, associated to the joint pdf, whereas the blue line represents the isoline
I2 associated to the conditional pdf (see Section III-D). The changed pixels
correspond to the points above both isolines I1 and I2. The second intersection
point A between I1 and I2 is defined as (m0,A|mk,A). The area of the
scatterplot detected as changes is indicated in green.

The pm0mk
(m0,mk) joint pdf predicts the most likely loca-

tions for the points in the associated scatterplot, which is pre-
sented in Fig. 6. However, we note that the high valued outliers
exhibit a very low probability according to pm0mk

(m0,mk)
even if they are close from the diagonal of the scatterplot and
thus correspond to a no-change case (see points with m0 > 400
on Fig. 6). This problem is due to the texture model, i.e., the
RNI distribution, which predicts that the high valued samples
are rare. These high valued outliers, which are close to the
diagonal, generally correspond to stable scatterers that strongly
reflect the radar signal and that should not be selected as
changes. Thus, thresholding the joint pdf only is not sufficient
to detect changes because the high valued pairs of means would
be detected as changes even if they are almost equal. We can
mention that the same problem occurs for low valued outliers.
Moreover, this problem would also occur with other classical
distribution models for the texture, such as RN instead of the
RNI distribution.

To overcome this problem, the conditional probability is
used in complement of the joint probability. The condi-
tional distribution of mk under the knowledge of m0, de-
fined as pmk |m0

(mk|m0), can be computed using the joint pdf
pm0mk

(m0,mk)

pmk|m0
(mk|m0) =

pm0mk
(m0,mk)∫ +∞

m0
pm0mk

(m0, z) dz
. (12)

No simple explicit expression could be obtained for
pmk|m0

(mk|m0). Nevertheless, the integral in (12) can be eas-
ily evaluated numerically using standard numerical integration
techniques.

Fig. 5 shows on the right the conditional pdf pmk |m0
(mk|m0)

in the case of a Fisher distribution of parameters μ = 156.22,
L = 1.02, and M = 4.44 in the case of k = 2.

The conditional pdf pmk|m0
(mk|m0) predicts that the two

means m0 and mk are more likely to be close to each other,
whatever their values. Thus, pmk |m0

(mk|m0) is also thresh-
olded in addition of pm0mk

(m0,mk) in order to prevent the
pairs of means located near the diagonal of the scatterplot to be
detected as changes. Indeed, the pairs of amplitude values cor-
responding to no change (H0) can be distinguished according
to the two following cases in the (m0,mk) scatterplot:

1) points corresponding to a high probability of apparition,
which are defined by high values of pm0mk

(m0,mk) or;
2) points that are located near the diagonal of the diagram,

whatever their value. These points are defined by high
values of pmk|m0

(mk|m0).
Thus, considering the latter definition, we can define the

change case H1 and the no-change case H0 as

H0 : pm0mk
(m0,mk) ≥ λ1 ∨ pmk|m0

(mk|m0) ≥ λ2

H1 : pm0mk
(m0,mk) < λ1 ∧ pmk|m0

(mk|m0) < λ2 (13)

where λ1 and λ2 are the two different thresholds used to detect
the changes. The automatic estimation of λ1 and λ2 for a given
false alarm rate (FAR) is described in the next section.

The detection threshold λ1 defines an isoline of probability
I1 in the pm0mk

(m0,mk) pdf (see the left side of Fig. 5),
whereas the detection threshold λ2 defines an isoline I2 in the
pmk|m0

(mk|m0) distribution (see the right side of Fig. 5).
In the MIMOSA method, both thresholds λ1 and λ2 are

necessary because they are complementary. Indeed, when λ1

value increases, thresholding only the joint pdf would detect as
changes the high valued and low valued samples, only because
they are rare according to the texture model (I1 gets very close
to the diagonal for low and high valued samples). Moreover,
when λ2 value increases, I2 gets closer to the diagonal and
can cross the dense part of the scatterplot, generating a lot of
false alarms among medium values if only pmk|m0

(mk|m0)
was thresholded.

As an example, in the GLRT [13] change detection tech-
nique, the ratio between arithmetic mean m1 and geometric
mean m0 is compared to a simple threshold. Thus, the GLRT
detects changes for pairs of means (m0,m1) located over an
affine line in the (m0,m1) scatterplot. This affine selection
generates a very high number of false alarms, particularly in
the low and medium values, since the corresponding dense part
of the scatterplot can be crossed by the affine line. Unlike the
GLRT technique, the MIMOSA method takes into account the
most likely locations of points in the scatterplot using I1 to keep
the dense part of the scatterplot in the no-change area.

D. Step 3: Automatic Threshold Selection

This part describes the automatic estimation of the change
detection thresholds λ1 and λ2, estimated from a given FAR,
which is the only parameter of the MIMOSA method. Thresh-
old λ1 is estimated first; λ2 depends on λ1.

Detecting changes by thresholding pm0mk
(m0,mk) corre-

sponds to select the points in the scatterplot plane, which are
located above this isoline I1. Let D be the part of the (m0,mk)
plane located above the isoline I1, where m0 and mk are
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positive. Because pm0mk
(m0,mk) has been estimated under

the hypothesis H0 that no change occurred between the two
acquisitions, FAR Pfa is defined as

Pfa =

∫∫
(m0,mk)∈D

p(m0,mk) dm0 dmk. (14)

Thus, for a given FAR Pfa, we precisely evaluate the cor-
responding threshold value λ1 using an iterative technique.
In practice, the joint pdf pm0mk

(m0,mk) is computed over
a 1000 × 1000 square window in the (m0,mk) space and
is normalized. The boundaries of the estimation are fixed by
the image statistics. Indeed, the estimation of the joint pdf
pm0mk

(m0,mk) is limited to the part of the space where m0

and mk are lower than 10μ, where μ is the parameter of the
Fisher distribution corresponding to the data. Once the pdf has
been computed, a dichotomy is used to precisely estimate the
threshold value λ1.

Once λ1 has been estimated, the second threshold λ2 can
be estimated. We recall that thresholding only the joint pdf
pm0mk

(m0,mk) using λ1 is not sufficient to detect changes
because the high valued pairs of means would be detected as
changes even if almost equal. In order to estimate λ2, the tail
of the texture distribution is first isolated using the cumulative
distribution of the inverse Rayleigh–Nakagami distribution,
defined as

R[μ,M ](y) =

y∫
0

RNI[μ,M ](z) dz. (15)

The size of the tail of the texture distribution depends on
parameter M . Indeed, when M is large (
 1), the texture distri-
bution is centered around the μ value and does not have a heavy
tail, which corresponds to very homogeneous texture data. On
the contrary, when M is small (< 1), the texture distribution
presents a heavy tail that corresponds to very heterogeneous
texture values, with many high valued outliers. Thus, the part
of the distribution tail to be selected depends on the value of
M . The lower M is, the larger is the percentage β of the tail to
select. We propose an empirical formulation of the percentage
β using the cumulative distribution of the texture distribution
R, which is expressed as

β = pmin + (pmax − pmin) exp

(
− M

Mc

)
(16)

where β ∈ [pmin, pmax]; M is the Fisher distribution parameter
estimated over the data; the two parameters pmax and pmin

are the maximum and minimum parts, respectively, of the
distribution to consider as the tail; and Mc is the critical value
of M corresponding to the change of texture behavior between
heterogeneous and homogeneous data samples. We will see in
Section V-A that good results are obtained when pmax is set to
10% (0.1), whereas pmin is set to 1% (0.01), and Mc is set to 1.
These particular values are well adapted for various data con-
figurations. These values were experimentally validated as they
produced good results with different sensors, wavelengths, and

acquisition modes. Using an iterative technique, we precisely
evaluate the texture value m0,A corresponding to the lower tail
limit, implicitly defined through the following relation:

R[μ,M ](m0,A) = 1− β. (17)

In practice, m0,A is estimated using a dichotomy over the
cumulative distribution R. High valued pairs of means that are
close from the diagonal are detected as changes by thresholding
only pm0mk

(m0,mk) because the isoline I1 is too close from
the diagonal for high mean values. Thus, when m0 > m0,A,
thresholding of pmk |m0

(mk|m0) using λ2 is preferred. We
define the intersection point A = (m0,A,mk,A) between two
isolines I1 and I2, such as pm0mk

(m0,A,mk,A) = λ1. The
value of mk,A is then precisely evaluated using a simple itera-
tive technique over pm0mk

(m0,mk). Finally, the explicit value
of the second change detection threshold λ2 can be obtained as

λ2 = pmk|m0
(mk,A|m0,A). (18)

The global change detection procedure finally consists
in a double thresholding of pm0mk

(m0,mk) using λ1 and
pmk |m0

(mk|m0) using λ2 according to the relation exposed
in (13). Thus, the final detected changes are the points in the
scatterplot, which are located above the two isolines I1 and I2
(see Figs. 3 and 6).

IV. AUTOMATIC CHANGE DETECTION

PROCEDURE FOR TIME SERIES

A. MIMOSA Block Scheme for Time Series

In this part, we consider a time series of N images, de-
fined as T = {x1, x2, . . . , xN}. Under the hypothesis that no
change occurred during this time series, we consider that all
the amplitude images xi share the same texture t. Thus, each
amplitude value xi is distinguished by a speckle noise si and
can be defined as

∀ i ∈ [1, N ], xi = t · si. (19)

The same distribution model as in the two-image case (see
Section III-A) is used for the texture and speckle distributions.
Indeed, we consider again that the texture t is modeled by an in-
verse Rayleigh–Nakagami distribution pt(t) = RNI[μ,M ](t)
and that the different speckle values si are modeled by
the same normalized Rayleigh–Nakagami distribution ps(s) =
RN [1, L](s). The three steps of the MIMOSA method applied
to time series are presented in Fig. 3 in Section III-A. They are
described in the following.

B. Step 1: Estimation of the Amplitude
Distributions Parameters

The estimation of the three Fisher distribution parameters
μ, L, and M is performed using the same log-cumulant-based
method as in the two-image case. Parameter estimation is
performed over the union of the amplitude samples contained
in the time series, as if it were one single image.
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C. Step 2: Estimation of the Joint PDF Between m0 and m2

In this section, we propose a very simple choice based only
on two means m0 and m2. In order to estimate the joint pdf
between m0 and m2, related to the (m0,m2) scatterplot, the
problem can be then formulated as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
m0 = N

√
N∏
i=1

t · si = t · M0 [{si}]

m2 =

√
1
N

N∑
i=1

t2 · s2i = t · M2 [{si}] .
(20)

Let it be emphasized that the latter system is a generalization
of (4). The problem consists in a two-equation system with N
variables. Thus, because the number of images in the time series
is assumed to be greater than two, this system cannot be solved
without any assumption. Therefore, in order to deal with the
N unknown speckle values si, only their average values along
the time series are considered. Let pM0

and pM2
be defined

as the distributions respectively followed by the geometric and
quadratic means of the N variables si. Thus, the conditional
probabilities of m0 and m2 under the knowledge of t can be
expressed as {

p(m0|t) = 1
t pM0

(
m0

t

)
p(m2|t) = 1

t pM2

(
m2

t

)
.

(21)

Let us define an estimator p̂(m0,m2|t) of the conditional
joint pdf between the two means m0 and m2 under the knowl-
edge of t. Following the same framework as in the two-image
case, we make the hypothesis that this estimator is defined as

p̂(m0,m2|t) Δ
= p(m0|t) p(m2|t). (22)

By integration, we can express the joint pdf linking m0 and
m2, without the need to know the value of t using the pt(t)
distribution

p̂(m0,m2)
Δ
=

+∞∫
0

pM0

(m0

t

)
pM2

(m2

t

)
pt(t)

dt

t2
. (23)

We can remark that no Jacobian operator is used to express
the latter joint pdf, unlike the two-image case [see (10)]. Indeed,
the rigorous use of a Jacobian operator would have involved the
definition of N different means to create N equations instead
of two in (20). Then, the pdf linking these N different means
should have been evaluated and integrated (N − 2) times in or-
der to compute the p(m0,m2) pdf. This evaluation is of course
unrealistic. Thus, the definition of the p̂(m0,m2) estimator is
necessary. Because of the hypothesis in (22), p̂(m0,m2) is
defined and strictly positive for m2 < m0, which is impossible
because the order relation m0 ≤ m2 [26]. Thus, p̂(m0,m2)
is biased. This bias is due to the representation of the mean
speckle values through the independent distributions pM0

and
pM2

, where the two expressions are not linked to satisfy the
order relation m0 ≤ m2. Moreover, p̂(m0,m2) in the N = 2
case is not equivalent to (10). To cope with the condition
m0 ≤ m2 [26], we define p̂(m0,m2) = 0 if m2 < m0. Despite

Fig. 7. (Left) Joint pdf p̂(m0,m2) for N = 7 images following Fisher
distributions. The pdf data are normalized between 0 and 1. (Right) Associated
observed scatterplot. The p̂(m0,m2) isoline I is represented in red. Two
additional guides G1 and G2, which are used to prevent the detection of points
near the diagonal, are represented in blue. The horizontal and vertical tangents
of the I isoline are indicated with the two black double arrows on the pdf.
The area of the scatterplot detected as changes is indicated in green. The two
circled areas Z1 and Z2 respectively correspond to low valued and high valued
stable pixels.

the fact that the estimator p̂(m0,m2) is biased, we show that the
evaluated pdf fits very well the associated observed scatterplot,
as long as p̂(m0,m2) is set to zero if m0 < m2 (see Fig. 7).

In order to express the joint pdf between m0 and m2 under
the Fisher distribution model, pM2

and pM0
must be calcu-

lated. The choice of these two particular means is based on
computational constraints related to the calculation of pM2

and
pM0

, which are the simplest cases to compute. Indeed, the
calculation of pM2

is carried out due to particular properties
of the Gamma distribution G, whereas the calculation of pM0

is
carried out using the Meijer G-functions G defined in [29] (see
Appendix E).

First, the distribution followed by the quadratic mean of N
samples following a normalized Rayleigh–Nakagami distribu-
tion RN [1, L] is expressed as follows (see Appendix D):

pM2
(z) = 2zG[1, NL](z2). (24)

Then, the distribution followed by the geometric mean of
N samples following a normalized Rayleigh–Nakagami dis-
tribution RN [1, L] is expressed as follows [37] [see (49) in
Appendix E]:

pM0
(z)=

2N

zΓ(L)N
G

N,0
0,N

⎛
⎝z2NLN

∣∣∣∣∣∣
. ; .

L, . . . , L︸ ︷︷ ︸
N

; .

⎞
⎠. (25)

Finally, pM2
and pM0

are used to obtain p̂(m0,m2), which
is expressed in (26), shown at the bottom of the next page as a
Meijer function [see (50) in Appendix E]. The Meijer function
corresponding to p̂(m0,m2) is precisely evaluated numerically.
Indeed, the implementation of the Meijer functions is easier in
the present case because only two lists of parameters among the
four possible are used (see Appendix E). Note that p̂(m0,m2)
does not correspond to (10) if N = 2. This is due to the fact that
p̂(m0,m2) is only an estimator.

We present in Fig. 7 the theoretical joint pdf p̂(m0,m2)
for N = 7 images, as compared with the observed scatterplot.
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The distribution of the points in the scatterplot is well predicted
by the evaluated pdf. We define I as the isoline in the pdf
defined by relation p̂(m0,m2) = λ, where λ is the change
detection threshold. Thresholding only p̂(m0,m2) would once
again detect as changes all the points located near the diagonal
of the scatterplot. Thus, an additional guide must be applied to
the scatterplot to prevent the points located near the diagonal
to be selected as changes. This automatic threshold estimation
and the definition of the complementary guide are described in
the next section.

D. Step 3: Automatic Threshold Selection

The automatic estimation of the change detection threshold
follows the same procedure as in the two-image case. From a
given FAR Pfa, the threshold value λ is automatically estimated
using standard iterative techniques, according to the following
relation:

Pfa =

∫∫
(m0,m2)∈D′

p̂(m0,m2) dm0 dm2 (27)

where D′ is defined as the area of the (m0,m2) plane located
over the isoline I , where m0 and m2 are positive. It is analog to
the D area that was defined for image pairs [see (14)].

If the changes are detected using only the thresholding of
the joint pdf p̂(m0,m2), points located near the diagonal in
the scatterplot would be detected as changes for very high
or very low values. Thus, additional guides must be applied
to the scatterplot. Considering the expression of the joint pdf
p̂(m0,m2), it is not possible to obtain the conditional pdf
p̂(m2|m0). Thus, simple guides must be defined without using
the conditional pdf, unlike the two-image case.

Because the p̂(m0,m2) estimator is biased, the threshold
value λ defines an isoline I in the pdf, which can form a loop
that crosses the diagonal of the diagram. However, only the top
part of the isoline is useful. Thus, in order to overcome the

limits of the model, we propose to define the additional guides
G1 and G2 from the shape of the isoline I:

1) G1: defined until the point where I becomes vertical;
2) G2: defined from the point where I becomes horizontal.

G1 is dedicated to low valued points near the diagonal (see
dashed ellipse Z1 on the right side of Fig. 7), which represent
the low valued stable points along the time series. Thus, because
the points corresponding to no change are located near the
diagonal, whatever their value, we propose to define G1 as a
line parallel to the diagonal. In addition, we can mention that
G1 prevents the points affected by quantification effects to be
detected as changes. The second guide, i.e., G2, is dedicated
to high valued points near the diagonal (see dashed ellipse Z2

on the right side of Fig. 7), which represent the high valued
stable points along the time series. We propose to define G2

as an affine line crossing the point where I becomes horizontal
and the origin, as indicated on the right of Fig. 7. Guide G2 is
inspired by the GLRT technique.
G1 and G2 are necessary in addition of I because the

presence of points in the areas Z1 and Z2 is not predicted by the
joint pdf p̂(m0,m2) alone. Indeed, as the dependence between
m0 and m2 is not taken into account, high or low valued pixels
along the whole time series are very improbable (see dashed
ellipses Z1 and Z2 on the right side of Fig. 7).

The global change detection procedure finally consists into
a segmentation of the scatterplot according to the successive
usage of G1, I , and G2 depending on the m0 value (see
Fig. 3). Only the pairs of means located over the union of these
three limits are detected as changes so that the pairs of means
corresponding to the most likely positions in the scatterplot are
not detected as changes.

The method is not sensitive to the date of the changes within
the time series since the images are merged in the two temporal
means m0 and m2 without considering their respective dates.
Moreover, a change due to a single image cannot be directly
distinguished from a change involving several images.

p̂(m0,m2)∝m2NL−1
2 mN

0

(
NLm2

2 +Mμ2
)−N+1

2 −NL−M
G

N,N
N,N

⎛
⎜⎝( NLm2

0

NLm2
2 +Mμ2

)N

∣∣∣∣∣∣∣
{UN} ; .

L−N+1

2N
, . . . , L− N + 1

2N︸ ︷︷ ︸
N

; .

⎞
⎟⎠

(26)

where :

{UN} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩. . . ,

−5

2N
,
−3

2N
,
−1

2N︸ ︷︷ ︸
N
2

,
1

2N
,

3

2N
,

5

2N
, . . .︸ ︷︷ ︸

N
2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ if N is even

{UN} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩. . . ,

−6

2N
,
−4

2N
,
−2

2N︸ ︷︷ ︸
N−1

2

, 0,
2

2N
,

4

2N
,

6

2N
, . . .︸ ︷︷ ︸

N−1
2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ if N is odd
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E. Taking Into Account an Incoming Image in the Time Series

As aforementioned, the data volume to process in order to
detect the changes using the MIMOSA method is limited to the
two temporal means m0 and m2, whatever the length of the
time series. In this section, we describe how to update these
two means using only a new incoming image xN+1 in the
time series. Using this new amplitude image, the new means
m0,N+1 and m2,N+1 of the N + 1 images are estimated from
the previous means m0,N and m2,N of the first N images
according to the following two equations:

m0,N+1 = N+1

√
mN

0,NxN+1 (28)

m2,N+1 =

√
Nm2

2,N + x2
N+1

N + 1
. (29)

Thus, the N previous images are not used to compute the
two new means m0,N+1 and m2,N+1. Therefore, an operational
process can be designed to deal with new incoming images in
a time series, without processing the entire time series again,
which is a great time-saver.

The parameters μ, L, and M that were used with the previous
set of N images can be first used to detect changes on the
N + 1 images because the last incoming image is supposed to
be similar to the others. Nevertheless, the three parameters may
be later updated in order to refine the change detection on the
new time series of N + 1 images.

V. RESULTS AND DISCUSSION

A. Change Detection Between Image Pairs

In this section, we present change detection results be-
tween two SAR amplitude images obtained with the MIMOSA
method. We use the data from the VHF–Challenge set. The
original data set contains 24 CARABAS-II magnitude images
acquired during a flight campaign in Vidsel (Sweden) in 2002.
During this campaign, a set of vehicles was used as concealed
targets and moved between the different acquisitions dates.

We present in Fig. 8 the three types of vehicles used for
the experiment. They present different sizes and characteristics.
The particular deployment of 25 vehicles studied in this section
is presented in Fig. 8, and it is considered as the ground truth.

The two particular images considered in this test are
v02_2_1_1 and v02_4_1_1, as referenced in the original chal-
lenge paper. We have processed all the data provided in the
24-image set; this particular couple is shown as an illustration.
The two amplitude images (zoomed over the test site) are
presented in Fig. 8. The left image v02_2_1_1 exhibits the test
area without the vehicle deployment, whereas the 25 vehicles
are visible in the right image v02_4_1_1. The original data
provided in the change detection challenge were processed by
the MIMOSA method. No spatial filtering has been applied on
the provided images. Moreover, no radiometric calibration or
additional image coregistration has been performed.

The parameters of the amplitude distributions under the
Fisher model estimated over the union of the amplitude samples
contained in the two images are μ = 156.22, L = 1.02, and

Fig. 8. (Upper left) Three types of vehicles used as concealed targets. (Upper
right) Ground truth of the considered vehicle deployment, where a group of
type-1 vehicles is circled in red. (Down) Zoom-in CARABAS-II amplitude
images of the test site, where the vehicle deployment is visible in the right
image v02_4_1_1 and can be compared with the ground truth.

Fig. 9. (Up) Normalized histograms of the two amplitude images presented
in Fig. 8. (Down) Normalized Fisher distributions estimated over the two
amplitude images. The parameters [μ,L,M ] of the Fisher distributions are
presented on each curve.

M = 4.44. The respective histograms and associated Fisher
distributions of the two images are presented in Fig. 9. We
observe that the Fisher distributions fit very well the observed
histograms. We can also note that the parameters of the two
Fisher distributions estimated separately on the two images
are close from the parameters estimated over the union of
the amplitude samples. Moreover, the parameters estimated
over the union of the images are a good tradeoff between the
parameters estimated over the two images separately.

In this case, the geometric and quadratic means are used to
detect the changes. The scatterplot and the associated joint pdf
were already presented in Fig. 6 in Section III. The a priori
FAR is fixed to 0.2%. The particular values to compute β [see
(16)] are pmax = 0.1, whereas pmin = 0.01, and Mc = 1. Thus,
β ≈ 0.011(1.1%). The change detection results are presented
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Fig. 10. (Left) RGB composition between the two amplitude images pre-
sented in Fig. 8. (Right) Automatic change detection result obtained with
MIMOSA with an a priori FAR of 0.2%. Appearing bright items are repre-
sented in green; disappearing items are represented in magenta (not visible on
the change map because they are very rare). A type-1 vehicle group is circled
in red, illustrating that the vehicle size and orientation can be evaluated. No
filtering operation has been applied to the change map.

Fig. 11. (Left) Ground truth (reference change map) where the changes are
represented in black. (Right) Experimental ROC curves for the log–ratio thresh-
olding, Similarity measure using KL divergence and the MIMOSA method.
Two isolines TPR = 30% and FPR = 5% are represented in gray.

on the right of Fig. 10. The change map has not been filtered.
The map clearly shows that all 25 vehicles are well detected
as appearing changes. We can also note that the different
sizes of the different vehicles (see Fig. 8) are well visible and
respected. The orientation of the detected changes, associated
to the orientation of the vehicles, is also well conserved in the
change map.

The results obtained with the MIMOSA method outperform
the results obtained with other methods[30]–[36] using the
same CARABAS-II public data. Unlike most results, all the
targets are systematically detected with the MIMOSA method,
whereas the shapes and sizes of the targets are also well re-
spected. In [30], [31], [33], and [36] morphological operations
are applied to the binary change maps to reduce the number of
false alarms, unlike with our method where the number of false
alarms is already very low without any postprocessing step. In
[34] the change detection is limited to the computation of the
ratio image, and no binary change map is provided. In [32]
and [35] some vehicles are missed during the change detection,
whereas the shapes of the vehicles are not well respected in
[32], [35], and [36].

In order to provide numerical results, we compare the
MIMOSA method to the log–ratio thresholding and to the
similarity measure presented in [16]. The similarity measure is
applied using a constant window size of 35 pixels × 35 pixels,

which is the simple constant sized detector proposed in [16]. As
a common reference for the three methods, we present on the
left of Fig. 11, the change map, which is considered as ground
truth. This map was generated according to the ground truth
data provided in the CARABAS challenge, as presented on the
upper right of Fig. 8 and with the colored RGB composition
presented on the left of Fig. 10. A reasonable margin was
respected around the changed pixels.

As well as for the MIMOSA method, the log–ratio thresh-
olding and similarity measure are performed over the original
data, without any spatial filtering. We present on the right of
Fig. 11 the receiver operating characteristic (ROC) curve of
the MIMOSA method compared with the two other methods.
The ROC curves were computed according to the following
equations: {

TPR = TP
TP+FN

FPR = FP
FP+TN

(30)

where TPR and FPR are respectively the true positive rate and
false positive rate, whereas TP, FN, FP, and TN are respectively
the numbers of true positive, false negative, false positive, and
true negative detected pixels according to the ground truth.
The FPR is also called FAR. Let us emphasize the fact that the
different rates are estimated at the pixel level and not at the
object level.

Since the values of TPR and FPR are strongly related to the
shape of the ground truth image, whatever the method used,
the ROC curves presented in Fig. 11 are only relevant if they
are compared with each other. We observe that the ROC curve
obtained with the MIMOSA method is always above the ROC
curve obtained with the log–ratio thresholding, which shows
that MIMOSA performs better than log–ratio. We observe that
the MIMOSA ROC curve is also above the similarity measure
ROC curve for low FARs (< 3%). For higher FARs, the
similarity measure ROC curve outperforms the two others.

Nevertheless, despite the fact that the similarity measure
ROC curve is above the MIMOSA ROC curve, the change maps
obtained with MIMOSA are visually more satisfying. Indeed,
because it uses spatial neighborhoods, the similarity measure
belongs to a different family than the MIMOSA method and the
log–ratio thresholding, which are said to be pixel-by-pixel tech-
niques. Thus, the different change maps must be carefully com-
pared in addition to the ROC curves. As an example, we show
in Fig. 12 the comparison of the change maps obtained with
the three methods for the same TPR = 30% and for the same
FPR = 5%, which correspond to the two isolines represented
on the ROC curves in Fig. 11. The particular TPRs of each
vehicle are also indicated in Fig. 12 in order to show that some
targets can be missed using the similarity measure despite the
fact that the ROC curve predicts a very good global detection.

For the same global FPR = 5%, the changes are well de-
tected with the MIMOSA method, whereas they are barely
visible among the false detections using the log–ratio thresh-
olding. We also observe that some of the vehicles are totally
missed using the similarity measure despite the fact that the
similarity measure ROC curve is above the MIMOSA ROC
curve for FPR = 5%. Indeed, unlike the MIMOSA method,
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Fig. 12. Binary change maps obtained with (from top to bottom) the
MIMOSA method, log–ratio thresholding, and similarity measure using KL
divergence for (left) identical FPRs set to 5% and (right) TPRs set to 30%.
The changes are represented in black. The TPR of each vehicle is respectively
indicated in blue or red if it is higher or lower than 0.2 (20%).

the similarity measure does not use the full resolution and thus
does not respect the shape of the changed areas. Indeed, we can
observe that the change map exhibits squares that correspond
to the shape of the window that is used. As a consequence,
some changed areas corresponding to the vehicles can be
totally covered and filled by these squares, corresponding to
a particular TPR of 1. Thus, the global TPR increases even if
some vehicles are not detected at all (particular TPR of these
missed vehicles = 0). In this case, 10 vehicles among 25 are
missed using the log–ratio thresholding, whereas 7 are missed
using the similarity measure.

For the same global TPR = 30%, we observe a very high
number of false detections in the log–ratio map, whereas the
MIMOSA map clearly exhibits the changed pixels with a very
low number of false detections. In the change map obtained
with the similarity measure, we observe that most of the
changes are missed. In this case, 3 vehicles among 25 are
missed using the log–ratio thresholding, whereas 17 are missed
using the similarity measure.

Fig. 13. From top to bottom: Optical image (Google Earth) of a container area
in Sendai Harbor (06/04/2011), RGB composition between two coregistered
TerraSAR-X amplitude images (06/05/2011–08/06/2011), and corresponding
change map obtained with MIMOSA (a priori FAR set to 1%). The circled
areas correspond to containers (1, 3, and 4), cars (2), and a boat (5).

We present in Fig. 13 a second change detection ex-
ample performed over a container area in Sendai Harbor
(Japan). The two considered images are TerraSAR-X descend-
ing Stripmap products acquired respectively on 06/05/2011 and
08/06/2011. These data were provided by the DLR and Astrium
GEO–Information Services for research purposes on the Sendai
Earthquake event on 11/03/2011. The amplitude images were
not filtered before the change detection. The visible changes
between the two dates are due to the displacements of con-
tainers or cars on the docks (see circled areas 1, 2, 3, and 4 in
Fig. 13). An appearing boat is also detected (see circled area 5
in Fig. 13), which is not visible on the optical image because of
the different acquisition dates. We observe that many changes
occurred between the two acquisitions and that they are all well
detected using the MIMOSA method. We also observe a very
low number of false detections in the water and over the docks.
In this example, the MIMOSA method produces good results
even if many changes occur between the acquisitions (≈10% of
the pixels in the image are detected as changes).
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Fig. 14. Orthorectified change detection results between seven images, superimposed to an optical image (Google Earth), where the detected changes are
represented in red. (Left) GLRT method (ratio between arithmetic and geometric temporal means thresholded by 1.6; this value is manually selected).
(Right) MIMOSA method. Areas A and C illustrate parked vehicles. Area B illustrates large parked helicopters, whereas area D illustrates smaller parked
helicopters. The limits of the change detection area are indicated with the white rectangle. A white border is added to the red points to increase readability, the
change detection results are not filtered, and no false detection has been removed during orthorectification.

B. Change Detection in a Time Series

In this section, we present the change detection results ob-
tained with MIMOSA method over a time series of seven as-
cending Stripmap TerraSAR-X images acquired over an airbase
in Sendai (Japan). The airbase was not impacted by the effects
of the 11/03/2011 tsunami; the visible changes between the
images are due to human activities (e.g., parked vehicles, he-
licopters, and equipment). The processed data are 512 pixel ×
512 pixel sized and are not spatially filtered.

The seven acquisition dates are respectively 31/03, 11/04,
22/04, 14/05, 25/05, 05/06, and 16/06/2011. During the acquisi-
tion of these seven images, many changes occurred. The major
locations for changes are represented in Fig. 14.

The change detection result obtained with the MIMOSA
method is presented on the right of Fig. 14. This result ex-
hibits a very low number of false alarms compared with the
result obtained with the GLRT method (see the left side of
Fig. 14), where many false detections occurred in the vegetated
areas. The GLRT result is computed by thresholding the ratio
between the arithmetic and geometric temporal means of the
amplitude time series. The threshold value was manually se-
lected to 1.6 and represents the best visual tradeoff between
low number of false detections and high number of true de-
tections. We recall that the GLRT thresholding corresponds
to detect as changes the point located over a linear function
in the scatterplot between the geometric and arithmetic means.
The GLRT threshold represents the slope of the line. Thus,
the dense point cluster in the scatterplot is crossed by this
change detection line and generates a high number of false
detections.

The superposition of the change detection result over an op-
tical image enables precise interpretation. Indeed, every change
in the MIMOSA change detection map can be associated to
a particular ground feature and can be easily interpreted. We
observe that the detected changes fit very well the ground
features presented in the four areas A, B, C, and D. Moreover,
the changes are well detected, whatever the associated temporal
amplitude profile. Indeed, some changes are simply related to
one image only among the time series, whereas other changes
are very regular.

VI. CONCLUSION

In this paper, we have described a new change detection meth-
od for SAR time series, called MIMOSA. This method can
process image pairs or time series as well, with a very low compu-
tational cost and without any preprocessing step such as spatial
speckle filtering. The method is based on the comparison of two
different temporal means, whatever the number of images in the
time series. This reduction of the data volume to process is very
helpful in the case of long time series. A statistical model is used
to predict the shape of the scatterplot between the two considered
means in order to detect the pairs of means corresponding to
changes, which are located in specific places in the scatterplot.

Very good change detection results were presented between
two CARABAS-II images, where concealed targets were ap-
pearing in the second image. The change maps revealed every
appearing target position and their precise shapes, with a very
low FAR. A second change detection result was presented
using TerraSAR-X data over a container area in Sendai Harbor
(Japan), which also produced very good results despite many
changes that occurred between the images. Further tests are
being performed in order to evaluate the MIMOSA method over
areas where the changes are very intense that they completely
modify the image aspect and characteristics. These results will
be presented as soon as possible.

Change detection results were also presented using a
TerraSAR-X time series of seven images over an airbase in
Sendai (Japan), where helicopters and vehicles were moved
between the acquisitions. Once again, the results are very good
since every detected change could have been associated to a
ground feature using an optical image. Moreover, the changes
are well detected even if they are marginal in the time series.
Further tests will be performed using more images in order to
validate the MIMOSA method with long time series since the
seven-image time series that was used here for demonstration
purpose can be considered as relatively short.

Due to the means, taking into account a new incoming image
in the existing archive time series is very easy since the two
means previously used can simply be updated using the new in-
coming image, without processing the whole time series again.
Thus, an operational use of the MIMOSA method is possible.
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APPENDIX A
SAR AMPLITUDE DISTRIBUTIONS

In this appendix, we express the different distributions used
in this paper. First, the Rayleigh–Nakagami distribution of
parameters μ and L is expressed as

RN [μ,L](x) =

(
L

μ2

)L
2x2L−1

Γ(L)
exp

[
−Lx2

μ2

]
. (31)

The Gamma distribution of parameters μ and L is expressed as

G[μ,L](x) =
(
L

μ

)L
xL−1

Γ(L)
exp

[
−Lx

μ

]
. (32)

The inverse Rayleigh–Nakagami distribution of parameters μ
and M is expressed as

RNI[μ,M ](x) =

2
(√

Mμ
x

)2M
exp

[
−
(√

Mμ
x

)2]
xΓ(M)

. (33)

The amplitude Fisher distribution of parameters μ, L, and M is
expressed as

FA[μ,L,M ](x)=
2Γ(L+M)

Γ(L)Γ(M)

√
L
M

(√
L
M x

μ

)2L−1

(
1+

(√
L
M x

μ

)2
)L+M

. (34)

APPENDIX B
COMPUTATION OF p12(x1, x2)

The aim of this appendix is the computation of p12(x1, x2)
[see (8)] in the case of a Fisher model, which corresponds to the
estimation of the following integral:

+∞∫
0

1

t2
RN [1, L]

(x1

t

)
RN [1, L]

(x2

t

)
RNI[μ,M ](t) dt. (35)

Using the expressions of RN and RNI (see Appendix A),
the latter expression can be developed as

p12(x1, x2) =
8(x1x2L)

2L(μ2M)M

Γ(L)2Γ(M)x1x2

+∞∫
0

t−Be−
A

t2 dt (36)

where B = 2(2L+M) + 1, and A = L(x2
1 + x2

2) +Mμ2.
The latter integral can be obtained in [38, eq. (3.478.1), p. 342],
according to the following relation:

+∞∫
0

t−Be−
A

t2 dt =
1

2
A

1−B
2 Γ

(
B − 1

2

)
. (37)

Thus, we can write the following expression:

+∞∫
0

t−Be−
A

t2 dt =
1

2
A−(2L+M)Γ(2L+M). (38)

Combining (36) and (38), we finally obtain the expression
presented in (8), with the same notations.

APPENDIX C
COMPARISON WITH BGDS

The multivariate distributions are defined in [19], whereas
the BGDs are applied to change detection in [17] and [18]. Let
p12(x1, x2) be considered, as defined in (9), in the case of a ho-
mogeneous texture pattern (M → ∞). The associated limit is
computed using [39, eq. (6.1.46), p. 257] and [39, eq. (4.2.21),
p. 70]. Thus, the limit is expressed as

lim
M→+∞

px1x2
(x1, x2)=

4(x1x2)
2L−1
(

L
μ2

)2L
exp

[
−L(x2

1+x2
2)

μ2

]
Γ(L)2

.

(39)

We identify the latter expression as the product of two
Rayleigh–Nakagami distributions [see (31) in Appendix A]

lim
M→+∞

p12(x1, x2) = RN [μ,L](x1) · RN [μ,L](x2). (40)

Let two new random variables X1 and X2 be considered re-
spectively corresponding to x2

1 and x2
2. After a variable change

using a Jacobian operator, we obtain

pX,12(X1, X2) =
p12(

√
X1,

√
X2)

|4
√
X1X2|

. (41)

Thus, we transform expression (39) from the amplitude to the
intensity domain

lim
M→+∞

pX,12(X1, X2)=
(X1X2)

L−1
(

L
μ2

)2L
exp
[
−L(X1+X2)

μ2

]
Γ(L)2

.

(42)

Note that the latter expression can be found in [17] and [18]
by setting q = L and p1 = p2 =

√
p12 = μ2/L with respect

to the notations of [17] and [18] in the monosensor BGD
definition. Moreover, we identify the latter expression as the
product of two Gamma distributions [see (32) in Appendix A]

lim
M→+∞

pX,12(X1, X2) = G[μ2, L](X1) · G[μ2, L](X2). (43)

APPENDIX D
QUADRATIC MEAN OF N RAYLEIGH–NAKAGAMI

DISTRIBUTIONS

The quadratic mean is a composition of three successive
operators: 1) square function; 2) arithmetic mean; and 3) square
root. Let X be defined as a random variable following the
RN [μ,L] distribution. The distribution followed by the square
of the samples X2 is the following Gamma distribution [37]:

z �→ G[μ2, L](z). (44)

The distribution followed by the arithmetic mean of N
samples following a Gamma function is also a Gamma func-
tion. This property is called the addition theorem. Thus, the
distribution followed by the arithmetic means of the N samples
X2 is the following Gamma distribution [37]:

z �→ G[μ2, NL](z). (45)
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Let two random variables a and b be considered respectively
following the pa(x) and pb(x) distributions such as a=bη. Thus,
pa and pb are linked by the following fundamental relation:

pb(x) = ηxη−1pa(x
η). (46)

Thus, according to (46), the final square root operator over
the arithmetic means of the N samples X2 leads to the follow-
ing distribution, which is the distribution of the quadratic mean
of N samples following a RN [μ,L] distribution:

pM2
: z �→ 2zG[μ2, NL](z2). (47)

APPENDIX E
MEIJER G-FUNCTIONS

The Meijer G-functions were proposed by Cornelis Simon
Meijer in 1936, as a generalization of the hypergeometric
functions [29]. These functions are used in this paper because
of their interesting properties about multiplicative operations
(such as the computation of the geometric mean) and Mellin
convolution [37]. The Meijer G-functions are defined on R

+

and can be expressed as

G
m,n
p,q

(
x

∣∣∣∣ a1, . . . , an; an+1, . . . , ap
b1, . . . , bm; bm+1, . . . , bq

)

=
1

2iπ

c+i∞∫
c−i∞

∏m
j=1 Γ(bj−s)

∏n
j=1 Γ(1−aj+s)∏q

j=m+1 Γ(1−bj+s)
∏p

j=n+1 Γ(aj−s)
xsds

(48)

where c should verify existence conditions.
We observe that the Meijer G-functions depend on four

series of real parameters, i.e., (a1, . . . , an), (an+1, . . . , ap),
(b1, . . . , bm), and (bm+1, . . . , bq), respectively. In this paper,
the Meijer G-functions that are used are simpler than the latter
expression because less parameter lists are used. Indeed, we use
at most two lists among the four possible. We present in (49)
and (50) the two simplified expressions corresponding to the
notations used in this paper.

First, if a single list (b1, . . . , bN ) is used, the Meijer G-
functions can be expressed as

G
N,0
0,N

(
x

∣∣∣∣ . ; .
b1, . . . , bN ; .

)
=

1

2iπ

c+i∞∫
c−i∞

N∏
j=1

Γ(bj − s)xs ds.

(49)

Second, if two equal-sized lists (a1, . . . , aN ) and (b1, . . . ,
bN ) are used, the Meijer G-functions can be expressed as

G
N,N
N,N

(
x

∣∣∣∣ a1, . . . , aN ; .
b1, . . . , bN ; .

)

=
1

2iπ

c+i∞∫
c−i∞

N∏
j=1

Γ(bj − s)
N∏
j=1

Γ(1− aj + s)xs ds. (50)

The two latter Meijer G-functions can be easily evaluated
numerically using standard numerical integration techniques.
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