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Abstract— HTTP Streaming is a recent topic in multimedia 

communications with on-going standardization activities, 

especially with the MPEG DASH standard which covers on 

demand and live services. One of the main issues in live services 

deployment is the reduction of the overall latency. Low or very 

low latency streaming is still a challenge. In this paper, we push 

the use of DASH to its limits with regards to latency, down to 

fragments being only one frame, and evaluate the overhead 

introduced by that approach and the combination of: low latency 

video coding techniques, in particular Gradual Decoding 

Refresh; low latency HTTP streaming, in particular using 

chunked-transfer encoding; and associated ISOBMF packaging. 

We experiment DASH streaming using these techniques in local 

networks to measure the actual end-to-end latency, as low as 240 

milliseconds, for an encoding and packaging overhead in the 

order of 13% for HD sequences and thus validate the feasibility 

of very low latency DASH live streaming in local networks. 

Keywords—HTTP Streaming; Live Streaming; Low Latency; 

MPEG-DASH; Video Encoding; Overhead. 

I.  INTRODUCTION  

HTTP Streaming technologies have been introduced 
recently to deliver multimedia streams, taking into account the 
constraints of today’s networks. They try to overcome the 
deployment issues of other protocols such as RTP/RTCP/RTSP 
in environments where firewalls, Network Address Translation 
(NAT) or UDP traffic filtering are used. HTTP Streaming 
offers similar features to RTP/RTCP/RTSP streaming as it can 
be used for on demand or live services, and can be adaptive to 
network bandwidth fluctuations. However, some key factors 
are differentiating: HTTP streaming leverages existing HTTP 
infrastructures (proxies, caches, content delivery networks) to 
make an efficient use of the network when targeting a large 
number of clients, in a way similar to multicast streaming but 
without the deployment issues; relies on a client-centric 
approach to perform network adaptation, similar to using 
multiple multicast RTP streams and letting the client decide; 
and eases content repurposing from live to on-demand and 
vice-versa. An important standard in the field of HTTP 
streaming is the MPEG Dynamic Adaptive Streaming over 
HTTP (DASH) standard  [5]. 

While packet-based streaming solutions, e.g. using RTP, 
can achieve latency, in the order of frames, HTTP streaming 
solutions such as DASH are not used today for such very low 
latency streaming. The major reason for that is that HTTP 
streaming relies on a segmentation process, whereby encoded 

media frames are aggregated into segments (in the DASH 
terminology) used as: a download unit in HTTP requests; a 
buffering unit to smooth network bandwidth variations; an 
indication of the boundaries to perform seamless switching 
between streams encoded with different bitrates. For these 
purposes, segments typically start with a Random Access Point 
(e.g. an IDR frame in the AVC coding format), and last for a 
few seconds. Such encoding and segmentation therefore 
introduce a delay which is not acceptable for low latency 
streaming, and in particular for live. 

Traditionally, very low latency steaming is required for 
interactive or bidirectional applications such as video 
conferencing or live streaming with voting. Despite the 
benefits of HTTP streaming explained earlier, DASH is not 
initially adapted for such low latency. In this paper, we would 
like to investigate how to achieve very low latency, i.e. latency 
similar the one achievable with RTP, but using DASH, to 
benefit from its advantages in particular, in scenarios such as 
interactive streaming or hybrid delivery. In the hybrid delivery 
scenario, where DASH streaming over broadband network is 
combined with a broadcast service, the latency of the DASH 
system should be lower than the broadcast, and if no additional 
buffer is introduced in the broadcast (at the client side or at the 
encoder side), this means that the DASH system should 
achieve very low latency. Even in local area networks, where 
the network jitter is small but where bandwidth can vary (for 
example when shared between users), adaptive HTTP 
streaming can still be useful and could benefit from very low 
latency, e.g. in a local broadcast of a live event. 

In this paper, we push the use of DASH to its limits to 
evaluate different aspects related to latency. We consider the 
use of DASH over HTTP 1.1 where “chunked-transfer 
encoding” is used and rely on specific parts of segments, called 
fragments, being downloaded before entire segments are ready. 
Additionally, to have meaningful low latency in DASH, we use 
low latency video coding tools, in particular the Gradual 
Decoding Refresh feature of the AVC standard. In this paper, 
we will evaluate the usefulness of this approach both in terms 
of latency and overhead.  

Section  II of this paper will present the state of the art in 
HTTP live streaming. Section  III will describe our approach 
and propose an evaluation of the introduced overhead. Section 
 IV will describe some experiments made to validate the 
approach and Section  V will conclude the paper and propose 
future work. 



   

II. RELATED WORKS 

Several research papers have been published regarding live 
or low latency streaming over HTTP. Lohmar et al.  [4] 
proposed an analysis of the different delays in an HTTP 
streaming chain and compared it with an RTP streaming chain. 
They found that an HTTP streaming chain with typical 
segment duration of 1s would introduce a delay in the order of 
3s compared to RTP. These additional seconds come from: the 
segmentation process, a segment is advertised only when it is 
fully produced; the uncertainty related to when the segment is 
fetched; and the download time of the segment. The paper also 
proposes a measurement of the overhead showing that the 
overhead of HTTP and ISOBMFF-based media files decreases 
with the segment size and can be lower than RTP for segments 
longer than 2s. 

Swaminathan et al.  [3] proposed a low latency HTTP 
streaming approach using HTTP chunked-transfer encoding, 
and an analytic model to evaluate different client/server 
communication strategies. The paper showed that with 
chunked-transfer encoding and with a proper download 
strategy, the latency does not depend on the segment duration, 
as shown in  [4], but depends on the duration of the HTTP 
chunks, while also preserving a small initial delay. However, 
the proposed approach still uses long chunks of 1s, and does 
not describe what happens for shorter chunks. 

Introducing a low latency streaming technique is only 
meaningful if the associated media coding is also low latency. 
It would be useless to provide a means to deliver a video 
sequence frame by frame if the encoder used several future 
reference frames. Additionally, if the client cannot process the 
initial frames it receives because they are not Random Access 
Points (RAP), the streaming system would be inappropriate. 
Inserting RAPs too often, at worse at every frame, would 
increase the bitrate tremendously. Fetching previous RAPs and 
decoding faster than real-time is also an option but requires 
higher processing on the client. The Gradual Decoding Refresh 
(GDR) concept of the Advanced Video Coding (AVC) 
standard is interesting in this respect. Hannuksela et al. 
presented this tool and studied the associated overhead in  [1] 
and found that “the average bitrate loss of GDR compared to 
periodic IDR was between 11 and 17%”. The paper however 
does not consider its use in HTTP streaming and does not 
evaluate the overhead for high-definition sequences. 

Kofler et al.  [6] studied the impact of the use of the ISO 
Base Media File Format (ISOBMFF), in HTTP streaming 
systems, including DASH, but when delivering videos encoded 
using the Scalable Video Coding (SVC) standard. The authors 
measured the overhead introduced by the ISOBMFF and the 
HTTP requests and report that the approach is inefficient for 
bitrates lower than 1Mbps. 

As a summary, to the best of our knowledge, there is no 
existing research work studying the overhead and 
appropriateness of HTTP streaming using DASH with the 
combined usage of HTTP “chunked-transfer” encoding, GDR 
encoding and the ISO Base Media File Format. This is the goal 
of this paper. 

III. LIVE DASH STREAMING LATENCY 

A. Basic DASH Latency  

The DASH standard relies on a client-driven streaming 
approach described in  [5]. The client first fetches a description 
of the streaming session: the Media Presentation Description 
(MPD). It parses it and chooses the best representation suiting 
its needs. A representation is one of the encoded media streams 
with unique characteristics, such as bitrate, resolution or 
language. Then the client starts requesting segments from the 
server. A media segment is a part of a stream with a unique 
HTTP address, packaged for delivery and starting with a RAP. 
To respect real-time playback, the client continuously 
compares the download duration of each segment, the segment 
playback duration and its buffer occupancy, and in some cases, 
it switches to another representation which best matches its 
needs. Finally, if indicated by the server, the client updates the 
MPD from time to time to retrieve new segment information. 
As in RTP-based streaming systems, a DASH client uses a 
buffer for two purposes: to adjust to network jitter; and to cope 
with encoding constraints when bidirectional predicted frames 
or variable bit rate are used. The DASH client is informed of 
this latter part through the minBufferTime attribute in the MPD. 

To enable the client to determine precisely when a new 
segment is ready and make the necessary request, DASH relies 
on the availabilityStartTime attribute in the MPD. It indicates 
the UTC time at which the first segment is entirely made 
available. Hence, as opposed to other HTTP streaming 
approaches, DASH requires that both servers and clients are 
synchronized on a common clock, the UTC clock. This 
approach enables clients to make only the necessary requests 
for segments, at the right time. 

B. Low Latency DASH 

Following the above description and in accordance to 
Lohmar et al.  [4], the latency in DASH is affected by: the 
segmentation delay; the asynchronous fetch of media 
segments; the time to download the segments; and the 
buffering at the client side. This analysis can also be applied 
when replacing segments with smaller chunks of data. As 
indicated in  [3], if segments are further divided in smaller parts 
and these parts delivered using HTTP chunks, the segmentation 
delay can be reduced to the duration of a chunk. Additionally, 
in cases where segments can reliably be produced at the precise 
times indicated by the MPD, the delay due to the asynchronous 
fetch can also be reduced. And in local networks, where the 
jitter is smaller, the buffering at the client side can also be 
drastically reduced. So under some circumstances, it can be 
possible to use DASH for very low latency systems. 

However, in the first version of the DASH standard, the 
MPD only indicates the availabilityStartTime (AST) value. The 
client having no knowledge of how segments are produced, e.g. 
if they are available progressively, it typically sends a request 
only when an entire segment has been generated. This 
introduces a latency of one segment duration at least (ds). To 
reduce this latency, we participated in the definition of the 
amendment 1 of the DASH standard proposing the introduction 
of the new availabilityStartTimeOffset (ASTO) attribute in the 
MPD.  



   

The availabilityStartTimeOffset attribute indicates the 
difference between the availabilityStartTime of the segment 
and the UTC time at which the server can start delivering data 
for this segment, e.g. using HTTP chunks. Typically, this latter 
time corresponds to the time at which one or more fragments 
are available. This is a fundamental change: with the presence 
of this attribute, a client is now aware that a fragment of the 
segment is available earlier than the segment. The client is also 
capable of making the necessary request for the current 
segment at the right time that will not have him wait or that 
will not return an HTTP 404 response, although the segment is 
not fully produced. This however requires that the server is 
able to send out the fragment earlier, possibly as soon as it has 
been completely generated, e.g. using HTTP chunks, or that the 
server can keep the client waiting until the segment is 
produced, as in the “server wait” approach described in  [3]. If 
the availabilityStartTimeOffset is chosen to match the time at 
which the first fragment is fully produced, the latency can be 
reduced to the duration of a fragment (dc). The relationship 
between the availabilityStartTime, availabilityStartTimeOffset, 
segment duration (ds) and fragment duration (dc) is shown in 
Fig. 1. λ represents a margin introduced in the computation of 
ASTO to cope with UTC mismatch between the client and the 
server. 

ASTO = AST – (AST – ds + dc + λ) = ds – dc – λ  

IV. EXPERIMENTATIONS AND RESULTS 

A. Implementation 

To experiment with the proposed approach for low latency 
live DASH streaming, we have implemented a complete 
DASH streaming system, as depicted in  Fig. 2 and detailed 
below. We rely on a specific behavior of the DASH 
encoder/server. The DASH encoder produces DASH compliant 
segments as depicted in  Fig. 3, composed of multiple 
fragments, produces MPD according the amendment 1 of 
DASH and sets the availabilityStartTimeOffset as being the 
generation end time of the first fragment of the segment minus 
the margin. If an HTTP 1.0 client, i.e. not capable of using 
HTTP chunks, requests the segment before it is fully produced, 
the DASH server will simply make the client wait until the 
segment is fully produced. This is similar to the “server wait” 
approach described in  [3]. However, if the client is HTTP 1.1 
capable, the server will start sending chunked segments 
immediately. As indicated in  [3], such approach should lead to 
a streaming system with latency in the order of the duration of 
a chunk. 

 

Fig. 1. Determination of the availability time of a media fragment in 

DASH. 

Fig. 2. Architecture of the experimented streaming system. 

1) Content generation: The content generation part of the 

system is in charge of three tasks: encoding the video in real-

time, in particular using the GDR scheme; segmenting and 

formatting the video segments according to the ISOBMFF; 

and generating the DASH Media Presentation Description 

(MPD). 
In these experiments, we use the DashCast tool from the 

GPACa project to encode the input video into multiple DASH 
representations, all using GDR encoding, with different 
resolutions and bitrates, as suggested in  [7]. Additionally, we 
have configured DashCast to produce ISOBMFF segments of 
2s duration. Segments are composed of several fragments. 
Each fragment consists of at least two boxes represented by the 
codes “moof” and “mdat”, as depicted in Fig. 3. In our 
experiments, we have used different number of fragments per 
segments, ranging from 1 fragment carrying one video frame to 
1 fragment carrying the whole segment. 

2) Content distribution: The segmented media and 

associated MPD are then deployed on the Web Server and are 

then fetched by the client through a Local Area Network 

(LAN). In this work, we have implemented an intelligent web 

server based on the NodeJS
b
 framework. This server serves 

media segments in a specific manner. When it receives a 

request from a client for a specific and (fully or partially) 

available segment, it indicates that the data will be sent using 

HTTP 1.1 “chunked-transfer” encoding, then starts the parsing 

of the segment to detect ISOBMFF fragments. When a new 

fragment is published, the server sends out the fragment as a 

chunk. With this approach, the download of the segment can 

start before the segment is completely ready and published. In 

our system, the server detects the end of a segment by the 

presence of a new “eods” box (End of Dash Segment) 

specifically introduced for the coordination between DashCast 

and our Web server. This approach is similar to the one used 

in  [3] (and the so-called “post metadata”) with the difference 

that our server is located on the same physical machine as the 

encoder and therefore communication between the encoder 

and server is done through disc input-output monitoring.  

 
Fig. 3. Structure of a DASH media segment.  

                                                           
a
 http://gpac.wp.mines-telecom.fr 

b
 http://nodejs.org/ 
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Fig. 4.  Comparison of the GDR/IDR encoding of the Big Buck Bunny 

sequence. 

In future work, we plan to extend this approach to separate the 

encoder from the web server. 

3) DASH client: In our approach, the client is a compliant 

DASH client with HTTP 1.1 capability, i.e. it is able to receive 

data transferred using chunked-transfer encoding; and is 

capable of processing incomplete segments, i.e. media frames 

are parsed in ISO fragments and dispatched before the 

complete segment is received.  

B. Results 

In order to validate our approach, we have conducted two 
types of experiments: experiments to measure the overhead 
introduced by the selected coding and packaging tools, and 
experiments to measure the latency of system. This section 
details these two parts. 

1) Overhead measurements: The total overhead of our 

approach can be decomposed into: the overhead introduced by 

the GDR video coding scheme; the overhead introduced by the 

packaging and segmenting of GDR-encoded videos into 

ISOBMFF fragments; and the overhead introduced by the 

download of ISOBMFF fragments as HTTP 1.1 chunks. 

a) Encoding overhead: For our experiments, we used 

two video sequences, initially compressed with the AVC 

format, with the characteristics reported in  TABLE II. We 

encoded these sequences, using the open source x264c 

encoder, at different resolutions (ranging from QCIF to full 

HD) and different bitrates (ranging from 150kbps to 9Mbps). 

The video sequences were encoded in two modes: with and 

without GDR. When using IDR, we set the GoP size to be 1 

second, corresponding to a typical DASH segment starting  

TABLE I.  BITRATE FOR DASH REPRESENTATIONS 

Resolution Bitrates (kbps) 

1920x1080 8000 

1280x720 4500 

704x576 2000 

960x540 2250 

640x360 1600 

352x288 1200 

176x144 100 

                                                           
c https://www.videolan.org/developers/x264.html 

TABLE II.  INPUT VIDEO SEQUENCE CHARACTERISTICS 

Sequence Bit 

rate 

(kbps) 

Frame 

rate 

(fps) 

Resolution GoP 

size 

Duration 

RedBull
d
 6 000 24 1920x1080 15 s 1 min 

Big Buck 

Bunny
e
 

9 000 29.97 1920x1080 3 s 10 min 

 

with a RAP. With GDR, we set the roll distance to 8. In both 

cases, no B frames were used and only 1 reference image was 

used for prediction. Additionally, we used the “crf” option of 

x264, which tries to achieve a given quality and used the same 

quality for both GDR and IDR versions. We kept only the 

sequences which resulted in a bit rate lower than the initial 

one. The exact command line for GDR encoding is provided 

below:  

x264 --sar 1:1 –o output_video.h264 input_video.h264 

--ref 1 --crf <x> --bframes 0 --keyint 8 --vf 

resize:<w>,<h> --b-pyramid none --fps <f> --preset 

veryslow --tune psnr --psnr --intra-refresh 

 Fig. 4 shows the PSNR comparison for the Big Buck Bunny 

sequence. The comparison for the Red Bull sequence exhibits 

the same pattern. The results, summarized in  TABLE III. , 

confirm the finding of  [1] but extend these results for HD 

content: the GDR coding incurs an overhead, computed 

following Bjontegaard metric  [8], between 7% and 25% at 

roughly constant quality or a PSNR difference between 0.44 

dB and 2.55 dB at equivalent bitrate. It can be seen that the 

GDR encoding is less penalizing at higher resolutions, 

probably because the space for inter/intra prediction is larger, 

given that the same number of GDR frame divisions has been 

used for all resolutions. 

b) ISOBMFF overhead: The packaging in ISO Base 

Media files used in our DASH streaming system also 

introduces an overhead which can be decomposed in: an initial 

overhead due to the packaging of raw media data (e.g. AVC 

NAL Units) into the structured ISO format; a specific 

overhead for the storage of GDR encoded videos; and the 

additional overhead due to the segmentation and 

fragmentation required in DASH.  

The initial overhead does not depend on the bitrate but does 

depend on the number of ISO samples, i.e. the number of 

frames per seconds. Our experiments on the Big Buck Bunny 

and Red Bull sequences show that the additional overhead 

introduced by the simple storage of IDR or GDR encoded 

sequences in MP4 files compared to the raw AVC sequence is 

negligible. The overhead is of course the biggest for the 

sequence with lowest bitrate (e.g. 150 kbps). Typically, across 

video sequences, resolutions and bitrates, we have between 

0.0019% and 0.26% for the storage of IDR sequences in 

ISOBM files compared to raw AVC files. The specific 

overhead introduced in GDR compared to AVC is between 

0.0042% and 0.37%. Hence, storing GDR sequences costs a 

lot more than storing IDR sequences, the overhead is  

                                                           
d http://download.tsi.telecom-paristech.fr/gpac/dataset/dash/mmsys13/video/redbull_10sec/ 

e http://www.bigbuckbunny.org/index.php/download/ 

https://www.videolan.org/developers/x264.html
http://download.tsi.telecom-paristech.fr/gpac/dataset/dash/mmsys13/video/redbull_10sec/
http://www.bigbuckbunny.org/index.php/download/


   

 
Fig. 5. Comparison of the overhead introduced by the ISOBMF storage 

and fragmentation of GDR/IDR streams. 

sometimes more than twice, but compared to the video bitrate, 

this overhead is still negligible. 

When it comes to fragmented MP4, considering a constant 

duration segment of 1s, the overhead depends on the number 

of fragments per segment, i.e. on the number of frames per 

fragment, and on the difference between the GDR and IDR 

signaling. 

 Fig. 5 shows the result for the Big Buck Bunny sequence, with 

the overhead computed with respect to the raw AVC 

sequence. We can see that the fragmentation introduces an 

overhead, which decreases as the number of frames per 

fragment increases. For all resolutions and bitrates, it roughly 

is fewer than 2%, except for fragments smaller than 4 frames, 

where it can reach up to 9%. For this reason, in section 2, we 

will use fragments made of 5 frames. Then, we can see that, 

for a given number of frames per fragment, the fragmentation 

overhead decreases with the video resolution and bitrate. 

Interestingly, since the GDR coding overhead is high for the 

sequence with the lowest resolution (25-28%), the additional 

fragmentation overhead is relatively smaller (7%) than the 

overhead introduced by the fragmentation on the IDR 

sequence (9%). 

c) HTTP overhead: Finally, the last overhead 

introduced by the system is in the delivery of content over 

HTTP. In typical DASH scenario, an HTTP request is made 

for every media segment. The size of the request is highly 

dependent on the information present in the header 

(descriptions of the user agent, of the server, list of accept 

headers, use of byte ranges…). In  [4], the authors report a 

typical size of 140 bytes. In  [6], the authors report a size of 

280 bytes. We can assume an average size of 200 bytes per 

request. However, in our approach what matters more is the 

overhead introduced by the chunk-transfer encoding. 

TABLE III.  BJONTEGAARD METRIC  FOR GDR/IDR COMPARISON 

 Big Buck Bunny Red Bull 

delta 

PSNR (dB) 

Delta bit rate 

(%) 

delta 

PSNR (dB) 

Delta bit 

rate (%) 

1920x1080 0.4401 7.0532 0.4554 7.6407 

1280x720 0.4437 7.9916 0.4379 8.6911 

704x576 0.6596 10.8178 0.6201 11.3784 

960x540 0.5827 9.3572 0.5164 9.4989 

640x360 0.7747 11.7519 0.6967 12.1939 

352x288 1.2582 17.1335 1.0357 16.5746 

176x144 2.5585 28.2752 1.8412 24.6922 

According to the HTTP 1.1 specificationf, each chunk is 

composed of a string giving the size of the chunk, followed by 

extensions, followed by the carriage return and line feed 

characters (CRLF), the chunk data and another CRLF. The last 

chunk is a chunk of size 0 followed by an optional trailer and 

CRLF. Assuming a sequence encoded at 8 Mbps using GDR 

encoding, the fragmentation for this high bitrate will add an 

overhead of 2% for 1 frame per fragment, and so the average 

fragment size will be expressed on 4 hexadecimal characters. 

In total, for chunks with no extension or trailer and with each 

chunk corresponding to one fragment, in turn corresponding to 

either 1 frame or the full segment, each chunk will be at most 

8 bytes bigger than the fragment. So at most, at 25 fps, this 

gives an additional bitrate of 1.6 kbps, representing 0.02% of 

the raw video bitrate, which can be considered negligible. 

d) Total overhead: As a summary, the total overhead for 

the delivery of a GDR encoded video sequence, stored in 

fragmented ISOBMF, delivered with HTTP 1.1, using 1 chunk 

per fragment, is mainly the result of the encoding and of the 

fragmentation. This overhead will vary, as reported in  TABLE 

IV. between 12.5% and 56.30% of the same sequence encoded 

without GDR using 1 GoP per fragment and 1 fragment per 

segment, typical in DASH. We note that the lower overhead is 

for HD sequences and can be acceptable in some scenarios. 

2) Latency: To validate our approach with respect to 

latency, we have instrumented DashCast (respectively 

MP4Client) to log the different UTC times at which a frame 

was encoded (resp. decoded), at which a fragment was fully 

produced (resp. a chunk was fully received), at which a 

segment was fully produced (resp. received). We then run 

streaming sessions with DashCast, our modified Web Server 

and MP4Client in a local network. MP4Client was configured 

to remove all network buffering. 

We set the segment duration ds to 2 seconds and the fragment 

duration dc (equal to the chunk duration) to 200 milliseconds 

to obtain 10 chunks per segment. The following DashCast 

command was run, grabbing the screen of the computer at a 

resolution of 800x600 pixels, at 25 frames per second, 

encoding it according to the configuration given in the 

dashcast.conf file with GDR encoding, using ‘eods’ marker 

and with ASTO equal to ds – dc. 
DashCast -vf x11grab -v :0 -seg-dur 2000 -frag-dur 

200 -gdr –live -conf dashcast.conf -ast-offset -1800 

-vres 800x600 -vfr 25 – seg-marker eods 

TABLE IV.  VIDEO SEQUENCE BITRATE OVERHEAD (GDR WITH 1 FRAME 

PER FRAGMENT VS IDR WITH 1 GOP PER FRAGMENT) 

 Big Buck Bunny Red Bull 

1920x1080 12.50% 13.39% 

1280x720 21.64% 17.60% 

704x576 19.56% 19.20% 

960x540 17.05% 22.05% 

640x360 15.22% 24.00% 

352x288 30.45% 32.92% 

176x144 56.30% 55.00% 

                                                           
f https://tools.ietf.org/html/rfc2616 

https://tools.ietf.org/html/rfc2616


   

Fig. 6. Chunk latency (fragmentation output/client reception). 

DashCast and MP4Client were run on different machines, 

whose system times where configured to use Network Time 

Protocol (NTP). However, we noticed important mismatch 

between the times used by both machines and therefore 

decided not to rely on NTP and used a dedicated NTP-inspired 

mechanism to synchronize the machines, as follows. Upon 

sending the MPD to the client, the web server adds an extra 

HTTP header indicating its UTC system time. When the client 

receives the MPD from the server, it fetches its own UTC 

system time, substracts the time read from the HTTP headers 

and obtains an estimated UTC time difference between the 

two machines. This difference is assigned to λ. This 

mechanism is very simple, and omits the delivery time of the 

MPD. We plan to improve that in future work. Additionally, it 

is calculated just once and applied every time the availability 

start time of a segment is compared to the client system time. 

In the future, we plan on using the reception times of the 

chunks to adjust this UTC difference.  

 Fig. 6 shows the chunk latency, i.e. the difference between the 

adjusted UTC times at which a fragment was fully produced 

by DashCast and at which it was received by MP4Client client 

as an HTTP chunk. As can be seen on the figure, the chunk 

latency is of the order of 2-3 milliseconds for every chunk, 

except for the first chunk of each segment, where it is in the 

order of 50 ms. This is due to the fact that the UTC time 

adjustment is only approximate. Manual checking shows that 

the real UTC time difference is 50 ms greater. For this reason, 

the client actually requests the first chunk 50 ms too late. This 

latency is however reduced for the next chunk as it is pushed 

by the server and no request is made by the client.  

 Fig. 7 shows the frame latency, i.e. the difference between the 

time at which a frame was encoded and at which it was 

decoded. With 25 frames per seconds, and 200 ms per chunk, 

a chunk contains 5 frames. The figure shows 5 peaks, one per 

frame, corresponding to the latency of each frame in the 

chunk, the first frame being delayed most (160 ms), and the 

last suffering almost no latency. 

 
Fig. 7. Access unit latency (encoder output/decoder input). 

These experiments validate that, in local networks; very low 

latency down to 160 ms (5 frames), between the encoder 

output and the decoder input, can be achieved using DASH 

amendment 1. Noting that the encoding and decoding times of 

a frame are lower than its duration (40 ms), the end-to-end 

latency is lower than 240 ms. 

V. CONCLUSION 

HTTP Streaming is the new approach for streaming video over 

the Internet, for live and on demand cases. However, current 

approaches, in particular using DASH, are not deployed for 

low latency live services. In this paper, we proposed to use the 

amendment 1 of DASH in combination with Gradual 

Decoding Refresh encoding and to deliver media frames up to 

the frame. We measured the overhead introduced by the GDR 

encoding and the associated fragmentation. We showed that 

especially for high definition content, the overhead in the 

order of 13% can be acceptable. We also described an 

implementation of a streaming system comprising a DASH 

live encoder generator, a DASH-aware web server and a 

DASH client. With this system, we validated the approach for 

very low latency streaming in local networks, with latency as 

low as 240 ms. In future work, we plan to examine how such 

low latency system will behave in real content delivery 

networks, and to further exploit the combined use of GDR and 

chunk encoding to enable fetching segments not from their 

start, reducing the initial delay and enabling faster switching. 
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