
A UML Model-Driven Approach to Efficiently
Allocate Complex Communication Schemes

Andrea Enrici, Ludovic Apvrille, and Renaud Pacalet

Institut Mines-Telecom, Telecom ParisTech, CNRS/LTCI, Biot, France
{andrea.enrici,ludovic.apvrille,renaud.pacalet}@telecom-paristech.fr

Abstract. To increase the performance of embedded devices, the cur-
rent trend is to shift from serial to parallel and distributed computing
with simultaneous instructions execution. The performance increase of
parallel computing wouldn’t be possible without efficient transfers of
data and control information via complex communication architectures.
In UML/SysML/MARTE, different solutions exist to describe and map
computations onto parallel and distributed systems. However, these lan-
guages lack expressiveness to clearly separate computation models from
communication ones, thus strongly impacting models’ portability, espe-
cially when performing Design Space Exploration. As a solution to this
issue, we present Communication Patterns, a novel UML modeling arti-
fact and model-driven approach to assist system engineers in efficiently
modeling and mapping communications for parallel and distributed sys-
tem architectures. We illustrate the effectiveness of our approach with
the design of a parallel signal processing algorithm mapped to a multi-
processor platform with a hierarchical bus-based interconnect.

Keywords: Model Driven Engineering, Hardware-Software Co-Design,
Design Space Exploration, Parallel Computing, Embedded Systems.

1 Introduction

Today’s embedded systems are more and more realized as parallel systems where
the processing and the control are distributed over a network of interconnected
subsystems. Such systems are typically deployed to perform parallel comput-
ing for data-dominated applications where performance is driven by both data
processing and data transfers. Currently, we find these parallel and distributed
systems both at the chip level (e.g., Multi-Processors Systems on Chip) or in
domains where the electronics components are physically distributed over the
structure of the whole system (e.g., automotive and avionics systems). In this
context, an important challenge is to efficiently program these complex architec-
tures where interactions between computations and transfers, from both hard-
ware and software points of view, significantly impact the software development
(e.g., time-to-market of new products, development time and costs).
Among the possible approaches that can be taken to alleviate application soft-
ware development, there is raising the level of abstraction at which these systems

are programmed, e.g., with the aid of Model Driven Engineering [1]. Thus, in-
stead of manually programming a parallel and distributed system, a developer
can separately model both the application(s) - i.e., the functional part of the
system - and the candidate resources - i.e., the hardware architecture - therefore
abstracting out low-level details (e.g., memory addressing modes) with the guid-
ance of Electronic Design Automation tools. Then he/she selects the architecture
units for executing the function’s workload (mapping) and once a solution com-
pliant with the predefined performance requirements is reached, the application
code can be generated via automated model transformations. Finding a map-
ping solution compliant to some performance requirements (i.e., Design Space
Exploration, DSE) is typically an iterative process: performance numbers are
first extracted from mapping models. Then, according to these numbers, pre-
mapping models are improved and the process starts over until performance
numbers converge to the desired performance requirements.
The performance of a data-dominated application executed on a parallel and dis-
tributed system is driven both by computations (i.e., processing) and by commu-
nications (e.g., data transfers). However, UML/SysML models intertwine both
computation entities (i.e., classes/blocks) and communication entities (i.e., re-
lationships/ports) aspects within the same diagrams. This lack of separation
of concerns causes serious issues when models are to be modified due to DSE.
As communications cannot be described separately from computations, input
models must be re-designed from scratch each time a mapping alternative does
not match the desired performance requirements. Thus, models mix information
about the functionality of an application (i.e., the computations to be carried
out) with information that is specific to a given architecture (i.e., how data can
be transferred). This dramatically limits models’ portability, transformations
and impacts the time, costs and quality of a model-driven design.
In response to the above issues, this paper presents a novel approach and the cor-
responding artifacts to separately describe and map communications and compu-
tations, independently of the pair application-architecture. We apply our mod-
eling approach to DiplodocusDF, a UML Model-Driven Engineering method-
ology for the rapid prototyping of data-dominated applications onto heteroge-
neous Multi-Processor System-on-Chip (MPSoC) architectures. In the scope of
DiplodocusDF, we make use of its UML/SysML modeling facilities that are sup-
ported by the open source toolkit TTool [2]. Last, we show the benefits of our
TTool/DiplodocusDF via the Design Space Exploration of a complete system
composed of a signal processing application mapped onto an MPSoC architec-
ture.
The rest of this paper is organized as follows. In Section 2 we describe in greater
detail the problem statement accompanied by a clarifying example. Section 3
presents our systematic approach to separate computations and communica-
tions in the input specification models. Section 4 applies these principles to the
modeling assets available in UML/SysML and demonstrates how we are able to
solve the example problem of Section 2. The case study of Section 5 presents
the implementation of our approach in TTool/DiplodocusDF, in the context of

a complete pair application-architecture. Section 6 discusses our contributions
with respect to related works and Section 7 concludes the paper.

2 Problem Statement

In this section we will describe the problem statement in greater detail. We
start with a discussion related to the application of the Y-chart approach [3]
to map UML/SysML application models onto parallel and distributed architec-
tures. Next, we extend the discussion with a practical example and state the
problems that we aim at solving in this article.

2.1 Design Space Exploration with the Y-chart in UML/SysML

The problem that system engineers face when working with parallel and dis-
tributed architectures is the many design alternatives involved. The Y-chart
approach (see Fig. 1) has been proposed as a methodology to help designers
“to explore the design space of an architecture template in a systematic way, to
design programmable embedded systems that are programmable and satisfy the
design constraints” [3]. It has become a de facto standard approach underlying
many Electronic Design Automation (EDA) tools and methodologies.
It is our belief, however, that applying the Y-chart of Fig. 1 to map appli-
cations modeled in UML/SysML, onto parallel and distributed architectures, is
inefficient. This is due to a lack of separation of concerns in the application mod-
els between operations (i.e., processing and control operations), represented in
UML diagrams as classes, and their dependencies, represented in UML diagrams
as relationships. Indeed, the semantics associated by UML/SysML diagrams to
relationships works well for applications mapped to architectures where oper-
ations are sequentially executed onto centralized units. Typically in these con-
texts, communications1 have a small impact on performance and are executed
on simple point-to-point paths (e.g., memory-bus-memory). On the other hand,
relationships in UML/SysML diagrams are not suited to describe dependencies
among operations when the latter are executed by parallel and distributed units
that require intensive communications on complex paths, affecting performance.

2.2 A UML/SysML producer-consumer example in TTool

Fig. 2 depicts the scenario of our example modeled in TTool. Fig.2a shows a
sample application made up of a pair of producer-consumer operations, inter-
connected by a relationship ch1 which represents the exchange of data from the
producer to the consumer. Fig.2b illustrates a sample architecture where the
producer-consumer application is mapped. The producer operation is mapped

1 In this article we loosely use the word communications to refer to any transfer of
data or control items

Design Space

instance

Architecture

Mapping

Application(s)

improvement improvement

ModelsModels

Exploration

Fig. 1. The Y-chart approach for the design of programmable embedded systems

to the Digital Signal Processor (DSP) DSP1, the consumer operation to the Cen-
tral Processing Unit (CPU) CPU1. Due to the capabilities of DSP1 and CPU1,
we can imagine that DSP1 is able to directly store its output data only to Mem-
ory1 and CPU1 is able to directly retrieve its input data only from Memory2.
Thus, in order to execute the consumer operation, a transfer is needed to move
the producer’s data from Memory1 to Memory2. Moreover, such a transfer can
either be issued with a bus transaction or with a Direct Memory Access (DMA)
transaction. So how to describe it in UML/SysML?
We encounter here a first problem, namely a modeling problem: a lack of
expressiveness to describe at the same time (1) a specific transfer, (2) the ar-
chitecture: units involved and (3) the way the transfer is performed. Typically
what a system designer would do is to create a second instance of the application
model of Fig. 2a, as depicted in Fig. 2c. In the latter an additional operation
is injected between the producer and the consumer to imitate how data can be
transferred with a DMA transaction. However, such an arrangement does not

consumer
ch1

producer
ch1

ch1

<<BUS-RR>>
Bus1

<<BUS-RR>>
Bus2

<<MEMORY>>
Memory1

ch1::

producer

<<MEMORY>>
Memory2

ch1::

consumer

<<CPU>>
CPU1

PS::consumer
<<DMA>>

DMA1

<<BRIDGE>>

Bridge1

<<HWA>>
DSP1

PS::producer

Application

Architecture

DMA transfer
ch1

producer
ch1

ch1

consumer
ch2ch2

ch2

(b)

(a) (c)

Fig. 2. A sample producer-consumer application mapped over an architecture in
UML/SysML with TTool

prevent us from running into another issue if, for instance, it turns out that the
DMA transaction is not efficient enough or if we want to map the application
model to a different architecture that does not include any DMA engine. In ei-
ther case the application model must be re-designed from scratch.
Thus, we face a second problem, namely a mapping problem: how to map a
relationship (ch1 in this case) to the description of a transfer, in a portable way
(i.e., in a way that prevents a designer from re-modeling the application)?

If the MARTE [4] profile has been specifically defined for the modeling of
complex systems, and moreover supports the definition of scenarios for the usage
of resources (BehaviorScenarios), it is unfortunately also not well adapted for
reasons that are discussed in the related work section (Section 6).

3 The Approach

Fig. 3 shows a global view of the approach we propose in response to the modeling
and mapping problems introduced in Section 2. The overall goal of our approach
is to assist the system designer with a systematic methodology to separately
define the modeling assets that are needed to describe a triplet application-
architecture-communications. This separation of concerns aims at minimiz-
ing the intersection between modeling concepts that would otherwise be mixed
in the application and the architecture descriptions. We believe that this lack
of separation of concerns is at the root of the modeling and mapping problems
of Section 2. In this section, we describe how the Y-chart approach of Fig. 1 is
extended to accommodate for separate models for the application, the architec-
ture and communications. At the same time we define the vocabulary of some
key concepts that will be used throughout the paper.

In our vision, a communication model (Communication modeling box)
acts as a an interface between the application and the architecture models. On
one hand, the main purpose of an application model (Application(s) box), is to
express the functionality of a given algorithm in terms of processing operations
and control operations as well as in terms of the data and control dependencies
among these operations. On the other hand, from the viewpoint of communica-
tion modeling, the main purpose of an architecture model (Architecture instance
box) is to express the topology2 of the system’s architecture. The latter can be
roughly defined as the structure of the interconnections of all the architecture
units. For our purposes, the communications that are of interest are those needed
to transfer data between a source and a destination storage units. Thus, the
above topology must express all the possible transfer paths, defined as the set of
interconnected architecture units that are involved in moving data from a source
to a destination storage unit, as well as in exchanging the control information
that configure such a data transfer. A communication model (Communication

2 The topology includes performance parameters

modeling box) aims to match the needs expressed by data dependencies in the
application, to the capacity of an architecture to serve such needs. In order to
capture these concepts, we need a communication model to elegantly express the
architecture units that participate in a data transfer, the transfer components,
and to allow a system designer to describe the transfer algorithm that must be
put in place to move data according to the dependencies of the application. More
specifically, we define a transfer algorithm as the set of activities that must be
executed by the components to move data in a transfer path. Also the mapping
phase (Mapping box) must be defined to accommodate for our separation of
concerns and it is composed of two stages. First, the workload of the application
algorithm in terms of processing and control operations is projected over the
specific architecture instance. In this stage, the designer selects the architecture
units that will execute the processing and control operations. Next, the workload
expressed by the control and data dependencies of the application is projected
onto the transfer paths of the specific architecture instance through the commu-
nication models (components and algorithm). When exploring different mapping
alternatives in the design space, we now dispose of separate modeling assets -
i.e., application, communication architecture models - that can be individually
modified without impacting on each other.

improvement

modeling
Application(s)

Architecture

instance

Communication

Mapping

Application

model

improvement
Design Space

Exploration

Architecture

model

improvement

Communication

model

Fig. 3. The Y-chart approach extended with the separation of concerns between the
application and the architecture models

4 Communication modeling and mapping in
UML/SysML: Communication Patterns

In this section we put into effect the principles described in our extended Y-chart
approach with the modeling assets available in UML/SysML. Next, we practi-
cally show how these assets can be used to solve the producer-consumer issues
illustrated in Section 2. We regroup the UML/SysML modeling assets under the
name of Communication Pattern, that defines a single modeling artifact used to

model one or more transfers.

4.1 Models for the Communication Pattern’s transfer algorithm

In order to model a transfer algorithm, we first need to abstract out the activities
that take place in the communication protocols or standards of the architecture
instance. Further, we need to compose these activities and express their de-
pendencies by means of some sort of structure or hierarchy. In the scope of
UML/SysML, the diagrams that we estimated to be suitable for these purposes
are Behavior Diagrams, and more specifically both Activity and Sequence Dia-
grams. The Activity Diagrams of a Communication Pattern capture the struc-
ture and dependencies of the simple and repeatable activities that are part of
a transfer algorithm (e.g., program a DMA, execute a bus transaction). Each
of these simple and repeatable activities is then described either directly by Se-
quence Diagrams or recursively via other Activity Diagrams. Within an Activity
Diagram, activities are composed by operators to describe concurrency, sequenc-
ing, choice and iteration. The latter two are governed by control variables that
are global to a given Activity Diagram and to all the diagrams that it references.
An Activity Diagram is associated to a set of components which is global to all
the diagrams it references.

The Sequence Diagrams of a Communication Pattern describe the way com-
ponents interact in order to execute an activity, a well as the order in which
these interactions are executed. The lifelines of Sequence Diagrams are associ-
ated to instances of components. Interactions are described via the exchange of
parameterized messages (e.g., Read(), Write()) representing an abstraction of
the signals wired on bus lines. In order to separate the control aspects from mes-
sage exchanges, Sequence Diagrams are limited to asynchronous messages and
Activity Diagrams are limited to above control operators, diagrams dependen-
cies. Indeed, the latter are instantiated in Activity Diagrams when describing
the dependencies among multiple Sequence Diagrams3.

4.2 Communication Pattern’s components

In order to describe the executors of a transfer algorithm, we classify the archi-
tecture units into three classes of components: storage, transfer and controller.

– A storage component is an architecture unit whose main functionality is to
store input/output data produced or consumed by a processing operation,
e.g., a RAM memory, a buffer.

3 In analogy with computer science, we can see the messages exchanged in Sequence Di-
agrams as the low-level instructions of a given transfer algorithm. These instructions
are grouped into the activities captured by both Activity and Sequence Diagrams.
Activities can be thought of as routines in programming languages

– A transfer component is an architecture unit whose main functionality is to
physically move data items between components, e.g., a AMBA bus, a CAN
bus, a DMA.

– A controller component is an architecture unit whose main functionality is
to coordinate a data transfer by configuring a transfer component, e.g., a
Central Processing Unit, a microcontroller, a Digital Signal Processor.

When modeling a communication (Communication modeling box in Fig. 3) we
use these three classes of components to describe a generic transfer algorithm in-
dependently of the architecture units of a given instance. This abstraction allows
the transfer algorithm to be portable with respect to the system’s architecture.
Finally, when projecting the application workload expressed by data dependen-
cies onto the architecture, (Mapping box in Fig. 3) these abstract components
are mapped to the specific units of the architecture instance.

4.3 Modeling the consumer-producer problem with Communication
Patterns

In this subsection we illustrate how a Communication Pattern can solve the mod-
eling and mapping problems for the producer-consumer example of Section 2.

In the architecture model of Fig. 2b, according to our classification of com-
ponents, we dispose of: two storage objects (i.e., Memory1 and Memory2), three
transfer objects (i.e., Bus1, Bus2 and Bridge1) and three controller objects (i.e.,
DSP1, DMA1 and CPU1). In the application of Fig. 2a, we have two processing
operations (i.e., producer and consumer) and one data dependency (i.e., channel
ch1). The mapping of the application workload in terms of processing operations
has already assigned the producer to DSP1 and the consumer to CPU1. The ac-
cess capabilities of DSP1 and CPU1 force the producer output data to reside
in Memory1 and the consumer input data to be accessible from Memory2. This
scenario thus defines the need to have one transfer from Memory1 to Memory2.
Such a transfer can be executed in two ways: either via a bus transaction or
a DMA transaction. When modeling we know nothing about the performance
numbers of the two transfer options, so we have to model the communication
in the most generic possible way; thus, in terms of components we need two
storage, one controller and three transfer components. The transfer algorithm is
fairly simple given we only have one data dependency; it is illustrated in Fig. 4a:
first the transfer component is programmed by the controller (ProgramTransfer
box), then data is moved iteratively from the source to the destination storage
by the transfer component (ExecuteTransfer box, loop operator) until an inte-
ger counter reaches the value zero. At this point the controller is informed of
the completion (AcknowledgeTransfer box). Fig. 4b illustrates the Sequence Di-
agram corresponding to the activity ExecuteTransfer of the algorithm, Fig. 4a.
Data is moved from the source storage to the destination storage via the transfer
components.

Programsd

Acknowledgesd

//Global variables:
int samples

Executesd

[samples==0] [samples > 0]

[]

//Components declaration:
storage SOURCE, DESTINATION
controller CTRL
transfer TRF1, TRF2, TRF3

(a) (b)

Transfer

TransferTransfer

SOURCE
TRF1

samples = samples - 1

TRF2 TRF3
DESTINATION

Read(1 sample)

Transfer(1 sample)

Write(1 sample)

Write(1 sample)

Write(1 sample)

storagestorage

Fig. 4. The transfer algorithm for the consumer-producer example (a). The interactions
among components corresponding to the ExecuteTransfer activity of the algorithm (b)

4.4 Mapping the producer-consumer problem with Communication
Patterns

During mapping phase, the behavior diagrams of a Communication Pattern
are arranged to match the capacity of the architecture instance. Since in our
consumer-producer example we deal with only one data transfer we dispose of
the full architecture capacity and we do not need to arrange the algorithm mod-
eled in the Activity Diagram of Fig. 4a. However, in case the producer-consumer
application required an algorithm to model multiple transfers, the algorithm
would have been arranged to match the limited parallelism available in Fig. 2b.
In the latter, there are two transfer paths from Memory1 to Memory2: (1) Bus1-
Bridge1-Bus2 if a bus transaction is to be issued or (2) Bus1-DMA1-Bus2 in
case a DMA transaction is to be issued. The choice between which of the two
paths performs best is a matter of performance analysis and will not be treated
in this paper as we are concerned with the pure modeling aspects. At this point,
all we need to do is to map the Communication Pattern’s components to the
architecture units and individually arrange the algorithm’s activities (Sequence
Diagrams) accordingly. The ExecuteTransfer activity of the algorithm of Fig. 4a
is shown in Fig. 5a for the transfer path corresponding to the DMA transaction
and in Fig. 5b for the bus transaction. In Fig. 5a the three transfer components
are mapped to units Bus1, DMA1 and Bus2, whereas in Fig. 5b they are mapped
to units Bus1, Bridge1 and Bus2. In both cases the message exchanged within
the activity ExecuteTransfer must be adapted to describe the exact operating
mode of the architecture units, e.g., data passes through Bridge1 one sample per
time, while 2 samples are stored in DMA1’s internal buffer before they can be
forwarded to Memory2.

5 Case Study

So far, we have showed to the reader the effectiveness of our works to the sample
producer-consumer example of Section 2, demonstrating how our approach and

Memory1 Memory2Bus1 DMA1

samples = samples - 1

store sample in buffer

samples = samples - 1

Bus2

Read(1sample)

Read(1sample)

Transfer(1sample)

Transfer(1sample)

Read(1sample)

Read(1sample)

Transfer(1sample)

Transfer(1sample)

Write(2sample)

Write(2sample)

Read(1 sample)

Read(1 sample)

Transfer(1 sample)

Transfer(1 sample)

Write(1 sample)

Write(1 sample)

Memory1 Memory2Bus1 Bridge1

samples = samples - 1

Bus2

(b)(a)

Fig. 5. The Sequence Diagram for the ExecuteTransfer activity of Fig. 4 mapped onto
the transfer path Bus1-DMA1-Bus2 (a) and onto the transfer path Bus1-Bridge1-Bus2
(b)

Communication Patterns technically solve what we called the modeling and map-
ping problems for complex communication schemes. In this section we demon-
strate the effectiveness of our approach and of Communication Patterns in the
context of a complete system application-architecture, when Design Space Ex-
ploration comes into play.

5.1 TTool/DiplodocusDF

As part of our works, we integrated the approach presented in this article in
DiplodocusDF [5], a UML Model-Driven Engineering methodology for the de-
sign and rapid prototyping of data-dominated applications on heterogeneous
real-time embedded systems. To support this extension of DiplodocusDF, we
implemented the diagrams needed by Communication Patterns into TTool [2],
a toolkit for the edition, simulation and formal verification of UML/SysML dia-
grams supporting DiplodocusDF. An application model in TTool/DiplodocusDF
is implemented as SysML block definition and Instance Diagram, where the be-
havior of each block is described by a SysML State Machine. An application
model describes an algorithm from a functional view, with processing and con-
trol tasks interconnected by data and control dependencies. On the other hand,
an architecture instance in TTool/DiplodocusDF is described by a UML Deploy-
ment Diagram made up of a set of generic interconnected units (e.g., bus, CPU,
DMA) decorated with performance parameters. At mapping level an applica-
tion is projected onto an architecture by respectively associating SysML blocks
to nodes in the Deployment Diagram by means of artifacts. We have now inte-
grated the mapping of the Communication Pattern diagrams and components
onto a transfer path in the architecture Deployment Diagram as well as the as-
sociation of a data dependency in the application to a Communication Pattern.
Such a mapping has been implemented with an artifact within the architecture
Deployment Diagram.

5.2 A parallel application: High Order Cumulants

The application for this case study is a classification algorithm, High Order Cu-
mulants (HOC) as implemented in [6], that is used in cognitive radio by a trans-
mitter to sense the spectrum and detect if another user is currently transmitting
in the same frequency range. The SysML Instance Diagram for the application
algorithm, as modeled in DiplodocusDF with TTool, is illustrated in Figure 6.
For the sake of simplicity, in Fig. 6 the control operations and control depen-
dencies are omitted and only the dataflow view (processing operations and data
dependencies) of the model is displayed. The HOC algorithm operates on seg-
ments of the input stream (Source) that are independently processed (CWM1,
CWM2, SUM, CWS) to extract a score. The occupancy of a specific frequency
range is determined by accumulating scores (ACC) over a given classification pe-
riod and by comparing the accumulated scores with a pre-computed threshold
(Sink).

CWM1

ch4
ch2

SUM

ch4ch2
ACC

ch6

SINK

ch8

CWM2
ch5ch4

CWS

ch9

ch3

SOURCE

ch1

ch10

Fig. 6. Dataflow view of the SysML Block Instance Diagram for the HOC application,
as modeled in DiplodocusDF with TTool

5.3 A parallel and distributed hardware architecture: Embb

The target hardware architecture for HOC is Embb [7]. Embb is a generic base-
band architecture dedicated to signal processing applications. Figure 7a shows
the architecture Deployment Diagram of the overall topology, as modeled in
DiplodocusDF with TTool. Embb is composed of a processing subsystem and a
control subsystem. In the former, left-hand side of Fig. 7a, samples coming from
the air are processed in parallel by a distributed set of Digital Signal Processors
(DSP1 through DSPn) interconnected by a crossbar (Crossbar). The control sub-
system, right-hand side of Fig. 7a is where the control operations of the HOC ap-
plication are executed. The latter run on a Control Processing Unit (MAINcpu)
in charge of configuring and controlling both processing operations performed by
the DSPs and the data transfers. The CPU of the control subsystem disposes of
a memory unit (MAINmemory) and a bus interconnect (MAINbus). The latter
is linked to the processing subsystem via a bridge (Bridge1). Fig. 7b illustrates
the internal architecture of a DSP: each unit is equipped with a local control unit

(DSPcpu), a processing core (DSP) and a Direct Memory Access unit (DSPdma)
to transfer data in and out of the local memory (DSPmemory).

<<HWA>>

DSP2
<<HWA>>

DSP3

<<HWA>>
DSP...

<<HWA>>
DSPn

<<HWA>>

DSP4

<<HWA>>
DSP1

<<CPU>>

MAINcpu

<<MEMORY>>

MAINmemory

<<BUS>>
Crossbar

<<BRIDGE>>

Bridge1 <<BUS>>
MAINbus

<<BUS>>
DSPBus

<<BUS>>
Crossbar

<<HWA>>

DSP

<<CPU>>
DSPcpu

<<MEMORY>>

DSPmemory

<<DMA>>

DSPdma
<<BRIDGE>>
DSPBridge

(b)(a)

Fig. 7. The Deployment Diagrams of an architecture instance of Embb, a MPSoC
platform dedicated to signal processing applications. Part (a) displays a global view
of Embb with its processing subsystem (left-hand side) and control subsystem (right-
hand side). Part (b) depicts the internal view of each Digital Signal Processor within
the processing subsystem

5.4 Design Space Exploration with Communication Patterns

In the application graph of Fig. 6, we apply Communication Patterns to describe
the transfers associated to channels ch1, ch2, ch3 and ch8 as the parallelism
between CWM1 and CWS allows to describe two mapping scenarios. As a first
scenario, we map Sink to the MAINcpu, Source to DSP1 and the pair CWM1,2
to DSP2. Given the topology of the architecture, Sink, Source and CWM1,2 store
data respectively in MAINMemory, DSP1memory and DSP2memory. Thus, to
move data produced by Source we need a Communication Pattern to model one
transfer that serves CWM1,2 (ch2, ch3) and a second transfer that serves Sink
(ch8). To do so, the ease of use of Communication Patterns allows us to extend
the structure of the Activity Diagram of Fig. 4a with a second transfer as showed
in Fig. 8. The latter illustrates two possible transfer algorithms: Fig. 8a models
two simultaneous transfers, whereas Fig. 8b displays two sequential transfers. As
a second mapping scenario, we associate CWM1,2 to two different DSP units,
namely DSP2 and DSP3 in Fig. 7. Again we can re-use the Communication
Patterns of Fig. 8, adapting them to model three independent transfers that each
serve CWM1, CWM2 and Sink. Two of the possible transfer algorithms resulting
from the combinations of parallel and sequential transfers are illustrated in Fig. 9.

Discussion Due to limits of space in this paper, we do not provide the Sequence
Diagrams for the transfer algorithms of Fig. 8 and Fig. 9, nor the post-mapping

Activity Diagrams. Thanks to the separation of concerns between control as-
pects (Activity Diagrams) and message exchanges (Sequence Diagrams), differ-
ent mapping alternatives are investigated by re-adapting only Activity Diagrams.
This reduces considerably the efforts spent during Design Space Exploration as
well as design time and costs. At the beginning of a design, it is inevitable to
build from scratch the transfer algorithm, choose the components and arrange
both of them according to specific transfer paths selected at mapping phase.
However, when different mapping alternatives come out, diagrams can be re-
used with little changes: only the transfer algorithm in the Activity Diagrams
has to be modified. Sequence Diagrams that are specific to transfer paths that
have already been explored, are re-used without further modifications.

&& (samples2==0)] [(samples>0) && (samples2>0)]

[]

Acknowledgesd

[(samples==0) [(samples>0)

[]

Transfer1

Acknowledgesd

Transfer2

Programsd

Transfer1

Programsd

Transfer2

&& (samples2==0)] && (samples2>0)]

Executesd

Transfer1

Executesd

Transfer2

Acknowledgesd

Transfer1
Acknowledgesd

Transfer2

[(samples==0)

Executesd

Transfer1
Executesd

Transfer2

Programsd

Transfer2
Programsd

Transfer1

(a) (b)

Fig. 8. Sample Activity Diagrams for algorithms modeling two data transfers

[(samples==0) && (samples2==0) [(samples>0) && (samples2>0)

[]
[]

&& (samples3==0)] && (samples3>0)] [(samples==0)&&(samples2==0)
&&(samples3==0)]

[(samples>0)&&(samples2>0)
&&(samples3>0)]

Program
Transfer2

Program
Transfer3

Executesd

Transfer1

Executesd

Transfer2

Executesd

Transfer3

Acknow.sd

Transfer1

Acknow.sd

Transfer2

Acknow.sd

Transfer3

sd

sd

Program
Transfer1

sd

Acknow.
Transfer1

sd

Acknow.
Transfer2

sd

Acknow.
Transfer3

sd
Execute
Transfer1

sd

Execute
Transfer2

sd

Execute
Transfer3

sd

Program
Transfer1

sd

Program
Transfer2

sd

Program
Transfer3

sd

Fig. 9. Sample Activity Diagrams for algorithms modeling three data transfers

6 Related Work

In the literature, the problem of modeling and mapping complex communication
schemes is tackled within the larger context of a complete system design. With
respect to our contributions we roughly divide existing approaches in two cat-
egories: manual and automatic, based on the way Design Space Exploration is
performed. We label as automatic an approach where Design Space Exploration
is performed by Computer Aided Design (CAD) tools which automatically find
a mapping solution and evaluate its performance numbers, from input specifica-
tions of a pair application-architecture. In this case, no separation of concerns
between application and architecture is needed in input specifications, as most
of the DSE efforts are charged to CAD tools. Consequently, input specifications
are based on formalisms that can be easily handled by a computer, e.g., dataflow
models, process networks. Examples of what we define automatic approaches are
Daedalus [8], [9], Metropolis [10], Ptolemy [11], PeaCE/HoPES [12], SCE [13],
SystemCoDesigner[14], DOL [15].
We call manual those approaches where it is up to the user to manually de-
fine a mapping solution whose performance numbers are then analyzed by CAD
tools, given a pair application-architecture. Within this category we find works
based on UML/MARTE such as GASPARD [16], MOPCOM [17], Koski [18] and
[19], [20] dedicated to both hardware and software synthesis. These approaches
rely on a refinement process that progressively lowers the level of abstraction
of input models. However, such a refinement does not completely separate the
application (software synthesis) or the architecture (hardware synthesis) models
from the communications, as we defined in Fig. 3. MARTE [4] shares many com-
monalities with our approach, in terms of the capacity to separately model com-
munications from the pair application-architecture. For such a purpose, MARTE
proposes Behavior Scenarios and Steps (Communication Steps). However, these
assets are designed for performance and timing analysis, rather than DSE. Con-
sequently, they intrinsically lack a separation between control aspects and mes-
sage exchanges as we proposed in Activity and Sequence Diagrams. MARTE
does not integrate a systematic methodology for DSE and does not define the
necessary abstraction levels, proposing only a distinction between logical and
physical level. In the context of our Communication Patterns, these levels of
abstraction have been the subject of a previous publication [21].
With respect to the above classification, we can place TTool/DiplodocusDF in
the category of the manual approaches as it is up to the user to define a Commu-
nication Pattern. Performance analysis can be automated in TTool/DiplodocusDF
by means of scripting facilities but it is not comparable to the solutions proposed
by the above automatic approaches.
Independently of the works we presented, in the past edition of MODELS Arkin
et al. [22] proposed a model-driven approach and tool, to automate the mapping
of parallel algorithms onto parallel platforms. Interestingly enough, the authors
introduce their definition of a Communication Pattern to describe the dynamic
behavior of the nodes of a parallel platform via communication paths made up
of a pair source-destination nodes and a route between the two. Their Commu-

nication Patterns target larger systems and are presented in the frame of an
approach where separate steps define the architecture, communication and ap-
plication similarly to Fig. 3. From the description available in [22] the aim and
context of their Communication Patterns is clear and similar to ours. However,
with respect to our works, it is not clear what the effective expressive power of
such Communication Patterns is, what can be exactly represented in terms of
architecture units, transfer algorithm and how they are employed during DSE.

7 Conclusion

In this paper we have provided a systematic approach and its implementation to
separately model and map communications from a pair application-architecture,
in the frame of the Y-chart approach. In response to the modeling problem, we in-
troduced Communication Patterns and their implementation with UML/SysML
modeling diagrams. In the latter, we further introduced an additional separation
of concerns between control aspects (Activity Diagrams) and message exchanges
(Sequence Diagrams). In response to the second problem, we defined the mapping
of data dependencies in the application onto transfer paths in the architecture.
We illustrated our solution, first, by means of a simple producer-consumer ex-
ample and secondly, within the context of a complete application (HOC) and
architecture (Embb). Moreover, we provided an implementation of the overall
approach we propose in TTool.
Although we have applied Communication Patterns to a MPSoC architecture
and a signal processing application, we believe that our contribution is general.
We believe it can be applied to other data-dominated applications (e.g., video
and image processing) and to other types of distributed architectures (e.g., auto-
motive). In the approach we presented, we have proposed that input specification
are manually modeled and mapped. Such a manual approach may constraint the
applicability of our solution to systems with a limited number of components.
Nevertheless, it is our intuition that our Communication Patterns may scale well
also for larger systems (i.e., hundreds of components) via the creation of libraries
of communication models.
In our future works we will focus on generating application code from auto-
matic transformation of models that result from the approach we proposed in
this paper. Additionally, we will complete the implementation of our approach
by extending the simulator of TTool/DiplodocusDF with the support for per-
formance analysis with Communication Patterns.

Acknowledgements. The research leading to these results has been conducted
in the framework of the Celtic-Plus project SPECTRA (CP07-013) which has
been partially funded by the French ”Direction générale de la compétitivité, de
l’industrie et des services (DGCIS)”, the ”Ministry of Finance and Economy /
Business Development Agency” of the Monaco Principality and the ”AVANZA2”
framework of Spanish Industry, Tourism and Commerce Ministry (Ministerio de
Industria, Turismo y Comercio).

References

1. Schmidt, D., C.: Model-Driven Engineering, In: IEEE Computer 39(2), (2006)
2. TTool, http://ttool.telecom-paristech.fr
3. Kienhuis, B., Deprettere, E., F., van der Wolf, P., Vissers, K.: A Methodology to

Design Programmable Embedded Systems - The Y-chart Approach. In: Embedded
Processor Design Challenges: Systems, Architectures, Modeling, and Simulation -
SAMOS, pp. 18-37 (2002)

4. Object Management Group. A UML profile for MARTE (2014),
http://www.omgmarte.org

5. Gonzalez Pina, J. M.: Application Modeling and Software Architectures for the
Software Defined Radio. PhD Dissertation, Telecom ParisTech (2013)

6. SACRA, Spectrum and Energy efficiency through multi-band Cogni-
tive Radio: D6.3, Report on the Implementation of selected algorithms.
http://www.ict-sacra.eu/public deliverables/.

7. Muhammad, N.-u.-I., Rasheed, R., Pacalet, R., Knopp, R., Khalfallah, K.: Flexi-
ble Baseband Architectures for Future Wireless Systems. In: EUROMICRO Digital
System Design, pp. 39-46. (2008)

8. Thompson, M., Nikolov, H., Stefanov, T., Pimentel, A.D., Erbas, C., Polstra, S.,
Deprettere, E.F.: A Framework for rapid system-level exploration, synthesis and pro-
gramming for multimedia MP-SoCs. In: CODES-ISSS, pp. 9-14. (2007)

9. Nikolov, H., Thompson, M., Stefanov, T., Pimentel, A., Polstra, S., Bose, R., Zis-
sulescu, C., Deprettere, E.: Daedalus: Toward composable multimedia MP-SoC de-
sign. In: Design Automation Conference (DAC), pp. 574-579. (2008)

10. Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-
Vincentelli, A.: Metropolis: An integrated electronic system design environment.
IEEE Computer, 36(4), 45-52 (2003)

11. The Ptolemy Project (2014), http://ptolemy.eecs.berkeley.edu

12. Ha, S., Kim, S., Lee, C., Yi, Y., Kwon, S., Joo, Y.-P.: PeaCE: A hardware-software
codesign environment for multimedia embedded systems. ACM Transactions on De-
sign Automation of Electronic Systems, 12(3), 1-25 (2007)

13. Dmer, R., Gerstlauer, A., Peng, J., Shin, D., Cai, L., Yu, H., Abdi S., Gajski D.:
System-on-chip environment: A SpecC-based framework for heterogeneous MPSoC
design. EURASIP Journal on Embedded Systems, 2008(3), 1-13 (2008)

14. Keinert, K., Streubhobar, M., Schlichter, T., Falk, T., Gladigau, J., Haubelt, C.,
Teich, J., Meredith, M.: SystemCoDesigner - An automatic ESL synthesis approach
by design space exploration and behavioral synthesis for streaming applications. ACM
Transactions on Design Automation of Electronic Systems, 14(1), 1-23 (2009)

15. Thiele, L., Bacivarov, I., Haid, W., Huang, K.: Mapping Applications to Tiled
Multiprocessor Embedded Systems. In: 7th International Conference on Application
of Concurrency to System Design (ACSD), pp. 29-40. (2007)

16. Gamatie, A., Le Beux, S., Piel, E., Ben Atitallah, R., Etien, A., Marquet, P.,
Dekeyser, J.L.: A Model-Driven Design Framework for Massively Parallel Embedded
Systems. ACM Transactions on Embedded Computing Systems 10(4), 1-36 (2011)

17. Lecomte, S., Guillouard, S., Moy, C., Leray, P., Soulard, P.: A co-design method-
ology based on model driven architecture for real time embedded systems. Mathe-
matical and Computer Modelling 53(3-4), 471-484 (2011)

18. Kangas, T., Kukkala, P., Orsila, H., Salminen, E., Hnnikinen, M., Hmlinen, T.D.:
UML-based multiprocessor SoC design framework. ACM Transactions on Embeded-
ded Computing Systems 5(2), 281-320 (2006)

19. Vidal, J., de Lamotte, F., Gogniat, G., Soulard, P., Diguet, J.-P.: A co-design ap-
proach for embedded system modeling and code generation with UML and MARTE.
In: Design and Automation Test in Europe (DATE), pp. 226-231 (2009)

20. Vidal, J., de Lamotte, F., Gogniat, G., Diguet, J.-P., Soulard, P.: UML design
for dynamically reconfigurable multiprocessor embedded systems. In: Design and
Automation Test in Europe (DATE), pp. 1195-1200. (2010)

21. Enrici, A., Apvrille, L., Pacalet, R.: Communication Patterns: a Novel Modeling
Approach for Software Defined Radio Systems. In: 4th International Conference on
Advances in Cognitive Radio (COCORA), pp. 35-40. (2014)

22. Arkin, E., Tekinerdogan, B., Imre, K., M.: Model-Driven Approach for Supporting
the Mapping of Parallel Algorithms to Parallel Computing Platforms. In: MODELS,
pp. 757-773 (2013)

