
IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 1

Multichannel high resolution NMF for modelling
convolutive mixtures of non-stationary signals

in the time-frequency domain
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Abstract—Several probabilistic models involving latent com-
ponents have been proposed for modelling time-frequency (TF)
representations of audio signals such as spectrograms, notably in
the nonnegative matrix factorization (NMF) literature. Among
them, the recent high resolution NMF (HR-NMF) model is able
to take both phases and local correlations in each frequency band
into account, and its potential has been illustrated in applications
such as source separation and audio inpainting. In this paper,
HR-NMF is extended to multichannel signals and to convolutive
mixtures. The new model can represent a variety of stationary
and non-stationary signals, including autoregressive moving aver-
age (ARMA) processes and mixtures of damped sinusoids. A fast
variational expectation-maximization (EM) algorithm is proposed
to estimate the enhanced model. This algorithm is applied
to piano signals, and proves capable of accurately modelling
reverberation, restoring missing observations, and separating
pure tones with close frequencies.

Index Terms—Non-stationary signal modelling, Time-
frequency analysis, Nonnegative matrix factorisation,
Multichannel signal analysis, Variational EM algorithm.

I. INTRODUCTION

NONNEGATIVE matrix factorisation was originally intro-
duced as a rank-reduction technique, which approximates

a non-negative matrix V ∈ RF×T as a product V ≈ WH

of two non-negative matrices W ∈ RF×S and H ∈ RS×T

with S < min(F, T ) [1]. In audio signal processing, it
is often used for decomposing a magnitude or power TF
representation, such as a Fourier or a constant-Q transform
(CQT) spectrogram. The columns of W are then interpreted as
a dictionary of spectral templates, whose temporal activations
are represented in the rows of H . Several applications to
audio have been addressed, such as multi-pitch estimation [2]–
[4], automatic music transcription [5], [6], musical instrument
recognition [7], and source separation [7]–[10].

In the literature, several probabilistic models involving la-
tent components have been proposed to provide a probabilistic
framework to NMF. Such models include NMF with additive
Gaussian noise [11], probabilistic latent component analysis
(PLCA) [12], NMF as a sum of Poisson components [13],
and NMF as a sum of Gaussian components [14]. Although
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they have already proven successful in a number of audio ap-
plications such as source separation [11]–[13] and multipitch
estimation [14], most of these models still lack of consistency
in some respects.

Firstly, they focus on modelling a magnitude or power TF
representation, and simply ignore the phase information. In an
application of source separation, the source estimates are then
obtained by means of Wiener-like filtering [8]–[10], which
consists in applying a mask to the magnitude TF representation
of the mixture, while keeping the phase field unchanged.
It can be easily shown that this approach cannot properly
separate sinusoidal signals lying in the same frequency band,
which means that the frequency resolution is limited by that
of the TF transform. In other respects, the separated TF
representation is generally not consistent, which means that
it does not correspond to the TF transform of a temporal
signal, resulting in artefacts such as musical noise. Therefore
enhanced algorithms are needed to reconstruct a consistent
TF representation [15]. In the same way, in an application of
model-based audio synthesis, where there is no available phase
field to assign to the sources, reconstructing consistent phases
requires employing ad-hoc methods [16], [17].

Secondly, these models generally focus on the spectral and
temporal dynamics, and assume that all time-frequency bins
are independent. This assumption is clearly not relevant in the
case of sinusoidal or impulse signals for instance, and it is not
consistent with the existence of spectral or temporal dynamics.
Indeed, in the case of wide sense stationary (WSS) processes,
spectral dynamics (described by the power spectral density)
is closely related to temporal correlation (described by the
autocovariance function). Reciprocally, in the case of uncor-
related processes (all samples are uncorrelated with different
variances), temporal dynamics induces spectral correlation. In
other respects, further dependencies in the TF domain may
be induced by the TF transform, due to spectral and temporal
overlap between TF bins.

In order to overcome the assumption of independent TF
bins, Markov models have been introduced for taking the local
dependencies between contiguous TF bins of a magnitude
or power TF representation into account [18]–[20]. However,
these models still ignore the phase information. Conversely,
the complex NMF model [21], [22], which was explicitly
designed to represent phases alongside magnitudes in a TF
representation, is based on a deterministic framework that
does not represent statistical correlations. More recently, two
probabilistic models have been proposed, which partially take
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the phase information into account. The multichannel NMF
presented in [23] is able to exploit phase relationships between
different sensors via the mixing matrix, but the phases and
correlations of source signals over time and frequency are
not modelled. The infinite positive semidefinite tensor fac-
torization method presented in [24] is able to exploit phase
information by modelling correlations over frequency bands,
but correlations over time frames are still ignored.

Alternatively, the high resolution (HR) NMF model that we
introduced in [25], [26], is able to model both phases and
correlations over time frames (within frequency bands) in a
principled way. We showed that this model offers an improved
frequency resolution, able to separate sinusoids within the
same frequency band, and an improved synthesis capability,
able to restore missing TF observations. It can be used with
both complex-valued and real-valued TF representations, such
as the short-time Fourier transform (STFT) and the modified
discrete cosine transform (MDCT). It also generalizes some
popular models, such as the Itakura-Saito NMF model (IS-
NMF) [14], autoregressive (AR) processes [27], and the ex-
ponential sinusoidal model (ESM), commonly used in HR
spectral analysis of time series [27].

In this paper, HR-NMF is extended to multichannel signals
and to convolutive mixtures. Contrary to the multichannel
NMF [23] where convolution was approximated, convolution
is here accurately implemented in the TF domain by following
the exact approach proposed in [28]. Consequently, correla-
tions over time frames and over frequency bands are both
taken into account. In order to estimate this multichannel HR-
NMF model, we propose a fast variational EM algorithm. This
paper further develops a previous work presented in [29], by
providing a theoretical ground for the TF implementation of
convolution.

The paper is structured as follows. The HR-NMF model is
first introduced in the time domain, then the filter bank used
to compute the TF representation is presented in Section II.
We show in Section III how convolutions in the original time
domain can be accurately implemented in the TF domain. The
multichannel HR-NMF model in the TF domain is presented
in Section IV, and the variational EM algorithm is derived
in Section V. This model is applied to audio inpainting and
source separation in Section VI. Finally, conclusions are drawn
in Section VII.

NOTATION

The following notation will be used throughout the paper
(words in italics refer to the state space representation):

• z∗: complex conjugate of z ∈ C;
• m: sensor index (related to the multichannel mixture);
• s: source index (related to the latent components);
• n: time index in the original time domain;
• vm: observed mixture;
• wm: additive white Gaussian noise of variance σ2

w ;
• yms: source images (output variables);
• zs: latent components (state variables);
• xs: latent innovations (input variables);
• t: time frame index in the TF domain;

• f : frequency band index in the TF domain;
• τ : time shift of a TF convolution kernel;
• ϕ: frequency shift of a TF convolution kernel;
• bms(f,ϕ, τ): moving average parameters (output

weights);
• as(f, τ): autoregressive parameters (transition weights).

II. FROM TIME DOMAIN TO TIME-FREQUENCY DOMAIN

Before defining HR-NMF in the TF domain in Section IV,
we first provide a simple definition of this model in the time
domain.

A. HR-NMF in the time domain

The HR-NMF model of a multichannel signal vm(n) ∈ F

(where F = R or C) is defined for all channels m ∈ [0 . . .M−
1] and times n ∈ Z, as the sum of S source images yms(n) ∈ F

plus a Gaussian noise wm(n) ∈ F:

vm(n) = wm(n) +
S−1∑

s=0

yms(n). (1)

Moreover, each source image yms(f, t) for any s ∈ [0 . . . S−1]
is defined as

yms(n) = (gms ∗ xs)(n), (2)

where gms is the impulse response of a causal and stable
recursive filter, and xs(n) is a Gaussian process1. Additionally,
processes xs and wm for all s and m are mutually independent.
In order to make this model identifiable, we will further as-
sume that the spectrum of xs(n) is flat, because the variability
of source s w.r.t. frequency can be modelled within filters gms

for all m. Thus filter gms represents both the transfer from
source s to sensor m and the spectrum of source s.

The purpose of the next sections is to transpose this def-
inition of HR-NMF into the TF domain. The advantages of
switching to the TF domain are well-known: in this domain
audio signals generally admit a sparse representation, and the
overlap of different sound sources is reduced. In Section II-B,
we introduce the filter bank notation that will be used in the
following developments. Then the accurate implementation of
filtering in the TF domain will be addressed in Section III.

B. Time-frequency analysis: filter bank notation

To perform the time-frequency analysis of a signal, we
propose to use the general and flexible framework of perfect
reconstruction (PR) filter banks [30], which include both
the STFT and MDCT. In the literature, the STFT is often
preferred over other existing TF transforms, because under
some smoothness assumptions it allows the approximation of
linear filtering by multiplying each column of the STFT by
the frequency response of the filter. However we will show in
Section III that such an approximation is not necessary, and
that any PR filter bank will allow us to accurately implement
convolutions in the TF domain.

1The probability distributions of processes wm(n) and xs(n) will be
defined in the TF domain in Section IV.
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Fig. 1. Time-frequency vs. time domain transformations

We thus consider a filter bank [30], which transforms an
input signal x(n) ∈ l∞(F) in the original time domain n ∈ Z

(where l∞(F) denotes the space of bounded sequences on F)
into a 2D-array x(f, t) ∈ l∞(F) ∀f ∈ [0 . . . F − 1] in the TF
domain (f, t) ∈ [0 . . . F − 1] × Z. More precisely, x(f, t) is
defined as

x(f, t) = (hf ∗ x)(Dt), (3)

where D is the decimation factor, ∗ denotes standard convo-
lution, and hf (n) is an analysis filter of support [0 . . .N − 1]
with N = LD and L ∈ N. The synthesis filters h̃f (n) of same
support [0 . . . N − 1] are designed so as to guarantee PR. This
means that the output, defined as

x′(n) =
F−1∑

f=0

∑

t∈Z

h̃f (n−Dt)x(f, t), (4)

satisfies x′(n) = x(n −N), which corresponds to an overall
delay of N samples. Let

Hf (ν) =
∑

n∈Z

hf (n)e
−2iπνn (5)

(with an upper case letter) denote the discrete time Fourier
transform (DTFT) of hf (n) over ν ∈ R. Considering that
the time supports of hf (Dt1 − n) and hf (Dt2 − n) do not
overlap provided that |t1 − t2| ≥ L, we similarly define a
whole number K , such that the overlap between the frequency
supports of Hf1(ν) and Hf2(ν) can be neglected provided that
|f1 − f2| ≥ K , due to high rejection in the stopband.

III. TF IMPLEMENTATION OF CONVOLUTION

In this section, we consider a stable filter of impulse
response g(n) ∈ l1(F) (where l1(F) denotes the space of
sequences on F whose series is absolutely convergent) and
two signals x(n) ∈ l∞(F) and y(n) ∈ l∞(F), such that
y(n) = (g ∗ x)(n). Our purpose is to directly express the TF
representation y(f, t) of y(n) as a function of x(f, t), i.e. to
find a TF transformation TTF in Figure 1(a) such that if the
input of the filter bank is x(n), then the output is y(n−N) (y is

f

t

τ

ϕ

cg(f,ϕ, τ)
x(f, t)

∗ y(f, t)

Fig. 2. TF implementation of convolution

delayed by N samples in order to take the overall delay of the
filter bank into account). The following developments further
investigate and generalize the study presented in [28], which
focused on the particular case of critically sampled PR cosine
modulated filter banks. The general case of stable linear filters
is first addressed in Section III-A, then the particular case of
stable recursive filters is addressed in Section III-B.

A. Stable linear filters

The PR property of the filter bank implies that the relation-
ship between y(f, t) and x(f, t) is given by the transformation
TTF described in the larger frame in Figure 1(b), where the
input is x(f, t), the output is y(f, t), and transformation TTD

is defined as the time-domain convolution by g(n+N). The
resulting mathematical expression is given in Proposition 1.

Proposition 1. Let g(n) ∈ l1(F) be the impulse response of a

stable linear filter, and x(n) ∈ l∞(F) and y(n) ∈ l∞(F) two
signals such that

y(n) = (g ∗ x)(n). (6)

Let y(f, t) and x(f, t) be the TF representations of these

signals as defined in Section II-B. Then

y(f, t) =
∑

ϕ∈Z

∑

τ∈Z

cg(f,ϕ, τ) x(f − ϕ, t− τ) (7)

where ∀f ∈ [0 . . . F − 1], ∀ϕ ∈ Z, ∀τ ∈ Z,

cg(f,ϕ, τ) = (hf ∗ h̃f−ϕ ∗ g)(D(τ + L)), (8)

with the convention ∀f /∈ [0 . . . F − 1], hf = 0.

Proof. Firstly, applying equation (3) to signal y yields

y(f, t) = (hf ∗ y)(Dt). (9)

Secondly, equation (4) yields

x(n) =
F−1∑

f=0

∑

t∈Z

h̃f (n−D(t− L))x(f, t). (10)

Lastly, equations (7) and (8) are obtained by successively
substituting equations (6) and (10) into equation (9).

Remark 1. As mentioned in Section II-B, if |ϕ| ≥ K , then
frequency bands f and f −ϕ do not overlap, thus cg(f,ϕ, τ)
can be neglected.

Equation (7) shows that a convolution in the original time
domain is equivalent to a 2D-convolution in the TF domain,
which is stationary w.r.t. time, and non-stationary w.r.t. fre-
quency, as illustrated in Figure 2.
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B. Stable recursive filters

In this section, we introduce a parametric family of TF
filters based on a state space representation, and we show a
relationship between these TF filters and equation (7).

Definition 1. Stable recursive filtering in TF domain is defined
by the following state space representation:

∀f ∈ [0 . . . F − 1], ∀t ∈ Z,

z(f, t) = x(f, t)−
Qa∑
τ=1

ag(f, τ)z(f, t− τ)

y(f, t) =
Pb∑

ϕ=−Pb

∑
τ∈Z

bg(f,ϕ, τ) z(f − ϕ, t− τ)
(11)

where Qa ∈ N, Pb ∈ N, and ∀f ∈ [0 . . . F − 1], x(f, t) ∈
l∞(F) is the sequence of input variables, z(f, t) ∈ l∞(F) is
the sequence of state variables, and y(f, t) ∈ l∞(F) is the

sequence of output variables. The autoregressive parameters

ag(f, τ) ∈ F define a causal sequence of support [0 . . .Qa]
w.r.t. τ (with ag(f, 0) = 1), having only simple poles ly-

ing inside the unit circle. The moving average parameters

bg(f,ϕ, τ) ∈ F define a sequence of finite support w.r.t. τ ,
and ∀f ∈ [0 . . . F − 1], ∀ϕ ∈ [−Pb . . . Pb], bg(f,ϕ, τ) = 0
provided that f − ϕ /∈ [0 . . . F − 1].

Proposition 2. If g(n) ∈ l1(F) is the impulse response of

a causal and stable recursive filter, then the TF input/output

system defined in Proposition 1 admits the state space repre-
sentation (11), where Pb = K − 1 and ∀f ∈ [0 . . . F − 1],
∀ϕ ∈ [−Pb, Pb], bg(f,ϕ, τ) is a sequence of support [−L +
1 . . .− L+ 1 +Qb] w.r.t. τ , where Qb ≥ 2L+Qa − 1.

Proposition 2 is proved in Appendix A.

Proposition 3. In Definition 1, equation (11) can be rewritten

in the form of equation (7), where ∀f ∈ [0 . . . F − 1], ∀τ ∈ Z,

cg(f,ϕ, τ) = 0 if |ϕ| > Pb, and ∀f ∈ [0 . . . F − 1],
∀ϕ ∈ [−Pb . . . Pb], filter cg(f,ϕ, τ) is defined as the only sta-

ble (bounded-input, bounded-output) solution of the following

recursion:

∀τ ∈ Z,
Qa∑

t=0

ag(f − ϕ, t)cg(f,ϕ, τ − t) = bg(f,ϕ, τ). (12)

Proposition 3 is proved in Appendix A.

Remark 2. In Definition 1, ag(f, τ) and bg(f,ϕ, τ) are over-
parametrised compared to g(n) in Proposition 1. Conse-
quently, if the values of ag(f, τ) and bg(f,ϕ, τ) are arbitrary,
then it is possible that no filter g(n) exists such that equa-
tion (8) holds, which means that this state space representation
does no longer correspond to a convolution in the original time
domain. In this case, we will say that the TF transformation
defined in equation (11) is inconsistent2.

2In the TF domain HR-NMF model introduced in Section IV, as well as
in the variational EM algorithm presented in Section V, the consistency of
the filter parameters is not explicitly enforced. In practice, the consistency
of the estimated parameters will depend on the observed data itself. If the
data is clean and informative enough, then the estimated parameters should
be consistent. If the data is noisy and poorly informative (for instance in
a frequency band where there is no harmonic partial but only noise), then
the estimated parameters may not be consistent. However the impact of this
discrepancy on the performance might be rather limited in applications.

IV. MULTICHANNEL HR-NMF IN TF DOMAIN

In this section we present the multichannel HR-NMF model
in the TF domain, as initially introduced in [29]. Here this
model will be derived from the definition of HR-NMF pro-
vided in the time domain in Section II-A.

Following the definition in equation (1), the multichannel
HR-NMF model of TF data vm(f, t) ∈ F is defined for all
channels m ∈ [0 . . .M−1], discrete frequencies f ∈ [0 . . . F−
1], and times t ∈ [0 . . . T − 1], as the sum of S source images
yms(f, t) ∈ F plus a 2D-white noise

wm(f, t) ∼ NF(0,σ
2
w), (13)

where NF(0,σ2
w) denotes a real (if F = R) or circular complex

(if F = C) normal distribution of mean 0 and variance σ2
w:

vm(f, t) = wm(f, t) +
S−1∑

s=0

yms(f, t). (14)

Then Proposition 2 shows how the convolution in equa-
tion (2) can be rewritten in the TF domain: the recursive
filters gms can be accurately implemented via equations (15)
and (17), which come from Definition 13. Each source image
yms(f, t) for s ∈ [0 . . . S − 1] is thus defined as

yms(f, t) =
Pb∑

ϕ=−Pb

Qb∑

τ=0

bms(f,ϕ, τ) zs(f − ϕ, t− τ) (15)

where Pb, Qb ∈ N, bms(f,ϕ, τ) = 0 if f − ϕ /∈ [0 . . . F − 1],
and the latent components zs(f, t) ∈ F are defined as follows:

• ∀t ∈ [−Qz . . .− 1] where Qz = max(Qb, Qa),

zs(f, t) ∼ N (µs(f, t), 1/ρs(f, t)), (16)

• ∀t ∈ [0 . . . T − 1],

zs(f, t) = xs(f, t)−
Qa∑

τ=1

as(f, τ)zs(f, t− τ) (17)

where xs(f, t) ∼ NF(0,σ2
xs
(t)), Qa ∈ N and as(f, τ)

defines a stable autoregressive filter.

Note that the variance σ2
xs
(t) of xs(f, t) does not depend on

frequency f . This particular choice allows us to make the
model identifiable, as suggested in Section II-A (the variability
w.r.t. frequency is already modelled via the the filters gms).

The random variables wm(f1, t1) and xs(f2, t2) for all
s,m, f1, f2, t1, t2 are assumed mutually independent. Addi-
tionally, ∀m ∈ [0 . . .M − 1], ∀f ∈ [0 . . . F − 1], ∀t ∈
[−Qz . . .− 1], vm(f, t) is unobserved, and ∀s ∈ [0 . . . S − 1],
the prior mean µs(f, t) ∈ F and the prior precision (inverse
variance) ρs(f, t) > 0 of the latent variable zs(f, t) are
considered to be fixed parameters.

The set θ of parameters to be estimated consists of:

• the autoregressive parameters as(f, τ) ∈ F for s ∈
[0 . . . S− 1], f ∈ [0 . . . F − 1], τ ∈ [1 . . .Qa] (we further
define as(f, 0) = 1),

3More precisely, compared to the result of Proposition 2, processes zs(f, t)
and xs(f, t) as defined in Section IV are shifted L−1 samples backward, in
order to write bms(f,ϕ, τ) in a causal form. This does not alter the definition
of HR-NMF, since equation (17) is unaltered by this time shift, and yms(f, t)
is unchanged in equation (15).
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• the moving average parameters bms(f,ϕ, τ) ∈ F for
m ∈ [0 . . .M − 1], s ∈ [0 . . . S − 1], f ∈ [0 . . . F − 1],
ϕ ∈ [−Pb . . . Pb], and τ ∈ [0 . . .Qb],

• the variance parameters σ2
w > 0 and σ2

xs
(t) > 0 for

s ∈ [0 . . . S − 1] and t ∈ [0 . . . T − 1].

We thus have θ = {σ2
w,σ

2
xs
, as, bms}s∈[0...S−1],m∈[0...M−1].

This model encompasses the following special cases:

• If M = 1, σ2
w = 0 and Pb = Qb = Qa = 0, then equa-

tion (14) reduces to v0(f, t) =
∑S−1

s=0 b0s(f, 0, 0)xs(f, t),
thus v0(f, t) ∼ NF(0, V̂ft), where matrix V̂ of co-

efficients V̂ft is defined by the NMF V̂ = W H

with Wfs = |b0s(f, 0, 0)|2 and Hst = σ2
xs
(t). The

maximum likelihood estimation of W and H is then
equivalent to the minimization of the Itakura-Saito (IS)
divergence between matrix V̂ and spectrogram V (where
Vft = |v0(f, t)|2), hence this model is referred to as IS-

NMF [14].
• If M = 1 and Pb = Qb = 0, then v0(f, t) follows the

monochannel HR-NMF model [25], [26], [31] involving
variance σ2

w, autoregressive parameters as(f, τ) for all
s ∈ [0 . . . S − 1], f ∈ [0 . . . F − 1] and τ ∈ [1 . . . Qa],
and the NMF V̂ = W H .

• If S = 1, σ2
w = 0, Pb = 0, σ2

x0
(t) = 1 ∀t ∈ [0 . . . T − 1],

and µs(f, t) = 0 and ρs(f, t) = 1 ∀t ∈ [−Qz . . . − 1],
then ∀m ∈ [0 . . .M − 1], ∀f ∈ [0 . . . F − 1], vm(f, t) is
an autoregressive moving average (ARMA) process [27,
Section 3.6].

• If S = 1, σ2
w = 0, Pb = 0, Qa > 0, Qb = Qa − 1, ∀t ∈

[−Qz . . .− 1], µ0(f, t) = 0, ρ0(f, t) ≫ 1, and σ2
x0
(t) =

{t=0} (where S denotes the indicator function of a set
S), then ∀m ∈ [0 . . .M − 1], ∀f ∈ [0 . . . F − 1], vm(f, t)
can be written in the form vm(f, t) =

∑Qa

τ=1 αmτ zτ (f)t,
where z1(f) . . . zQa(f) are the roots of the polynomial

zQa +
∑Qa

τ=1 a0(f, τ)z
Qa−τ . This corresponds to the

Exponential Sinusoidal Model (ESM) commonly used
in HR spectral analysis of time series [27], [32].

Because it generalizes both IS-NMF and ESM models to
multichannel data, the model defined in equation (14) is called
multichannel HR-NMF.

V. VARIATIONAL EM ALGORITHM

In early works that focused on monochannel HR-NMF [25],
[26], in order to estimate the model parameters we proposed to
resort to an expectation-maximization (EM) algorithm based
on a Kalman filter/smoother. The approach proved to be
appropriate for modelling audio signals in applications such as
source separation and audio inpainting. However, its computa-
tional cost was high, dominated by the Kalman filter/smoother,
and prohibitive when dealing with high-dimensional signals.

In order to make the estimation of HR-NMF faster, we then
proposed two different strategies. The first approach aimed to
improve the convergence rate, by replacing the M-step of the
EM algorithm by multiplicative update rules [33]. However
we observed that the resulting algorithm presented some nu-

merical stability issues4. The second approach aimed to reduce
the computational cost, by using a variational EM algorithm,
where we introduced two different variational approxima-
tions [31]. We observed that the mean field approximation
led to both improved performance and maximal decrease of
computational complexity.

In this section, we thus generalize the variational EM
algorithm based on mean field approximation to the multichan-
nel HR-NMF model introduced in Section IV, as proposed
in [29]. Compared to [31], novelties also include a reduced
computational complexity and a parallel implementation.

A. Review of variational EM algorithm

Variational inference [34] is now a classical approach for
estimating a probabilistic model involving both observed vari-
ables v and latent variables z, determined by a set θ of
parameters. Let F be a set of probability density functions
(PDFs) over the latent variables z. For any PDF q ∈ F and
any function φ(z), we note ⟨φ⟩q =

∫
φ(z)q(z)dz. Then for

any set of parameters θ, the variational free energy is defined
as

L(q; θ) =

〈
ln

(
p(v, z; θ)

q(z)

)〉

q

. (18)

The variational EM algorithm is a recursive algorithm for
estimating θ. It consists of the two following steps at each
iteration i:

• Expectation (E)-step (update q):

q⋆ = argmax
q∈F

L(q; θi−1) (19)

• Maximization (E)-step (update θ):

θi = argmax
θ

L(q⋆; θ). (20)

In the case of multichannel HR-NMF, θ has been specified
in Section IV. We further define δm(f, t) = 1 if vm(f, t) is
observed, otherwise δm(f, t) = 0, in particular δm(f, t) = 0
∀(f, t) /∈ [0 . . . F − 1] × [0 . . . T − 1]. The complete set of
variables consists of:

• the set v of observed variables vm(f, t) for m ∈
[0 . . .M − 1] and for all f and t such that δm(f, t) = 1,

• the set z of latent variables zs(f, t) for s ∈ [0 . . . S−1],
f ∈ [0 . . . F − 1], and t ∈ [−Qz . . . T − 1].

We use a mean field approximation [34]: F is defined as the
set of PDFs which can be factorized in the form

q(z) =
S−1∏

s=0

F−1∏

f=0

T−1∏

t=−Qz

qsft(zs(f, t)). (21)

4Indeed, the convergence of multiplicative update rules was not proved
in [33] (more specifically, there is no theoretical guarantee that the log-
likelihood is non-decreasing), whereas the convergence of EM strategies is
well established. Besides, as stated in [33], we observed that multiplicative
update rules may exhibit some numerical instabilities for small values of
the tuning parameter ϵ (the variation of the log-likelihood oscillates instead
of monotonically increasing), which was the reason for introducing a more
stable tempering approach, that consists in making ε vary from 1 to a lower
value over iterations. In this paper, we therefore preferred to use a slower
method with guaranteed convergence. It is possible that the convergence rate
could be improved in future using multiplicative update rules.
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With this particular factorization of q(z), the solution of (19)
is such that each PDF qsft is Gaussian:

zs(f, t) ∼ NF(zs(f, t), γzs(f, t)).

In the following sections, we will use notation φ = ⟨φ⟩q and
γφ = ⟨|φ− φ|2⟩q , for any function φ of the latent variables.

B. Variational free energy

Let α = 1 if F = C, and α = 2 if F = R. Let Dv =
M−1∑
m=0

F−1∑
f=0

T−1∑
t=0

δm(f, t) be the number of observations, and

I(f, t) = {0≤f<F, 0≤t<T},

evm(f, t) = δm(f, t)

(
vm(f, t)−

S−1∑
s=0

yms(f, t)

)
,

xs(f, t) = I(f, t)
( Qa∑

τ=0
as(f, τ)zs(f, t− τ)

)
.

Then using equations (13) to (16), the joint log-probability
distribution L = log(p(v, z; θ)) of the complete set of vari-
ables satisfies

−αL = −α (ln(p(v|z; θ)) + ln(p(z; θ)))
= (Dv + SF (T +Qz)) ln(απ)

+Dv ln(σ2
w) +

1
σ2
w

M−1∑
m=0

F−1∑
f=0

T−1∑
t=0

|evm(f, t)|2

+
S−1∑
s=0

F−1∑

f=0

−1∑
t=−Qz

ln( 1
ρs(f,t)

)

+
S−1∑
s=0

F−1∑
f=0

−1∑
t=−Qz

ρs(f, t)|zs(f, t)− µs(f, t)|2

+
S−1∑
s=0

F−1∑
f=0

T−1∑
t=0

ln(σ2
xs
(t)) + 1

σ2
xs

(t) |xs(f, t)|
2 .

Thus the variational free energy defined in (18) satisfies

−αL = Dv ln(απ)− SF (T +Qz)

+Dv ln(σ2
w) +

M−1∑
m=0

F−1∑
f=0

T−1∑
t=0

γevm
(f,t)+|evm (f,t)|2

σ2
w

+
S−1∑
s=0

F−1∑

f=0

−1∑
t=−Qz

− ln(ρs(f, t)γzs(f, t))

+ρs(f, t)
(
γzs(f, t) + |zs(f, t)− µs(f, t)|2

)

+
S−1∑
s=0

F−1∑
f=0

T−1∑
t=0

ln
(

σ2
xs

(t)

γzs (f,t)

)
+ γxs(f,t)+|xs(f,t)|

2

σ2
xs

(t)

(22)
where ∀f ∈ [0 . . . F − 1], ∀t ∈ [0 . . . T − 1],

γevm (f, t) = δm(f, t)
S−1∑
s=0

γyms(f, t),

γyms(f, t) =
Pb∑

ϕ=−Pb

Qb∑
τ=0

|bms(f,ϕ, τ)|2γzs(f − ϕ, t− τ),

evm(f, t) = δm(f, t)

(
vm(f, t)−

S−1∑
s=0

yms(f, t)

)
,

yms(f, t) =
Pb∑

ϕ=−Pb

Qb∑
τ=0

bms(f,ϕ, τ) zs(f − ϕ, t− τ),

γxs(f, t) = I(f, t)
( Qa∑

τ=0
|as(f, τ)|2γzs(f, t− τ)

)
,

xs(f, t) = I(f, t)
( Qa∑

τ=0
as(f, τ)zs(f, t− τ)

)
.

C. Variational EM algorithm for multichannel HR-NMF

According to the mean field approximation, the maximiza-
tions in equations (19) and (20) are performed for each
scalar parameter in turn [34]. The dominant complexity of
each iteration of the resulting variational EM algorithm is
4MFST∆f∆t, where ∆f = 1 + 2Pb and ∆t = 1 +Qz (by
updating the model parameters in turn rather than jointly, the
complexity of the M-step has been divided by a factor (∆t)2

compared to [31]). However we highlight a possible parallel
implementation, by making a difference between parfor loops
which can be implemented in parallel, and for loops which
have to be implemented sequentially.

1) E-step: For all s ∈ [0 . . . S − 1], f ∈ [0 . . . F − 1],
t /∈ [−Qz,−1], let ρs(f, t) = 0. Considering the mean
field approximation (21), the E-step defined in equation (19)
leads to the updates described in Table I (where ∗ denotes
complex conjugation). Note that zs(f, t) has to be updated
after γzs(f, t).

2) M-step: The M-step defined in (20) leads to the updates
described in Table II. The updates of the four parameters can
be processed in parallel.

parfor s ∈ [0 . . . S − 1], f ∈ [0 . . . F − 1], t ∈ [−Qz . . . T − 1] do

γzs(f, t)
−1 = ρs(f, t) +

Qa
∑

τ=0

I(f,t+τ)|as(f,τ)|
2

σ2
xs

(t+τ)

+
M−1
∑

m=0

Pb
∑

ϕ=−Pb

Qb
∑

τ=0

δm(f+ϕ,t+τ)|bms(f+ϕ,ϕ,τ)|2

σ2
w

end parfor
for s ∈ [0 . . . S-1], f0 ∈ [0 . . .∆f -1], t0 ∈ [-Qz . . .-Qz+∆t-1] do

parfor f−f0
∆f

∈ [0 . . . ⌊F−1−f0
∆f

⌋], t−t0
∆t

∈ [0 . . . ⌊T−1−t0
∆t

⌋] do

zs(f, t) = zs(f, t)− γzs(f, t)
(

ρs(f, t)(zs(f, t) − µs(f, t))

+
Qa
∑

τ=0

as(f,τ)
∗ xs(f,t+τ)

σ2
xs

(t+τ)

−
M−1
∑

m=0

Pb
∑

ϕ=−Pb

Qb
∑

τ=0

bms(f+ϕ,ϕ,τ)∗ evm (f+ϕ,t+τ)

σ2
w

)

end parfor
end for

TABLE I
E-STEP OF THE VARIATIONAL EM ALGORITHM

VI. SIMULATION RESULTS

In this section, we present a basic proof of concept of the
multichannel HR-NMF model. The ability to accurately model
reverberation and restore missing observations is illustrated in
Section VI-A, and the ability to separate pure tones with close
frequencies is illustrated in Section VI-B.

A. Audio inpainting

The following experiments deal with a single source (S = 1)
formed of a real piano sound sampled at 11025 Hz. A 1.25ms-
short stereophonic signal (M = 2) has been synthesized by fil-
tering the monophonic recording of a loud C3 piano note from
the MUMS database [35] with two room impulse responses
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σ2
w = 1

Dv

M−1
∑

m=0

F−1
∑

f=0

T−1
∑

t=0
γevm (f, t) + |evm(f, t)|2

parfor s ∈ [0 . . . S − 1], t ∈ [0 . . . T − 1] do

σ2
xs

(t) = 1
F

F−1
∑

f=0
γxs(f, t) + |xs(f, t)|

2

end parfor
for τ ∈ [1 . . . Qa] do

parfor s ∈ [0 . . . S − 1], f ∈ [0 . . . F − 1] do

as(f, τ) =

T−1∑

t=0

1
σ2
xs

(t)
(zs(f,t−τ)∗(as(f,τ)zs(f,t−τ)−xs(f,t)))

T−1∑

t=0

1
σ2
xs

(t)
(γzs (f,t−τ)+|zs(f,t−τ)|2)

end parfor
end for
for s ∈ [0 . . . S − 1], ϕ ∈ [−Pb . . . Pb], τ ∈ [0 . . . Qb] do

parfor m ∈ [0 . . .M -1], f ∈ [max(0,ϕ) . . . F -1+min(0,ϕ)] do

bms(f,ϕ, τ)=

T -1∑

t=0
zs(f-ϕ,t-τ)∗(δm(f,t)bms(f,ϕ,τ)zs(f-ϕ,t-τ)+evm (f,t))

T -1∑

t=0
δm(f,t)(γzs (f-ϕ,t-τ)+|zs(f-ϕ,t-τ)|2)

end parfor
end for

TABLE II
M-STEP OF THE VARIATIONAL EM ALGORITHM
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Fig. 3. Input stereo signal vm(f, t).

simulated using the Matlab code presented in [36]5. The TF
representation vm(f, t) of this signal has then been computed
by applying a critically sampled PR cosine modulated filter
bank (F = R) with F = 201 frequency bands, involving filters
of length 8F = 1608 samples. The resulting TF representation,
of dimension F × T with T = 77, is displayed in Figure 3.
In particular, it can be noticed that the two channels are not
synchronous (the starting time in the left channel is ≈ 0.04s,
whereas it is ≈ 0.02s in the right channel), which suggests that
the order Qb of filters bms(f,ϕ, τ) should be chosen greater
than zero.

In the following experiments, we have set µs(f, t) = 0 and
ρs(f, t) = 105. These values force zs(f, t) to be close to
zero ∀t ∈ [−Qz . . . − 1] (since the prior mean and variance

5Those impulse responses were simulated using 15625 virtual sources. The
dimensions of the room were [20m, 19m, 21m], the coordinates of the two
microphones were [19m, 18m 1.6m] and [15m, 11m, 10m], and those of the
source were [5m, 2m, 1m]. The reflection coefficient of the walls was 0.3.

of zs(f, t) are µs(f, t) = 0 and 1/ρs(f, t) = 10−5), which
is relevant if the observed sound is preceded by silence.
The variational EM algorithm is initialized with the neutral
values zs(f, t) = 0, γzs(f, t) = σ2

w = σ2
xs
(t) = 1,

as(f, τ) = {τ=0}, and bms(f,ϕ, τ) = {ϕ=0,τ=0}. In order
to illustrate the capability of the multichannel HR-NMF model
to synthesize realistic audio data, we address the case of
missing observations. We suppose that all TF points within
the red frame in Figure 3 are unobserved: δm(f, t) = 0
∀t ∈ [26 . . . 50] (which corresponds to the time range 0.47s-
0.91s), and δm(f, t) = 1 for all other t in [0 . . . T −1]. In each
experiment, 100 iterations of the algorithm are performed, and
the restored signal is returned as yms(f, t).

In the first experiment, a multichannel HR-NMF with
Qa = Qb = Pb = 0 is estimated. Similarly to the example
provided in Section IV, this is equivalent to modelling the two
channels by two rank-1 IS-NMF models [14] having distinct
spectral atoms W and sharing the same temporal activation
H , or by a rank 1 multichannel NMF [23]. The resulting TF
representation yms(f, t) is displayed in Figure 4. It can be
noticed that wherever vm(f, t) is observed (δm(f, t) = 1),
yms(f, t) does not accurately fit vm(f, t) (this is particularly
visible in high frequencies), because the length Qb of filters
bms(f,ϕ, τ) has been underestimated: the source to distortion
ratio (SDR)6 in the observed area is 11.7dB. In other respects,
the missing observations (δm(f, t) = 0) could not be restored
(yms(f, t) is zero inside the frame, resulting in an SDR of 0dB
in this area), because the correlations between contiguous TF
coefficients in vm(f, t) have not been taken into account.
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Fig. 4. Stereo signal yms(f, t) estimated with filters of length 1.

In the second experiment, a multichannel HR-NMF model
with Qa = 2, Qb = 3, and Pb = 1 is estimated. The resulting
TF representation yms(f, t) is displayed in Figure 5. It can be
noticed that wherever vm(f, t) is observed, yms(f, t) better
fits vm(f, t): the SDR is 36.8dB in the observed area. Besides,
the missing observations have been better estimated: the SDR
is 4.8dB inside the frame. Actually, choosing Pb > 0 was

6The SDR between a data vector v and an estimate v̂ is defined as
20 log10

(

∥v∥2
∥v−v̂∥2

)

, where ∥.∥2 denotes the Euclidean norm.
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necessary to obtain this result, which means that the spectral
overlap between frequency bands cannot be neglected in this
multichannel setting.
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Fig. 5. Stereo signal yms(f, t) estimated with longer filters.

B. Source separation

In this section, we aim to illustrate the ability of HR-NMF
to separate pure tones with close frequencies, based on the
autoregressive parameters as(f, τ), in a difficult underdeter-
mined setting (M < S)7. For simplicity, we have chosen to
deal with a 2s-long monophonic mixture (M = 1), composed
of a chord of S = 2 piano notes, one semitone apart (A4
and Ab4 from the MAPS database [37]8, whose fundamental
frequencies are 440 Hz and 415.30 Hz), resampled at 8600 Hz.
The TF representation v0(f, t) of this mixture signal was
computed via an STFT (F = C), involving 90 ms-long Hann
windows with 75% overlap, F = 400 frequency bands and
T = 87 time frames. Here the full TF representation displayed
in Figure 6 is observed (δ0(f, t) = 1). In this experiment,
we compare the signals separated by means of the HR-
NMF model in two configurations. In the first configuration,
Qa = Qb = Pb = 0 and σ2

w = 0, which means that
each source follows a rank-1 IS-NMF model. In the second
configuration, Qa = 1 and Qb = Pb = 0, which permits us to
accurately model pure tones by means of the autoregressive
parameters as(f, τ).

Contrary to the monophonic case (S = 1) addressed in
Section VI-A, applying the variational EM to multiple sources
(S > 1) in a fully unsupervised way is difficult: except in
some simple settings such as Qa = Qb = Pb = 0, the
algorithm hardly converges to a relevant solution, possibly
because of a higher number of local maxima in the variational
free energy. Nevertheless, separation of multiple sources is still
feasible in a semi-supervised situation, where some parameters
are learned beforehand. Here the spectral parameters as(f, τ)

7In a similar experiment involving a determined multichannel setting (M =
S = 2), the spatial information proved to be sufficient to accurately separate
the two tones, without even using autoregressive parameters (Qa = 0).

8MAPS database, ISOL set, ENSTDkCl instrument, mezzo-forte loudness,
with the sustain pedal.

Fig. 6. Spectrogram of the mixture of the A4 and Ab4 piano notes.

and bms(f,ϕ, τ) are thus estimated in a first stage from
the original source signals. In the first configuration, the
values of all NMF parameters are initialized to 1, and 30
iterations of multiplicative update rules [14] are performed.
In the second configuration, the variational EM algorithm is
initialized with µs(f, t) = 0, ρs(f, t) = 105, zs(f, t) = 0,
γzs(f, t) = 1, as(f, τ) = {τ=0}, bms(f,ϕ, τ) = {ϕ=0,τ=0},
σ2
w = σ2

xs
(t) = 1, and 100 iterations are performed.

In a second stage, the variance parameters σ2
xs
(t) and σ2

w

are estimated from the observed mixture, and the separated
signals are obtained as y0s(f, t) for s ∈ {0, 1}. In the first
configuration, the spectral parameters learned in the first stage
are kept unchanged, the values of the time activations σ2

xs
(t)

are initialized to 1, and 30 iterations of multiplicative update
rules are performed. In the second configuration, the spectral
parameters learned in the first stage are kept unchanged,
the variational EM algorithm is initialized with the time
activations σ2

xs
(t) estimated in the first configuration, the

value σ2
w = 10−2, and the same initial values of the other

parameters as in the first stage. Then 100 iterations of the
E-step are performed in order to let zs(f, t) and γzs(f, t)
converge to relevant values based on the learned parameters,
and finally 100 iterations of the full variational EM algorithm
are performed.

In order to assess the separation performance, we have
evaluated the SDR obtained in the two configurations. In the
first configuration, the SDR of A4 is 17.67 dB and that of Ab4
is 23.08 dB. In the second configuration, the SDR of A4 is
increased to 22.37 dB and that of Ab4 is increased to 27.78
dB. Figure 7 focuses on the results obtained in the frequency
band f = 40, where the first partials of A4 and Ab4 overlap,
resulting in a challenging separation problem. The real parts
of the original sources are represented as red solid lines. As
expected, the two sources are not properly separated in the
first configuration (IS-NMF), because the estimated signals
(represented as black dashed lines) are obtained by multiplying
the mixture signal by a nonnegative mask, and interferences
cannot be cancelled. As a comparison, the signals estimated in
the second configuration (represented as blue dots) accurately
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fit the partials of the original sources. Note however that this
remarkable result was obtained by guiding the variational EM
algorithm with relevant initial values. In future work, we will
need to develop robust estimation methods, less sensitive to
initialisation, in order to perform source separation in a fully
unsupervised way.
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Fig. 7. Separation of two sinusoidal components. The real parts of the two
components y0s(f, t) are plotted as red solid lines, their IS-NMF estimates
are plotted as black dashed lines, and their HR-NMF estimates are plotted as
blue dots.

VII. CONCLUSIONS

In this paper, we have shown that convolution can be
accurately implemented in the TF domain, by applying 2D-
filters to a TF representation obtained as the output of a
PR filter bank. In the particular case of recursive filters,
we have also shown that filtering can be implemented by
means of a state space representation in the TF domain. These
results have then been used to extend the monochannel HR-
NMF model initially proposed in [25], [26] to multichannel
signals and convolutive mixtures. The resulting multichannel
HR-NMF model can accurately represent the transfer from
each source to each sensor, as well as the spectrum of each
source. It also takes the correlations over frequencies into
account. In order to estimate this model from real audio data,
a variational EM algorithm has been proposed, which has a re-
duced computational complexity and a parallel implementation
compared to [31]. This algorithm has been successfully applied
to piano signals, and has been capable of accurately modelling
reverberation due to room impulse response, restoring missing
observations, and separating pure tones with close frequencies.

In order to deal with more realistic music signals, the esti-
mation of the HR-NMF model should be performed in a more
informed way, e.g. by means of semi-supervised learning, or
by using any kind of prior information about the mixture or
about the sources. For instance, harmonicity and temporal or
spectral smoothness could be enforced by re-parametrising the
model, or by introducing some prior distributions of the model

parameters. Because audio signals are sparse in the time-
frequency domain, we observed that the multichannel HR-
NMF model involves a small number of non-zero parameters
in practice. In future work, we will investigate enforcing
this property, by introducing a prior distribution of the filter
parameters such as that proposed in [38], or a prior distribution
of the variances of the innovation process xs(f, t) (modelling
variances with a prior distribution is an idea that has been
successfully investigated in earlier works [39]–[41]). In other
respects, the model could also be extended in several ways,
for instance by taking the correlations over latent components
into account, or by using other types of TF transforms, e.g.

wavelet transforms.

Regarding the estimation of the HR-NMF model, the mean
field approximation involved in our variational EM algorithm
is known to induce a slow convergence rate. The convergence
could thus be accelerated by replacing the mean field ap-
proximation by a structured mean field approximation, like
in [42]. Such an approximation was already proposed to esti-
mate the monochannel HR-NMF model [31], at the expense
of a higher computational complexity per iteration. Some
alternative Bayesian estimation techniques such as Markov
chain Monte Carlo (MCMC) methods and message passing
algorithms [34] could also be applied to the HR-NMF model.
In other respects, we observed that the variational EM algo-
rithm is hardly able to separate multiple concurrent sources in
a fully unsupervised framework, because of its high sensitivity
to initialisation. More robust estimation methods are thus
needed, which could for instance take advantage of the algebra
principles exploited in high resolution methods [32].

Lastly, the multichannel HR-NMF model could be used in
a variety of applications, such as source coding, audio inpaint-
ing, automatic music transcription, and source separation.

APPENDIX

TF IMPLEMENTATION OF STABLE RECURSIVE FILTERING

Proof of Proposition 2. We consider the TF implementation
of convolution given in Proposition 1, and we define g(n) as
the impulse response of a causal and stable recursive filter,
having only simple poles. Then the partial fraction expansion
of its transfer function [43] shows that it can be written in the
form g(n) = g0(n) +

∑Q
k=1 gk(n), where Q ∈ N, g0(n) is a

causal sequence of support [0 . . .N0 − 1] (with N0 ∈ N), and
∀k ∈ [1 . . .Q],

gk(n) = βke
δkn cos(2πνkn+ ψk) n≥0

where βk > 0, δk < 0, νk ∈ [0, 12 ], ψk ∈ R.

Then ∀f ∈ [0 . . . F − 1], equation (8) yields cg(f,ϕ, τ) =∑Q
k=0 cgk(f,ϕ, τ) with

cg0(f,ϕ, τ) = (hf ∗ h̃f−ϕ ∗ g0)(D(τ + L))

and ∀k ∈ [1 . . .Q],

cgk(f,ϕ, τ) = eδkDτ (Ak(f,ϕ, τ) cos(2πνkDτ)
+Bk(f,ϕ, τ) sin(2πνkDτ))
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where we have defined

Ak(f,ϕ, τ) = βk
N−1∑

n=−N+1
(hf ∗ h̃f−ϕ)(n+N)

×e−δkn cos(2πνkn− ψk) n≤Dτ ,

Bk(f,ϕ, τ) = βk
∑N−1

n=−N+1(hf ∗ h̃f−ϕ)(n+N)
×e−δkn sin(2πνkn− ψk) n≤Dτ .

It can be easily proved that ∀f ∈ [0 . . . F − 1], ∀ϕ ∈ Z,

• the support of cg0(f,ϕ, τ) is [−L+ 1 . . . L+ ⌈N0−2
D ⌉],

• if τ ≤ −L, then cg0(f,ϕ, τ), Ak(f,ϕ, τ) and Bk(f,ϕ, τ)
are zero, thus cg(f,ϕ, τ) = 0,

• if τ ≥ L, then Ak(f,ϕ, τ) and Bk(f,ϕ, τ) do not depend
on τ .

Therefore ∀f ∈ [0 . . . F − 1], ∀ϕ ∈ Z, cg(f,ϕ, τ − L + 1)
is the impulse response of a causal and stable recursive filter,
whose transfer function has a denominator of order 2Q and a
numerator of order 2L+ 2Q− 1 + ⌈N0−2

D
⌉].

As a particular case, suppose that ∀k ∈ [1 . . .Q], |δk| ≪ 1.
If τ ≥ L, then Ak(f,ϕ, τ) and Bk(f,ϕ, τ) can be neglected
as soon as νk does not lie in the supports of both Hf (ν)
and Hf−ϕ(ν), where Hf was defined in equation (5). Thus
for each f and ϕ, there is a limited number Q(f,ϕ) ≤ Q
(possibly 0) of cgk(f,ϕ, τ) which contribute to cg(f,ϕ, τ).
In the general case, we can still consider without loss of
generality that ∀f ∈ [0 . . . F − 1], ∀ϕ ∈ Z, there is a
limited number Q(f,ϕ) ≤ Q of cgk(f,ϕ, τ) which contribute
to cg(f,ϕ, τ). We then define Qa = 2max

f,ϕ
Q(f,ϕ) and

Qb = 2L + Qa − 1 + ⌈N0−2
D

⌉. Then ∀f ∈ [0 . . . F − 1],
∀ϕ ∈ Z, cg(f,ϕ, τ − L + 1) is the impulse response of
a causal and stable recursive filter, whose transfer function
has a denominator of order Qa and a numerator of order
Qb. Considering Remark 1, we conclude that the input/output
system described in equation (7) is equivalent to the state space
representation (11), where Pb = K − 1.

Proof of Proposition 3. We consider the state space repre-
sentation in Definition 1, and we first assume that ∀f ∈
[0 . . . F − 1], sequences x(f, t), y(f, t), and z(f, t) belong to
l1(Z). Then the following DTFTs are well-defined:

Y (f, ν) =
∑

t∈Z
y(f, t)e−2iπνt,

X(f, ν) =
∑

t∈Z
x(f, t)e−2iπνt,

Bg(f,ϕ, ν) =
∑

τ∈Z
bg(f,ϕ, τ)e−2iπντ ,

Ag(f, ν) =
∑Qa

τ=0 ag(f, τ)e
−2iπντ .

Then applying the DTFT to equation (11) yields Z(f, ν) =

1
Ag(f,ν)

X(f, ν) and Y (f, ν) =
Pb∑

ϕ=−Pb

Bg(f,ϕ, ν)Z(f −ϕ, ν).

Therefore

Y (f, ν) =
Pb∑

ϕ=−Pb

Cg(f,ϕ, ν)X(f − ϕ, ν), (23)

where

Cg(f,ϕ, ν) =
Bg(f,ϕ, ν)

Ag(f − ϕ, ν)
(24)

is the frequency response of a recursive filter. Since this
frequency response is twice continuously differentiable, then
this filter is stable, which means that its impulse response

cg(f,ϕ, τ) =
∫ 1
0 Cg(f,ϕ, ν)e+2iπντdν belongs to l1(F).

Equations (7) and (12) are then obtained by applying an
inverse DTFT to (23) and (24). Finally, even if x(f, t), y(f, t),
and z(f, t) belong to l∞(Z) but not to l1(Z), equations (7)
and (11) are still well-defined, and the same filter cg(f,ϕ, τ) ∈
l1(F) is still the only stable solution of equation (12).
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Télécommunications (ENST), Paris, France, in 2001,
the M.Sc. degree in applied mathematics from the
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