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Abstract—This paper presents a denoising approach for multi-
temporal synthetic aperture radar (SAR) images based on the
concept of nonlocal means (NLM). It exploits the information
redundancy existing in multitemporal images by a two-step strat-
egy. The first step realizes a nonlocal weighted estimation driven
by the redundancy in time, whereas the second step makes use
of the nonlocal estimation in space. Using patch similarity miss-
registration estimation, we also adapted this approach to the
case of unregistered SAR images. The experiments illustrate the
efficiency of the proposed method to denoise multitemporal images
while preserving new information.

Index Terms—Multitemporal denoising, nonlocal means

(NLM), synthetic aperture radar (SAR) images.

I. INTRODUCTION

ITH increasing number of synthetic aperture radar
W (SAR) systems, many SAR images of the same region
are nowadays available. Those time-series or multitemporal
SAR images provide users more comprehensive information,
including both spatial and temporal domains. There are differ-
ent applications using multitemporal series: denoising and esti-
mation [1]-[4] and change detection [5], [6] and classification
[71, [8]. In this paper, we will focus on multitemporal denoising
with the purpose of exploiting available information existing in
the temporal series as much as possible.

Beginning from decades ago, SAR image denoising (or
despeckling) has been a well-studied problem in the image
processing and remote sensing community. State-of-the-art al-
gorithms such as those by Lee [9], [10], Kuan et al. [11], [12],
and Frost et al. [13] consider SAR despeckling based on estima-
tion theory. They develop denoising techniques under minimum
mean square error or maximum a posteriori estimation theory.
Touzi [14] proposed a structural multiresolution framework to
handle stationary and nonstationary signals and improve the
previous approaches by context adaptation.

Another family of approaches based on Wavelet can be
readily extended to SAR despeckling after a logarithm transfor-
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mation. Typical successful examples are [15] and [16]. Consid-
ering the heavy-tailed feature of speckle distribution, a heavy-
tailed model under Bayesian wavelet shrinkage is proposed in
[17]. Recently, based on spatially adaptive Wavelet analysis,
Ranjani and Thiruvengadam [18] and Gleich et al. [19] used
spatial information to better preserve image details, such as
edges and textures.

In 2005, Buades et al. [20] presented a nonlocal means
(NLM) approach, which uses image redundancy to estimate
each pixel. The idea is to search similar pixels and average them
with different weights expressing the similarity and obtained by
patch correlation. Taking inspiration from NLM, Dabov et al.
[21] proposed block-matching denoising based on 3-D trans-
form (BM3D). With collaborative filtering as the core idea, it
works on nonlocal regions (the group of patches collected from
the whole image based on their similarity). Katkovnik er al.
[22] proposed an extension of BM3D with pointwise-based
shape-adaptive approach generalizing the advantages of both
the BM3D filter and the Pointwise filter [23].

Deledalle et al. [24] extended the NLM to SAR image
denoising. From a theoretical point of view, this probabilistic
patch-based (PPB) algorithm [24] is a more general form of
the original NLM in [20]. By considering the distribution of
SAR data with the Goodman model [25], they suggest using
a generalized likelihood ratio (GLR) to measure the similarity
between SAR noisy patches. Analogously, Parrilli et al. [26]
extended the BM3D for SAR image denoising and proposed
a SAR-oriented version of the BM3D filter. It applies the
similarity criterion proposed in [24] to group patches and then
uses the local linear minimum-mean-square-error estimation.

Most studies on SAR image denoising are dealing with a
single image. However, many temporal denoising approaches
have been also explored, the simplest one being multilooking.
Trouvé et al. [27] compared three filters of a multitemporal
SAR image: a texture compensation multichannel filter [1]
based on the Kuan filter, a time—space filter [2], and an exten-
sion of the maximum homogeneous region approach to multi-
temporal images [3]. Quegan and Yu [28] have a deep insight
of the relationship between the desired equivalent number of
looks (ENL) and the number of dates in multitemporal images
and proposed a multichannel filter based on the intensity co-
variance matrix. Those denoising approaches of multitemporal
images are local methods. Based on the NLM theory, this
paper presents a more effective way to exploit the temporal
information for multitemporal image denoising. We propose an
adaptation of the iterative weighted PPB denoising algorithm
[24]. First, a direct extension of PPB for multitemporal SAR
images is analyzed to illustrate the limited efficiency of this
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direct extension. Based on this analysis, we propose a two-step
denoising framework, a temporal averaging step (the first step),
and a spatial denoising step (the second step). This denoising
framework is also applied to unregistered temporal SAR images
by miss-registration estimation.

This paper is organized as follows: Section II briefly in-
troduces the NLM and its extension for SAR images (PPB).
A simple comparative experiment is presented in Section III
to analyze the problem of the direct extension of PPB. The
proposed method is then detailed in Section IV and extended
to unregistered images in Section V. This is followed by
evaluation in Section VI and conclusion in Section VII.

II. NLM

This section presents two denoising methods based on the
NLM approach. They deal with Gaussian and multiplicative
speckle noise, respectively.

We first introduce the notations that will be intensively used
in the following.

* Bold y: a patch with size of VK x VK.

e Nonbold y: an image (y; denotes the image at time ¢).

e Nonbold y: the temporal mean image.

 Nonbold y;(7): the ith pixel in image y; (y.(4) is the center
of patch y,(4)).

 For the sake of simplicity, y; and y, (with center pixels y;
and y5) denote two arbitrary patches of an image, whereas
y,(7) (with center pixel y:(7)) denotes the ith patch in
image ;. y1,1 is the kth pixel in patch y,.

e u, v and L, L are similarly defined as representing,
respectively, the true parameters and the number of looks.
4 is the estimation of u.

A. NLM for Gaussian Distributed Data

We denote by y the observed image, by y(i) the noisy
intensity value at pixel index ¢, and by (%) the estimation of the
actual pixel value u(4) (the frue value that we are looking for).
The NLM perform a weighted average (or weighted maximum-
likelihood estimation) of the form

i) =7 3 ewand) ) 0

where 2; denotes the candidate pixels used for the estimation,
and Z =3, q exp(—dnrm(i,j)) is a normalization. The
weights exp(—dnrm (4, j)) are based on the weighted similarity
between patches extracted at positions ¢ and j, which are
defined as

Snem (y(i),y(4))
h

dnem(i, j) = 2)
where h > 0 is a filtering parameter, and y(i) and y(j) are
the two K-dimensional vectors containing the values of the
\/W X \/@ square patches centered, respectively, at pixel
positions ¢ and j (patches will be denoted by bold letters in
the following). The similarity function Sxr is chosen as the
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Fig. 1. Two-dimensional histogram of the Euclidean distance between noise-
free patches K and noise-free pixels. The ideal case (the assumption that similar
patches have similar central pixels [29]) is shown on the white line. (a) Test
image house. (b) Two-dimensional histogram of the Euclidean distance.

square of the Euclidean distance defined for any pair of patches
yy and y, by

Snim(¥1,92) = ly1 — val* = Z ik — 2kl 3
ke K

The exponential function transforming similarity into weights
is called the kernel.

The pixel similarity Sxim(y(4),y(j)) is comparing two
small square patches of size K surrounding pixels at positions
i and j. y1 1 is the value of pixel % in patch y,. This definition
is based on the assumption that similar patches have similar
central pixels [20], [29]. Fig. 1 shows the 2-D histogram of
the Euclidean distance between noise-free pixels |u(i) — u(j)]
and the Euclidean distance between noise-free patches ||u (i) —
u(7)|| measured from the house image. From this histogram,
an approximate proportional relation between |u (i) — u(j)| and
||[w(i) — w(j)|| can be found. When Gaussian noise is consid-
ered, the similarity between patches is usually defined by the
Euclidean distance, as in (3).

B. NLM for Gamma Distributed Data

For the denoising of a single SAR image, Deledalle et al. [24]
extended the NLM with PPB weights. Since this approach was
proposed for the denoising of a single image only, this method
will be denoted as 1-PPB. In order to deal with the specific
nature of speckle noise as described in [25], they suggest using
a similarity criterion based on the GLR for patches in SAR
images (more details in [30]), leading to

SaLr(Y1,y2) = Y log [,/yl’k + 4 /yM] “4)
ke K Y2,k Y1,k

where y; and y, are two patches of intensity values. In addi-
tion, a refining term is added to the weight exp(—di-ppi (i, 7)),
i.e.,

Scrr (Y(7),y(5)) + Skr (a(i), a(j))
h h'

di-ppB (4, j) = )
where h and h' > 0 are two filtering parameters, and (i) and
u(j) are patches that are iteratively estimated. For the first
iteration, u(7) = 1, and then, the current estimate is used for
4(). The similarity function Ski, used to iteratively refine
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the weights is based on the symmetric Kullback-Leibler (KL)
divergence defined for any pair of patches w; and us as

e 12
Skr(u,ug) = Y R (6)

Up U
Py 1,kU2 k

Some papers reference this approach as IT-PPB, but in this
paper, 1-PPB stands for this iterative version.

C. Discussion

Compared with the local approaches, NLM has no connec-
tion restriction, since those similar pixels may be unconnected
to each other. By exploiting patch similarities, the selection
of similar pixels is naturally adapted to nonstationarities. For
instance, for pixels located on one side of an edge, the weights
are all concentrated on the same side of the transition, and
the subsequent nonlocal estimation is thus unbiased, while
local filters mix samples arising from both sides. A deeper
comparison of NLM with local methods, such as intensity-
driven adaptive neighborhood, has been done in [31]. In this
paper, our contribution mainly focuses on the introduction of
temporal information for denoising.

Our aim in this paper is to exploit the efficiency of nonlocal
denoising for multitemporal series. We will first consider that
images are finely registered and then relax this hypothesis in
Section V. Our framework can be applied to interferometric
series, but temporal denoising efficiency decreases with the
spectrum correlation of the interferometric data.

III. DIRECT EXTENSION AND ANALYSIS

A direct extension of PPB denoising of SAR images is
presented in this section. We tested it on a synthetic set of
multitemporal SAR images. This comparison experiment will
lead us to the approach proposed in the next section.

A. Direct Extension of PPB

The key idea of the PPB denoising in [24] similar to the
NLM is to estimate actual pixel intensity with image redun-
dancy. The way to exploit image redundancy is the search of
similar pixels in a search window and averaging those similar
pixels with different weights. For multitemporal data, a direct
extension of PPB can be the definition of a cube search window,
by aggregating all the search windows of the different dates.
Considering {y,,Yt,,---, Yty }> the stack of multitemporal
images, the temporal NLM filter can be defined on the cube
C; = x {t1,ta,...,tn} of all pixel indexes 7. Meanwhile,
the direct temporal extension of PPB (T-PPB) to estimate the
true value u;(7) is

(i) = = Z exp (—dr-pp(it, jir)) - yr (j) (7
(j,t’)E(Ci

where

SeLr(ye(), yr (7)) S (wy (i), @y (7))

dr-ppa(it, jir) = Iy h
'

and for a stack of images {yz,,..., Yty }»> Y+(i) and y, (i) are,
respectively, the ith pixel value of y; and its surrounding patch.

B. Comparison

To analyze the interest of this direct extension for the tempo-
ral case, we have tested a synthetic set of multitemporal images
{Yt,, Yts, Y14 ;- These images are synthesized supposing there
is no change in time (stable case), thus giving three realiza-
tions of the same scene. They have been denoised using three
methods.

* Method i (1-PPB): Denoise the single image y;, without

using images y¢, and y;, by the PPB approach.

e Method ii (T-PPB): Denoise y;, using the set of tempo-
ral images {v:,,Ys,, Yi, } by the temporal PPB approach
[see (7)].

* Method iii (M-PPB): First, get the mean values y of
the set of multitemporal images {y:,,vt,,Yt, } and then
denoise this average image 4 by using the PPB approach.

Note that method i uses only one image, whereas method
ii uses the whole image set (three images). Although methods
ii and iii share the same input noisy images, method iii first
temporally averages the three temporal images. Because the
denoising approach of the three methods is PPB and the main
difference among them is the input, one can easily predict that
method i has the poorest results and that methods ii and iii
should have comparable performance.

Fig. 2 shows the comparison results. Indeed, by using three
1-look noisy images, the denoising performance of T-PPB in
Fig. 2(d) has improved compared with the result of 1-PPB in
Fig. 2(b) (seeing the SNR values). However, it is not sufficient,
because M-PPB in Fig. 2(f) has significantly outperformed
T-PPB, in spite of the same input noisy images.

C. Analysis

In order to analyze these results, we represent the map of
weights w(i¢, ji). Fig. 3 shows the weight maps of several
interesting pixels for the three methods. In the noise-free image,
we can easily find the similar pixels. However, in method ii,
more dissimilar pixels have been assigned large weights (bright
points in the weight map) than those in method iii. More
weights are computed, but they are less accurate. Due to the
temporal average before denoising, method iii reduces the risk
in searching similar pixels.

A first solution could be the modification of the kernel that
transforms similarity in weights. Indeed, it is shown in [32] that
truncated weights for NLM (instead of exponential function)
could improve the selection. However, for a 1-look image, the
improvement is not sufficient.

Averaging in the temporal domain (multilooking) is con-
sidered as the efficient and best unbiased estimator for the
hypotheses of independent and identical distribution. Thus,
method iii naturally performs better than methods i and ii. The
purpose of this experiment is to illustrate the improvement of
the introduction of multilooking into PPB. In this paper, we
combine the advantages of both approaches (multilooking and
PPB) to achieve a multitemporal denoising method.
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(b)

Fig. 2. Denoising results of synthetic images with multiplicative speckle noise
(left: input noisy images; right: denoising results). (a) 1-look noisy image.
(b) Method i 1-PPB result of (a); SNR: 10.79. (c¢) Three 1-look noisy mul-
titemporal images. (d) Method ii T-PPB result of (c); SNR: 11.62. (e) Tem-
poral mean of (c) (a 3-look noisy image). (f) Method iii M-PPB result of
(e); SNR: 13.81.

IV. TWO-STEP MULTITEMPORAL NLM

Let us go back to the simple comparison experiment in
Section III-B. Method iii [in Fig. 2(e) and (f)] first temporally
averages noisy images, which reduces the noise level and im-
proves the weights, as shown in Fig. 3. Although the real SAR
images or video data have problems such as registration (or
motion) and temporal changes, there are still lots of cases that
can be temporally combined. Taking inspiration from method
iii, we divide the denoising process into two steps, which deal
with temporal and spatial information, respectively. The main
purpose of multitemporal denoising is to exploit all available
information for temporally stable pixels while keeping the new
information as much as possible. Note that in this part, all
multiimages are well registered, and only the change detection
problem is considered in this section.

In case of stable pixels (no change over time and well
registered), method iii illustrates the usefulness of temporal
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(b) Temporal mean of (a) (3-look
noisy image)

(a) Three 1-look noisy images

(c) Weight maps of
y(1) in (a)

(d) Weight maps of
y(2) in (a)

(e) Weight maps of
y(3) in (a)

(f) Weight maps of
y(1) in (b)

(g) Weight maps of
y(2) in (b)

(h) Weight maps of
y(3) in (b)

Fig. 3. Weight maps. (a) Three 1-look noisy images. (b) Temporal mean of
(a). (c), (d), and (e) Weight maps of y(1), y(2), and y(3) in (a). (f), (g), and
(h) Weight maps of y(1), y(2), and y(3) in (b).

averaging. The proposed denoising framework, namely, a two-
step (2S-PPB) approach based on NLM and PPB, is to exploit
similar pixels in the temporally average image y rather than
in the stack {y,,..., 1, } (the premise is that there is no
change taking place among multiimages). If pixels located at
the same position but at different times (such as y;(i) and
yv (1)) have not changed (in other words, they share a same frue
value u; (i) = uy (7)), they can be averaged together to estimate
u¢(i). From a probability point of view, this equally weighted
average can be considered as an estimation using prior infor-
mation (relative to the estimate using likelihood information
in [24]). This temporal average can be seen as a preliminary
multilooking operation. However, the main problem lying in
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(b) The 100 most similar pixels se-
lected by GLR similarity in (a)

(a) Noisy house with a center pixel
(3-look)

K144 Y. 78
Index: 211
ROE: 0.52, 0.52, 0.52

(c) Denoised house with the same
center pixel

(d) The 100 most similar pixels se-
lected by KL divergence similarity in

©

Fig. 4. Selected similar pixels by the GLR criterion and the KL divergence
criterion. (a) The 3-look noisy house image and the pixel that will be used to
illustrate the distributions; the red rectangle is the search window. (b) Selections
by the GLR criterion. (c) PPB denoising result of (a). (d) Selections by the KL
criterion. The KL criterion in denoised images is more capable of selecting
similar pixels than the GLR criterion in noisy images.

this temporal denoising is the use of only stable pixels. Thus,
we have to use change detection, which will be detailed in the
following.

A. Change Criteria

Most change detection methods are concerned about changes
between different terrestrial objects, such as rivers, buildings,
and other artificial objects. However, in image denoising,
we theoretically combine the observed pixels from the same
true value or reflectivity (coming from the same distribution).
Hence, the changes in this section are defined as samples
coming from different distributions.

Several similarity criteria for noisy patches are compared in
[30]. The GLR is proposed for non-Gaussian noise. This crite-
rion can be used to detect changes in times. Another criterion,
i.e., the symmetric KL divergence criterion (hereafter referred
to as the KL criterion) in denoised images (using 1-PPB on each
image), is proposed in [24] to improve the performance of the
GLR criterion computed in noisy images. Both criteria, GLR on
noisy images and KL divergence on denoised data, have been
investigated for similar pixel selection.

Fig. 4 illustrates the performance of the GLR criterion in
the noisy image and the KL criterion in the denoised image
(using 1-PPB on each image) to find the similar pixels. The
results show that the KL criterion in denoised images is more
capable of selecting similar pixels than the GLR criterion in

(c) Change detection by
Eq. (8)

e

G

(a) Noisy house with 1- (b) Noisy house with 1-
look speckle noise look speckle noise

Ty -

(f) Change detection by
Eq. (8)

(e) Noisy SAR image

(d) Noisy SAR image

Fig. 5. Change detection by the KL divergence and the GLR criterion. (a) and
(b) Noisy house images with 1-look speckle noise. (c) Change detection results
between (a) and (b). (d) and (e) Noisy SAR images; the red rectangles denote
the changes between (d) and (e). (f) Change detection results between (d) and
(e). Changes in red rectangles have been found out in detection results.

the noisy image. However, this comparison experiment is not
fair, because of the different noise levels in Fig. 4(a) and (c).
What is more, the KL criterion in denoised images has an
inevitable drawback that the used denoising approaches have
great influence on the quality of the selections.

To balance the advantages against the disadvantages of both
the GLR in noisy images and the KL criterion in denoised
images, we suggest employing both of them to detect the
changes between temporal images (see Fig. 5). This suggestion
has the similar consideration as in [24], which proposed that the
denoising weights are coming from both the noisy images (by
the GLR criterion) and the previous denoised images (by KL
divergence).

For the sake of simplicity, we use (8) as a binary criterion to
define the temporal relation between the pixel values at 7; and
the pixel value at j as

1, if dise(ie, o) < 2

# ldase (i, )] = {0 otherwise ®)

Sk (e (1), e (7))

7
hast 1st

dist (Z’tvjt’) = SGLR('yt(i)a yt’(])) I

where (i) and @ (j) are patches extracted in the denoised
result, respectively, in @} and 4}, using 1-PPB. In order to
ensure that both GLR and KL criteria have the same con-
tribution on change detection, we normalize the GLR and
KL terms in (8) by parameters his, = quantile(Sgrr, «) and
h 4 = quantile(Skr,, o), respectively, where for any similarity
measure f, quantile(f, «) denotes the a-quantile of the pure
distribution of f (i.e., the distribution when patches have the
same underlying reflectivity). In practice, we have chosen o =
0.99, such that a binary weight ¢[d (¢, j+)] = 1 means that
pixel y;(4) and y (7) have a high probability to be realizations
coming from the same underlying reflectivity. If a keeps con-
stant, a threshold larger than ‘“2” will add more changed pixels
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in the temporal step. On the contrary, a smaller threshold may
neglect some similar (unchanged) pixels in the temporal step.

B. Two-Step Denoising

The following formula shows the temporal averaging process
with the change criterion (binary weights):

e(i) = % Z

t'efty,tn]

@ [dast (it der)] - yar (2) )

where Z =3y, g @ldise (e, dv ).

Denoising on the temporal estimate () is comparable to
(7). However, different pixels 7:(7) may have different (equiv-
alent) number of looks depending on the number of averaged
data. The resulting number of looks is temporally and spatially

varying and is given by

Ly(i) = @ [dise(i¢, 10)] - Ly (10)
t € [tr,tn]

in which L, is the original spatially invariant (equivalent)
number of looks of the image y, . In this case, the similarity
between patches ¢, () and ¢, () has to be modified to take into
account the spatially varying number of looks. For any patches
Y, and y,, the GLR gives (see Appendix A)

SeLr(@1,92)= > {(EL/@ + Ly 1) log[L1 k@1 k + Lo kT2.]
ke K

— (L1 + Loy)log(Ly g + L)

—Ly 1 log[fn k] — Lok logljas]| (11)
where L; and L, are, respectively, the (equivalent) number of
looks of patches ¢, and y,. Then, the estimate 4 (7) using g

will be

Z exp (

]EQ

—dana (i, ji)) - 9e(J) (12)

where

Sarr (9:(7), 9:(5))
hand

N Sk, (i), wi(5))

dona(it, Ji) =
h/2nd

and Skr, plays the same role as in (7) for iteratively refining
the weights by using patches @(i) and @(j) extracted from
the previous estimate ;. However, by considering the different
number of looks, the similarity function Skp, has also to be
modified according to the KL divergence, where for any pair
of patches u; and us (see Appendix B for details)

SkL(w1, U2) = Zle~ +L2k7_L1k_L2k
ke K 2.k
(L g = L) [$(L1) = $lLa) + In(in k) = n(iize)]

(13)

Algorithm 1 summarizes the steps to denoise temporal SAR
images by the proposed 2S-PPB method.
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Algorithm 1 The proposed 2S-PPB algorithm.

Input:
Well-registered temporal SAR images {y:,, Y., - - -
A date ¢, of interest.
Output:
g, : the denoising result of image v, .
step):
1: for each y, in {yt,, Yips .-, Y1yt do
2:  denoise y; using the 1-PPB approach;
(see Section II-B)
3 obtain predenoised results };
4:  for each pixel index i do
5 compute change criterion ¢[dyg¢ (¢, ,9¢)];
6
7
8

aytN}'

[see (8)]
end for
: end for
: for each pixel index ¢ do
9: initialize j;, (i) = 0, Ly, (i) = 0;
10:  foreach y; in {y¢,, Yips .-, Yty t do

W 96, (0) = 03, (0) + @ldise(iny 0] - 9:(0); - [see (9)]

12: Lt1 (Z) = Lt1 (Z) =+ gp[dlst (itlait)] . Lt
13:  end for B

14: g, (i) = ge, () /Ly, (3);  [see (9)]

15: end for

——Step 2 (Spatial step):———
16: denoise gy, (7) using (11), (12), and (13) in Section IV-B.
This denoising step is similar to the PPB approach.

17: Denoised result iz, ;

V. TWO-STEP MULTITEMPORAL NLM FOR
UNREGISTERED SAR IMAGES

The two-step multitemporal NLM proposed in the previous
section deals with multitemporal SAR images that have been
well registered. However, in practice, it is not always easy to
get well-registered images because of the lack of accuracy of
sensor parameters or of terrain deviation. Here, we propose an
adaptation of the two-step multitemporal NLM to deal with
unregistered temporal SAR images.

A. Miss-Registration Estimation

From the simple comparison experiment in Section III-B, we
have seen that the direct extension of 2-D denoising approaches
to well-registered temporal SAR images is not optimal. Hence,
unlike in [33], we try to consider the offset caused by miss-
registration between temporal SAR images using patch simi-
larity. This offset between remote sensing SAR images caused
by miss-registration is much simpler than the complex scene
changes in video. Moreover, our aim is not accurate registration
but only accurate detection of similar pixels to perform tempo-
ral averaging.

Let y; and yp denote two temporal images without regis-
tration, and y;(i) and yu (i) are the ith pixel in y; and yp,
respectively. Note that y,(¢) and y (7) are both located at ¢ in



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

SU et al.: TWO-STEP MULTITEMPORAL NONLOCAL MEANS FOR SYNTHETIC APERTURE RADAR IMAGES 7
A,(i+1) with
Current Offset ()]
Position _ Vector i+ y)//—\
v Qg
i) - ) Similarity Map:
Region 4 (i) Region 4,(i) between y,(i+1)
and pixels in
R?%l Image /, Image 7, A(i+1)
Position
4 \ Average of Similarity Map
y(i+1) [ .
™~ Maximum value
Fig. 6. Assumption of image registration. In the intensity image registration, . of average map
all pixels in a small patch share the same offset to their real position. yiitna) Offset
) o : Center of Vve?(tgr
images, but they do not denote the same position in the geo- average map
. . . . . v(i+N,) I

graphic coordinate system before image registration. Suppose - ar
that yu (i + ¥y (7)) is the [i + Ty (7)]th pixel in y4 that shares Y
the same geographic locathn with (Z) IE ytf and Uy (i) de- Fig. 7. Sketch map of the miss-registration estimation for unregistered
notes the offset between y(¢) and yy (i + U4 (4)). If no change  images.

takes place, yu (i + Uy (7)) should be the most similar pixel of
y¢(7) in image y;. Consequently, the idea to estimate this offset
Uy (1) caused by miss-registration is to use the pixel similarity.

Using the conclusion in Section IV-A, we combine the KL
divergence and the GLR criterion as the similarity between
patches, illustrated in (8). (Note that this KL divergence cri-
terion is from the 1-PPB denoising results on each image.) For
each pixel y;(7) in y;, we measure the similarity between v, ()
and the pixels in region Ay (i) (an image patch with y;/ (7) as
the center in vy, shown in Fig. 7). The similarity between v, ()
and yy (j) is dist(is, j). Each pair of pixel y:(i +n) in y;
and region Ay (i 4+ n) in y has a similarity map My (i + n)
(0 <n < Ny—1, Ny is the size of region A), as shown in the
top-right image in Fig. 7. Thus

My (i) = {dise (v, v )}, ea, ) -

The offset ¥ (7) should be the offset between the center of
map My (i) and the position of minimum value in My (7).
However, it leads to a poor performance because of noise.
Based on the assumption in Fig. 6, we suggest that the offset
Uy (1) caused by miss-registration can be estimated from an
average similarity map M; (i), which is the mean of similarity
maps My (i +n) (1 <n < Na). The estimation of offset
Uy (1) is from the center of map My (i) to the position of
minimum value in My (i), i.e.,

My (i) = {dust (i, jt’)}jt,eAt,(i)

dsi(iv, o) = Y daselie, jur).

i €AL (1)

(14)

5)

We test the miss-registration estimation on real SAR images.
Fig. 14(b) is the temporal average without image registration
or miss-registration estimation, which is blurred. After miss-
registration estimation, the temporal average is illustrated in
Fig. 14(c).

B. Two-Step Denoising

The miss-registration estimation entitles the proposed 2S-
PPB denoising approach to deal with unregistered multitem-

poral images. The denoising process is exactly the same as
detailed in Section IV, except that the candidate pixels y,/ (%) are
replaced by v/ (i + U (2)) found out by the miss-registration
estimation (see Fig. 7). Algorithm 2 summarizes the steps to
denoise unregistered temporal SAR images by the proposed 2S-
PPB method.

Algorithm 2 The proposed 2S-PPB algorithm (unregistered
temporal images).

Input:
Unregistered temporal SAR images {yz,, Yt,, - - -
A date ¢1 of interest.

Output:

1, : the denoising results of image y;, .
Miss-Registration estimation:
1: for each y; in {ys,, Yty,- -, Yty } do
2:  denoise y; using the 1-PPB approach;

(see Section II-B)

aytN}'

3:  obtain predenoised results };
4: end for
5: for each pixel index ¢ do
6:  for each image y; in {ys,, Ytn,-- - Yt } dO
7. Mtlt(i) = O,
8: for each pixel index 7 + n in region Ay, (i) do
9: compute similarity map My, (i + n); [see (15)]
10: Mtlt(i) = Mtlt(i) + Mtlt(i + n),
11: end for
12: find the offset vector ¥i,.(i) in similarity map
]\/[tﬂf(i);
13: end for
14: end for

Step 1 (Temporal step):

15: compute g, using (8) and (9) by taking into account
the vector field ¥;,:. This denoising step is similar
to the one in Algorithm 1 where i; is substituted to
it -+ ’Utlt(i).
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(a) Synthetic images. From left to right: image at date ¢, image at date ¢', reference map of changes, log-ratio criterion map and the proposed similarity criterion

map.

(b) Saint-Gervais-les-Bains images. From left to right: image at date ¢, image
similarity criterion map.
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(c) Change detection results (True positive and false
positive curves) of synthetic images
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(d) Change detection results (True positive and false

positive curves) of Saint-Gervais-les-Bains images
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Change detection criterion comparison. (a) Noisy image at date ¢. (b) Noisy image at date ¢'. (c) Reference map of changes. (d) Log-ratio change criterion.

(e) Similarity map. (f) Change detection results (true-positive and false-positive curves).

—Step 2 (Spatial step): ——
denoise g, (4) using (11), (12), and (13) in Section IV-B.
This denoising step is similar to the PPB approach.

16:

17: return Denoised result 4y, ;

VI. EXPERIMENTS

Here, we analyze the performance of the proposed ap-
proaches. Before denoising evaluation, the similarity criterion
combining GLR and KL criteria used for change detection or
offset estimation is studied.

A. Test of Pixel Similarity

The value of d;4 given by (8) is a key point of our approach,
since it is used both for the change detection step and for
the offset estimation step. We compare our change detection
criterion with the log-ratio, which is a criterion widely used in
SAR images. Synthetic images and real SAR images are used
in these comparison experiments: 1) synthetic SAR images

corrupted by a multiplicative 1-look speckle noise in Fig. 8(a);
2) two real SAR images (TerraSAR images in Saint-Gervais-
les-Bains, France) sensed in 2009 and 2011, respectively, in
Fig. 8(b). Fig. 8(a) and (b) shows noisy images at different
times. The reference maps of changes are shown in Fig. 8(c)
(for the real SAR images, we manually label the changes taking
place between date 1 and date 2). Fig. 8(e) shows our similarity-
based change detection criterion, and Fig. 8(d) shows the log-
ratio criterion. Our similarity-based change detection criterion
has higher receiver operating characteristic curves in the false-
positive and true-positive curves in Fig. 8(f).

We also compare our offset estimation with the offset estima-
tion using the intensity tracking method. Intensity tracking with
correlation has been widely used in glacier motion estimation
tasks on multitemporal SAR images [34], [35]. In this compari-
son experiment, we simulate a multitemporal image set with an
offset vy = (3, 3) pixels between them, as shown in Fig. 9(a)
and (b).

For the offset estimation using intensity tracking, it is self-
implemented in our comparison experiments, and it also has a
local averaging process similar to that in the proposed method



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

SU et al.: TWO-STEP MULTITEMPORAL NONLOCAL MEANS FOR SYNTHETIC APERTURE RADAR IMAGES 9

(a) Image at date t,

- |

(c) Estimation error of intensity
tracking

(d) Estimation error of the proposed
similarity

Fig. 9. Offset estimation. (a) Noisy image 1. (b) Noisy image 2 (with an off-
set ¥;;r=(3, 3) with image 1). (c) Estimation error of intensity tracking [34],
[35] (the distance between intensity tracking offset estimation results and the
true offset U= (3, 3)). (d) Estimation error of the proposed similarity (the
distance between the proposed offset estimation results and the true offset
Typpr= (3, 3)).

to reduce the effect of speckle noise. The patch size is 7 x
7 pixels, and the test area is 21 x 21 pixels. To illustrate
the performances, the estimation error is calculated using the
Euclidean distance between the true offset vy = (3, 3) and the
estimated offset. Fig. 9(c) and (d) shows that the proposed offset
estimation has less estimation error than the log-ratio similarity.

B. Denoising of Well-Registered Images

For all the experiments, we use the parameters as suggested
by Deledalle et al. in [24]. The search window 2 and patch size
K enlarge with the increase in the number of iterations, 2 €
{3x3,7x7,11 x11,21 x 21} and K € {1 x1,3x3,5x
5,7 x 7} for all experiments. hay,g, controlling the decay of
weights, depends on the distribution of similarity between two
noisy patches with the same underlying reflectivity and is
defined as the a-quantile of this pure distribution (o = 0.92).
hy.q = 0.2| K.

The experiments are taken under the MATLAB environment
on an Intel Core-2 Quad CPU Q9550 at 2.83-GHz 64-bit
computer. The time consumption of the proposed method is
about 400 s for a three-date 256 x 256 temporal image set (PPB
needs about 15 s for a 256 x 256 image).

1) Synthetic Images: We present visual and numerical re-
sults obtained on synthetic images corrupted by multiplicative
Goodman’s speckle noise. The classical noise-free images are
used: house, lena, barbara, boat, and peppers. We use the same
noise-free image to synthesize a temporal image set, which
means that there are no temporal changes. In addition to the
proposed 2S-PPB filter, the comparisons that have been tested
here are PPB only on single image ¥;, (method i: 1-PPB), 3-D

adaptive neighborhood filter (3-D-ANF, it is self-implemented)
[3] on the multitemporal image set {y;,, ..., ¥, }, and tempo-
ral PPB on the multitemporal image set {yy,, . .., Y, } (method
ii: T-PPB). For the 3-D-ANF filter, we use a 3 x 3 median filter
in the first step of 3-D-ANF and 50 x 50 as the maximum size
of adaptive neighborhood in the last step of 3D-ANF.

Fig. 10 only shows the denoising results of the house im-
ages corrupted by L = 1 multiplicative speckle noise. There
are three noisy images in the temporal data set. The image
obtained by the T-PPB filter is well smoothed compared with
the 1-PPB filter. However, the edge and shape preservation
has limited improvement. The proposed 2S-PPB filter provides
more details of edges as the eaves and windows of house,
whereas smooth regions are comparable. 3D-ANF has less loss
of structural information in stable cases [shown in the ratio
map in Fig. 10(b)], whereas it has poor noise reduction in
homogeneous regions.

To quantify the denoising qualities, Table I presents numeri-
cal results for images corrupted by multiplicative speckle noise
with different ENL L = 1,3,5, and 10 and different number
of dates (different number of images in the temporal data set)
N =1,2,3, and 5. Note that when N = 1, there are no T-PPB
and 2S-PPB denoising results. The used performance criterion
is the signal-to-noise ratio (SNR), i.e.,

A Var|u
SNR(UuUt) = 10log;, Mean [(QE i] ut)Q]'

We observe that the 2S-PPB filter improves on the T-PPB filter
for high-noise-level images (i.e., L = 1), particularly when N
is large. However, for low-noise-level images (i.e., L > 5),
2S-PPB has only limited improvement. This is because the
similarity of noisy patches in low-noise-level images is efficient
enough, and the improvement of patch similarity using tempo-
ral average is relatively less important.

2) Realistic SAR Synthetic Images: This part presents de-
noising results of realistic SAR synthetic images. It is a
100-look SAR acquisition identified as Toulouse of the CNES
in Toulouse (France) sensed by RAMSES and provided by
the CNES. We corrupt this 100-look Toulouse image by
1-look multiplicative speckle noise to form three temporal
images {Yt,,Yt,, Y5 }. In order to simulate the changes in
the multitemporal images, a dark /ine and a bright target are
added to y;,, labeled by red rectangles (Region #1 and #2) in
Fig. 12(a). ¢, and y, are corrupted by different multiplicative
speckle noise without the dark line and the bright target [see
Fig. 12(e) and (f)].

Fig. 12 presents the obtained denoising results for the
Toulouse images. The results of the proposed 2S-PPB filter have
better edge and shape preservation with comparable smoothed
regions than 1-PPB and T-PPB filters (ENL in Table II).
Structural information of new objects (changes) is also better
preserved, as shown in Fig. 12(a) (Region #1 and #2). Stable
objects, as the dark lines in Region #3 and #4, have been better
restored in the results of 2S-PPB than 1-PPB and T-PPB filters.

3) Real Multitemporal SAR Images: We also test on real
multitemporal SAR data as follows:

e San Francisco (well-registered) IGARSS: six single-look

TerraSAR images of San Francisco (USA) provided by

(16)
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(d) The proposed 2S-PPB on 3 images

Fig. 10. Denoising results for the house images corrupted by multiplicative speckle noise with L = 1. From left to right: the denoising results and the ratio of
the noisy image to the denoised image. (a) 1-PPB filter. (b) 3D-ANF. (c) T-PPB filter. (d) Proposed 2S-PPB filter.

TABLE 1
SNR VALUE OF ESTIMATED IMAGES USING 1-PPB (BROWN), 3D-ANF (BLUE), T-PPB (GREEN), AND 2S-PPB (RED) FILTER
FOR IMAGES CORRUPTED BY MULTIPLICATIVE SPECKLE NOISE WITH DIFFERENT ENL L = 1,3,5,10 AND
DIFFERENT NUMBERS OF IMAGES N = 1,2, 3,5 IN TEMPORAL DATA SET

L=1|L=3|L=5|L=10 L=1|L=3|L=5|L=10

N=1 10.39 13.21 14.29 15.81 N=1 10.71 13.47 14.89 16.69
6.58 9.08 | 10.07 | 10.97 6.58 8.88 9.68 10.39

8.16 | 10.35 | 10.97 | 11.52 8.15 9.91 10.38 | 10.79

N =2 1043 | 13.68 | 14.99 | 16.80 N =2 11.00 | 1391 | 15.02 | 16.62
11.51 | 13.73 | 14.69 | 16.20 12.15 | 14.53 | 15.53 | 16.79

peppers 9.09 10.86 | 11.32 11.73 barbara 8.91 10.29 | 10.68 10.95
N=3| 11.33 | 13.99 | 1537 | 17.19 N=3| 1177 | 1441 | 15.60 | 17.29
12.15 | 14.48 | 15.52 | 16.84 13.10 | 15.06 | 15.99 | 17.40

10.03 | 11.32 | 11.62 | 11.90 9.68 | 10.65 | 1089 11.06

N=5| 1187 | 1445 | 15.74 | 17.73 N=5] 1229 | 1477 | 15.89 | 18.28
12.99 | 15.20 | 16.25 | 17.62 13.97 | 1583 | 16.78 | 18.16

N=1 12.37 14.83 16.05 17.60 N=1 9:50 11.61 12:62 14.14
6.89 | 10.64 | 12.32 | 14.18 6.01 9.15 | 1039 | 11.77

9.29 | 12.81 | 14.23 | 15.66 8.01 10.78 | 11.77 | 12.66
N=2|1290 | 1521 | 16.60 | 17.81 N=2]| 975 | 11.87 | 13.29 | 15.25
13.31 | 15.63 | 16.70 | 18.07 10.75 | 12,75 | 13.76 | 15.22

lena 10.62 | 13.93 | 15.11 16.32 boat 9.12 | 11.59 | 12.32 | 13.00
N=3| 1328 | 15.59 | 16.77 | 18.07 N=3| 999 | 1262 | 13.89 | 15.67
14.14 | 16.13 | 17.18 | 18.63 11.05 | 13.39 | 14.34 | 15.78

12.26 | 15.11 | 16.07 | 16.86 10.41 | 12.34 | 12.86 | 13.35

N=5| 1337 | 1582 | 16.80 | 18.91 N=5| 1097 | 12.78 | 1427 | 16.41
14.80 | 16.89 | 17.94 | 19.18 12.37 | 14.21 | 15.24 | 16.50

IGARSS Fusion Contest 2012 (three images are sensed in
2007 and the other three in 2011);
* Saint-Gervais-les-Bains (well-registered): 26 single-look

TerraSAR images in Saint-Gervais-les-Bains (France)
(13 images are sensed in 2009 and the other 13 images
in 2011).

Both of them have been well registered using the sensor

parameters.

We assessed the performance of noise reduction in real SAR
images by measuring the ENL, i.e.,

[Mean(a))?

ENL(@) = Var(i)

7)

where 4 is the denoised intensity value. The denoising results
are shown in Fig. 13. Compared with 1-PPB and T-PPB filters,
the 2S-PPB filter reduces the speckle effect comparably in
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TABLE II
ENL OF NOISY IMAGES AND ESTIMATED IMAGES USING1-PPB
(BROWN), 3D-ANF (BLUE), T-PPB (GREEN), AND 2S-PPB
(RED) FILTERS FOR REAL SAR IMAGES

ENL Toulouse  San Francisco S.-G.-Les-B.
0.83 0.94 0.93
Left 56.97 41.87 41.48
green 13:37 10.70 10.79
Region 89.81 5231 54.99
in Fig.11 66.78 65.15 497.25
0.85 0.97 0.92
Right 169.90 16.44 8.79
green 21.73 11.78 5.83
Region 252.33 38.31 13.58
in Fig.11 | 328.61 69.38 190.08

(b) San Francisco

(¢) Saint-Gervais-les-Bains

Fig. 11. (a) Tozulouse, (b) San Francisco, and (c) Saint-Gervais-les-Bains
noisy images (regions in green rectangles are used to calculated the ENL
values).

San Francisco (well-registered). Moreover, more dark and thin
streets have been preserved. We also compare the 2S-PPB filter
with the classical temporal filtering method, multilooking ap-
proach in Saint-Gervais-les-Bains (well-registered). Generally,
the 2S-PPB filter gets more smoothed results than multilooking,
as Region #1 in Fig. 13(c) and (d). More than that, the changes
over time can be restored by 2S-PPB, as the changes in Region
#2 in Fig. 13(c) and (d). Multilooking tends to ignore the tempo-
ral changes (loss of temporal resolution), whereas the 2S-PPB
filter can well preserve both the spatial and temporal resolution
and reduce the speckle effect. Table II shows the ENL calcu-
lated in homogeneous regions (green rectangles in Fig. 11).
In general, the proposed filter has higher ENL than other filters.

C. Denoising of Unregistered Images

The real temporal SAR images provided by IGARSS (data
information in Section VI-B3) are tested here. The difference
is that we manually register those temporal images without
using the accurate sensor parameters (see Figs. 12 and 13).
Moreover, the miss-registration between two images is about
4-7 pixels (shown in Fig. 14(b), the temporal mean of the tem-
poral images illustrates the unregistration). These unregistered
temporal images are identified as San Francisco (unregistered).
In the miss-registration estimation, the search region A (%) is
a 21 x 21 pixel window. Patch size is 7 x 7 pixels, h and
I’ have been chosen identical to the filtering step. After miss-
registration estimation, the proposed 2S-PPB filter is applied
with the same parameters used in Section VI-B.

The temporal mean after miss-registration estimation in
Fig. 14(c) shows the performance of the miss-registration esti-
mation. Similarly, for the thin and dark streets in San Francisco
(unregistered), the proposed 2S-PPB preserves more details
than 1-PPB and T-PPB. However, its performance is not as
good as the one on well-registered San Francisco [in Fig. 14(f)],
because of the insufficient estimation of miss-registration. In
addition, the miss-registration estimation will fail when the
offset between temporal images is too large. Indeed, larger
offset estimation needs larger search region A,(i), but this
increases the risk of finding the similar pixels.

VII. CONCLUSION AND DISCUSSION

In this paper, we have presented the limitation of spatio-
temporal similarity. Inspired by this phenomenon, we have
proposed a two-step denoising framework based on iterative
weighted PPB. With the help of miss-registration estimation,
we also adapted it to unregistered images. The effective per-
formance in the experiments shows that the proposed method
exploits more available information for stable objects while
comparably keeping new objects.

Future work will be focused on finding a more efficient
change detection method for temporal average. In addition, the
adoption of the proposed 2S-PPB for interferometric SAR, po-
larimetric SAR, and polarimetric interferometric SAR images
will be another subject of future work.

APPENDIX A
GLR WITH DIFFERENT NUMBER OF LOOKS

We denote by p(y, u, L) the Gamma distribution, i.e.,

1 L [(Ly\* Ly

- exp [ =22

NL)u \ u P u
where y is the intensity value, u is the noise-free value, and L

is the number of looks.
The GLR similarity criterion [30] between y; and y5 is

p(y,u, L) = (18)

SGLR(@/L yz)

p(y1,ur = U2, L = L1)p(y2, us = 12, L = Lo)
p(y1,u1 = Gy, L = L1)p(ya, ug = tig, L = Lo)

—log
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(b)

Fig. 12.  Denoising results on a zoom of Toulouse DGA ONERA. From left to right: noisy image with 1-look multiplicative speckle noise, results by PPB on
a single image (1-PPB), results by 3D-ANF on temporal images, results by T-PPB on temporal images, and results by 2S-PPB on temporal images. From top to
bottom: image 3+, with new objects (a dark /ine in Region #1 and a bright rarget in Region #2), ratio maps of noisy images to denoised images, image ¢, without
new objects, and image y, without new objects.

Note that in [30], the number of looks L is the same (L; = Il Lyy1 + Loys Lol Ly + Loys
Ly = L) Thus, the parameters of qistribution 6 only consider = 1708 y1 (L1 + Lo) 2108 yo(L1 + Ly)
the noise-free value u. However, in our case, the number of
looks is different, which will have influence on the similarity When L, = Ly = L, we have

criterion. m m

Substitute the Gamma distribution p(y, u, L) in the GLR cri-  SGLR(Y1,Y2)|1,=1,=1 = 2L log <\/j + \/:> —2Llog2
terion with iy = y1, fis = v, and @10 = (L1y1 + Loya /Ly + Y2 vt
L), ie., which is the same as the weights formula in [24] (y is the

intensity value, and is the amplitude value).
SaLr (Y1, Y2) Y Vo P

A Li—1 -
L APPENDIX B
= log Y1 <U1> exp (Ll_ 1y1)

SYMMETRIC KL DIVERGENCE WITH

DIFFERENT NUMBER OF LOOKS
—1

.\ Lo—1
+ log Y2 (_2> ’ exp <L2 _ L2y2> For distributions p(y, u1, L1) and p(y, us, L2) of a continu-
ous random variable, KL divergence is defined to be the integral
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(b)

Fig. 13.  Denoising results of well-registered San Francisco IGARSS and Saint-Gervais-les-Bains. (a) San Francisco denoising results. From left to right: 1-PPB
on a single image, 3D-ANF, T-PPB, and 2S-PPB. (b) Ratio map of San Francisco images. From left to right: 1-PPB on a single image, 3D-ANF, T-PPB, and
2S-PPB. (c) Saint-Gervais-les-Bains images. From left to right: noisy image, denoising result by multilooking, and denoising results by 1-PPB on a single image.
(d) Saint-Gervais-les-Bains images. From left to right: 3D-ANF, denoising result by T-PPB on temporal images, and denoising results by 2S-PPB on temporal
images. Stable Region #1 in Saint-Gervais-les-Bains and changed Region #2 in Saint-Gervais-les-Bains.

as follows: Substitute the Gamma distribution p(y,u, L) in the GLR
criterion with y < 0, i.e.,

+o0 +oo

Jup, L
Diri = / p(y,ur, L) n | 291 E) | g o) Diri = / ply,ur, L) I[A-B-Cldy ~ (20)
p(y, uz, L)

e 0
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(b) Temporal average without miss-registration es-
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BTN g oS

(c) Temporal average with miss-registration estima-
tion

-* s

: % 4 ® -y

(d) Temporal PPB (T-PPB) using 6 un-registered (e) The proposed 2S-PPB (with miss-registration
SAR images estimation) using 6 un-registered SAR images

(f) The proposed 2S-PPB using 6 well-registered
SAR images

Fig. 14. Denoising results of unregistered San Francisco IGARSS. (a) y¢1, one of the noisy images (1-look). (b) Temporal average of the multitemporal SAR
images, which shows that the temporal images are unregistered. (c) Temporal average of the multitemporal SAR images after miss-registration estimation.
(d) Denoising results by T-PPB on unregistered temporal images. (e) Denoising results by 2S-PPB on unregistered temporal images. (f) Denoising results by
2S-PPB on well-registered temporal images.

where thus
1 Ly Li—1 1-L L L
A=TU)uw p_ Liy\™ Loy ’ Dxra=IA+ (L —1)In == + (1 — Ly)In =2
1 Ly’ Uy Us U1 U2
T(Lz) us Uy
L L + (L1 - LQ) [@[J(Ll) + ln(ul)] + LQ* - L1 (24)
o [23/ _ w} . @1 12
U uy
where ¢(L) is the digamma function.
Then With
+o0 +oo +00
_ L
Dki1=InA / p(y,u1, L1)dy + / p(y,u1, L1) In Bdy Dirs = / p(y, us, Ls) In {P(y,uz, 2)] dy (25)
0 0 R p(y7 Ui, Ll)
+oo
+ / p(y,u1, L) InCdy. (22) the KL divergence criterion is
0
Skr(u1,u2) = Dkr,1 + Dxr2
Since
=L1% +L2ﬂ — Ly — Lo
~+00 Ui U2
[ v nyay=1 T (L~ Lo) (L) — 9(Lo)]
0 -+ (Ll — LQ) [ln(ul) — 111(7.1,2)] . (26)
+oo
/ p(y,u, L) Inydy = E(lny) = ¢(L) + In(u) When Ly = Ly = L, we have
0
U U
+oo Skr(ui,us) = D1+ Dxr2 = L {1 + =2 2] 27
(5 (5%
(23)

/ p(y,u, L)ydy = E(y) = u
A which is the same as the weights formula in [24].
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