

Overhead and Performance of Low Latency Live

Streaming using MPEG-DASH

Nassima Bouzakaria, Cyril Concolato, Jean Le Feuvre
Institut Mines-Télécom; Telecom ParisTech; CNRS LTCI

46, rue Barrault, 75013 Paris, France

 {nassima.bouzakaria, cyril.concolato, jean.lefeuvre}@telecom-paristech.fr

Abstract— HTTP Streaming is a recent topic in multimedia

communications with on-going standardization activities,

especially with the MPEG DASH standard which covers on

demand and live services. One of the main issues in live services

deployment is the reduction of the overall latency. Low or very

low latency streaming is still a challenge. In this paper, we push

the use of DASH to its limits with regards to latency, down to

fragments being only one frame, and evaluate the overhead

introduced by that approach and the combination of: low latency

video coding techniques, in particular Gradual Decoding

Refresh; low latency HTTP streaming, in particular using

chunked-transfer encoding; and associated ISOBMF packaging.

We experiment DASH streaming using these techniques in local

networks to measure the actual end-to-end latency, as low as 240

milliseconds, for an encoding and packaging overhead in the

order of 13% for HD sequences and thus validate the feasibility

of very low latency DASH live streaming in local networks.

Keywords—HTTP Streaming; Live Streaming; Low Latency;

MPEG-DASH; Video Encoding; Overhead.

I. INTRODUCTION

HTTP Streaming technologies have been introduced
recently to deliver multimedia streams, taking into account the
constraints of today’s networks. They try to overcome the
deployment issues of other protocols such as RTP/RTCP/RTSP
in environments where firewalls, Network Address Translation
(NAT) or UDP traffic filtering are used. HTTP Streaming
offers similar features to RTP/RTCP/RTSP streaming as it can
be used for on demand or live services, and can be adaptive to
network bandwidth fluctuations. However, some key factors
are differentiating: HTTP streaming leverages existing HTTP
infrastructures (proxies, caches, content delivery networks) to
make an efficient use of the network when targeting a large
number of clients, in a way similar to multicast streaming but
without the deployment issues; relies on a client-centric
approach to perform network adaptation, similar to using
multiple multicast RTP streams and letting the client decide;
and eases content repurposing from live to on-demand and
vice-versa. An important standard in the field of HTTP
streaming is the MPEG Dynamic Adaptive Streaming over
HTTP (DASH) standard [5].

While packet-based streaming solutions, e.g. using RTP,
can achieve latency, in the order of frames, HTTP streaming
solutions such as DASH are not used today for such very low
latency streaming. The major reason for that is that HTTP
streaming relies on a segmentation process, whereby encoded

media frames are aggregated into segments (in the DASH
terminology) used as: a download unit in HTTP requests; a
buffering unit to smooth network bandwidth variations; an
indication of the boundaries to perform seamless switching
between streams encoded with different bitrates. For these
purposes, segments typically start with a Random Access Point
(e.g. an IDR frame in the AVC coding format), and last for a
few seconds. Such encoding and segmentation therefore
introduce a delay which is not acceptable for low latency
streaming, and in particular for live.

Traditionally, very low latency steaming is required for
interactive or bidirectional applications such as video
conferencing or live streaming with voting. Despite the
benefits of HTTP streaming explained earlier, DASH is not
initially adapted for such low latency. In this paper, we would
like to investigate how to achieve very low latency, i.e. latency
similar the one achievable with RTP, but using DASH, to
benefit from its advantages in particular, in scenarios such as
interactive streaming or hybrid delivery. In the hybrid delivery
scenario, where DASH streaming over broadband network is
combined with a broadcast service, the latency of the DASH
system should be lower than the broadcast, and if no additional
buffer is introduced in the broadcast (at the client side or at the
encoder side), this means that the DASH system should
achieve very low latency. Even in local area networks, where
the network jitter is small but where bandwidth can vary (for
example when shared between users), adaptive HTTP
streaming can still be useful and could benefit from very low
latency, e.g. in a local broadcast of a live event.

In this paper, we push the use of DASH to its limits to
evaluate different aspects related to latency. We consider the
use of DASH over HTTP 1.1 where “chunked-transfer
encoding” is used and rely on specific parts of segments, called
fragments, being downloaded before entire segments are ready.
Additionally, to have meaningful low latency in DASH, we use
low latency video coding tools, in particular the Gradual
Decoding Refresh feature of the AVC standard. In this paper,
we will evaluate the usefulness of this approach both in terms
of latency and overhead.

Section II of this paper will present the state of the art in
HTTP live streaming. Section III will describe our approach
and propose an evaluation of the introduced overhead. Section
 IV will describe some experiments made to validate the
approach and Section V will conclude the paper and propose
future work.

II. RELATED WORKS

Several research papers have been published regarding live
or low latency streaming over HTTP. Lohmar et al. [4]
proposed an analysis of the different delays in an HTTP
streaming chain and compared it with an RTP streaming chain.
They found that an HTTP streaming chain with typical
segment duration of 1s would introduce a delay in the order of
3s compared to RTP. These additional seconds come from: the
segmentation process, a segment is advertised only when it is
fully produced; the uncertainty related to when the segment is
fetched; and the download time of the segment. The paper also
proposes a measurement of the overhead showing that the
overhead of HTTP and ISOBMFF-based media files decreases
with the segment size and can be lower than RTP for segments
longer than 2s.

Swaminathan et al. [3] proposed a low latency HTTP
streaming approach using HTTP chunked-transfer encoding,
and an analytic model to evaluate different client/server
communication strategies. The paper showed that with
chunked-transfer encoding and with a proper download
strategy, the latency does not depend on the segment duration,
as shown in [4], but depends on the duration of the HTTP
chunks, while also preserving a small initial delay. However,
the proposed approach still uses long chunks of 1s, and does
not describe what happens for shorter chunks.

Introducing a low latency streaming technique is only
meaningful if the associated media coding is also low latency.
It would be useless to provide a means to deliver a video
sequence frame by frame if the encoder used several future
reference frames. Additionally, if the client cannot process the
initial frames it receives because they are not Random Access
Points (RAP), the streaming system would be inappropriate.
Inserting RAPs too often, at worse at every frame, would
increase the bitrate tremendously. Fetching previous RAPs and
decoding faster than real-time is also an option but requires
higher processing on the client. The Gradual Decoding Refresh
(GDR) concept of the Advanced Video Coding (AVC)
standard is interesting in this respect. Hannuksela et al.
presented this tool and studied the associated overhead in [1]
and found that “the average bitrate loss of GDR compared to
periodic IDR was between 11 and 17%”. The paper however
does not consider its use in HTTP streaming and does not
evaluate the overhead for high-definition sequences.

Kofler et al. [6] studied the impact of the use of the ISO
Base Media File Format (ISOBMFF), in HTTP streaming
systems, including DASH, but when delivering videos encoded
using the Scalable Video Coding (SVC) standard. The authors
measured the overhead introduced by the ISOBMFF and the
HTTP requests and report that the approach is inefficient for
bitrates lower than 1Mbps.

As a summary, to the best of our knowledge, there is no
existing research work studying the overhead and
appropriateness of HTTP streaming using DASH with the
combined usage of HTTP “chunked-transfer” encoding, GDR
encoding and the ISO Base Media File Format. This is the goal
of this paper.

III. LIVE DASH STREAMING LATENCY

A. Basic DASH Latency

The DASH standard relies on a client-driven streaming
approach described in [5]. The client first fetches a description
of the streaming session: the Media Presentation Description
(MPD). It parses it and chooses the best representation suiting
its needs. A representation is one of the encoded media streams
with unique characteristics, such as bitrate, resolution or
language. Then the client starts requesting segments from the
server. A media segment is a part of a stream with a unique
HTTP address, packaged for delivery and starting with a RAP.
To respect real-time playback, the client continuously
compares the download duration of each segment, the segment
playback duration and its buffer occupancy, and in some cases,
it switches to another representation which best matches its
needs. Finally, if indicated by the server, the client updates the
MPD from time to time to retrieve new segment information.
As in RTP-based streaming systems, a DASH client uses a
buffer for two purposes: to adjust to network jitter; and to cope
with encoding constraints when bidirectional predicted frames
or variable bit rate are used. The DASH client is informed of
this latter part through the minBufferTime attribute in the MPD.

To enable the client to determine precisely when a new
segment is ready and make the necessary request, DASH relies
on the availabilityStartTime attribute in the MPD. It indicates
the UTC time at which the first segment is entirely made
available. Hence, as opposed to other HTTP streaming
approaches, DASH requires that both servers and clients are
synchronized on a common clock, the UTC clock. This
approach enables clients to make only the necessary requests
for segments, at the right time.

B. Low Latency DASH

Following the above description and in accordance to
Lohmar et al. [4], the latency in DASH is affected by: the
segmentation delay; the asynchronous fetch of media
segments; the time to download the segments; and the
buffering at the client side. This analysis can also be applied
when replacing segments with smaller chunks of data. As
indicated in [3], if segments are further divided in smaller parts
and these parts delivered using HTTP chunks, the segmentation
delay can be reduced to the duration of a chunk. Additionally,
in cases where segments can reliably be produced at the precise
times indicated by the MPD, the delay due to the asynchronous
fetch can also be reduced. And in local networks, where the
jitter is smaller, the buffering at the client side can also be
drastically reduced. So under some circumstances, it can be
possible to use DASH for very low latency systems.

However, in the first version of the DASH standard, the
MPD only indicates the availabilityStartTime (AST) value. The
client having no knowledge of how segments are produced, e.g.
if they are available progressively, it typically sends a request
only when an entire segment has been generated. This
introduces a latency of one segment duration at least (ds). To
reduce this latency, we participated in the definition of the
amendment 1 of the DASH standard proposing the introduction
of the new availabilityStartTimeOffset (ASTO) attribute in the
MPD.

The availabilityStartTimeOffset attribute indicates the
difference between the availabilityStartTime of the segment
and the UTC time at which the server can start delivering data
for this segment, e.g. using HTTP chunks. Typically, this latter
time corresponds to the time at which one or more fragments
are available. This is a fundamental change: with the presence
of this attribute, a client is now aware that a fragment of the
segment is available earlier than the segment. The client is also
capable of making the necessary request for the current
segment at the right time that will not have him wait or that
will not return an HTTP 404 response, although the segment is
not fully produced. This however requires that the server is
able to send out the fragment earlier, possibly as soon as it has
been completely generated, e.g. using HTTP chunks, or that the
server can keep the client waiting until the segment is
produced, as in the “server wait” approach described in [3]. If
the availabilityStartTimeOffset is chosen to match the time at
which the first fragment is fully produced, the latency can be
reduced to the duration of a fragment (dc). The relationship
between the availabilityStartTime, availabilityStartTimeOffset,
segment duration (ds) and fragment duration (dc) is shown in
Fig. 1. λ represents a margin introduced in the computation of
ASTO to cope with UTC mismatch between the client and the
server.

ASTO = AST – (AST – ds + dc + λ) = ds – dc – λ

IV. EXPERIMENTATIONS AND RESULTS

A. Implementation

To experiment with the proposed approach for low latency
live DASH streaming, we have implemented a complete
DASH streaming system, as depicted in Fig. 2 and detailed
below. We rely on a specific behavior of the DASH
encoder/server. The DASH encoder produces DASH compliant
segments as depicted in Fig. 3, composed of multiple
fragments, produces MPD according the amendment 1 of
DASH and sets the availabilityStartTimeOffset as being the
generation end time of the first fragment of the segment minus
the margin. If an HTTP 1.0 client, i.e. not capable of using
HTTP chunks, requests the segment before it is fully produced,
the DASH server will simply make the client wait until the
segment is fully produced. This is similar to the “server wait”
approach described in [3]. However, if the client is HTTP 1.1
capable, the server will start sending chunked segments
immediately. As indicated in [3], such approach should lead to
a streaming system with latency in the order of the duration of
a chunk.

Fig. 1. Determination of the availability time of a media fragment in

DASH.

Fig. 2. Architecture of the experimented streaming system.

1) Content generation: The content generation part of the

system is in charge of three tasks: encoding the video in real-

time, in particular using the GDR scheme; segmenting and

formatting the video segments according to the ISOBMFF;

and generating the DASH Media Presentation Description

(MPD).
In these experiments, we use the DashCast tool from the

GPACa project to encode the input video into multiple DASH
representations, all using GDR encoding, with different
resolutions and bitrates, as suggested in [7]. Additionally, we
have configured DashCast to produce ISOBMFF segments of
2s duration. Segments are composed of several fragments.
Each fragment consists of at least two boxes represented by the
codes “moof” and “mdat”, as depicted in Fig. 3. In our
experiments, we have used different number of fragments per
segments, ranging from 1 fragment carrying one video frame to
1 fragment carrying the whole segment.

2) Content distribution: The segmented media and

associated MPD are then deployed on the Web Server and are

then fetched by the client through a Local Area Network

(LAN). In this work, we have implemented an intelligent web

server based on the NodeJS
b
 framework. This server serves

media segments in a specific manner. When it receives a

request from a client for a specific and (fully or partially)

available segment, it indicates that the data will be sent using

HTTP 1.1 “chunked-transfer” encoding, then starts the parsing

of the segment to detect ISOBMFF fragments. When a new

fragment is published, the server sends out the fragment as a

chunk. With this approach, the download of the segment can

start before the segment is completely ready and published. In

our system, the server detects the end of a segment by the

presence of a new “eods” box (End of Dash Segment)

specifically introduced for the coordination between DashCast

and our Web server. This approach is similar to the one used

in [3] (and the so-called “post metadata”) with the difference

that our server is located on the same physical machine as the

encoder and therefore communication between the encoder

and server is done through disc input-output monitoring.

Fig. 3. Structure of a DASH media segment.

a
 http://gpac.wp.mines-telecom.fr

b
 http://nodejs.org/

t t=tₒ
d

s

…
Media Segment 0

ASTO d
c

Fetch Time

MPD AST λ

...
 C1 Cn C2

Media Segment N

http://nodejs.org/

Fig. 4. Comparison of the GDR/IDR encoding of the Big Buck Bunny

sequence.

In future work, we plan to extend this approach to separate the

encoder from the web server.

3) DASH client: In our approach, the client is a compliant

DASH client with HTTP 1.1 capability, i.e. it is able to receive

data transferred using chunked-transfer encoding; and is

capable of processing incomplete segments, i.e. media frames

are parsed in ISO fragments and dispatched before the

complete segment is received.

B. Results

In order to validate our approach, we have conducted two
types of experiments: experiments to measure the overhead
introduced by the selected coding and packaging tools, and
experiments to measure the latency of system. This section
details these two parts.

1) Overhead measurements: The total overhead of our

approach can be decomposed into: the overhead introduced by

the GDR video coding scheme; the overhead introduced by the

packaging and segmenting of GDR-encoded videos into

ISOBMFF fragments; and the overhead introduced by the

download of ISOBMFF fragments as HTTP 1.1 chunks.

a) Encoding overhead: For our experiments, we used

two video sequences, initially compressed with the AVC

format, with the characteristics reported in TABLE II. We

encoded these sequences, using the open source x264c

encoder, at different resolutions (ranging from QCIF to full

HD) and different bitrates (ranging from 150kbps to 9Mbps).

The video sequences were encoded in two modes: with and

without GDR. When using IDR, we set the GoP size to be 1

second, corresponding to a typical DASH segment starting

TABLE I. BITRATE FOR DASH REPRESENTATIONS

Resolution Bitrates (kbps)

1920x1080 8000

1280x720 4500

704x576 2000

960x540 2250

640x360 1600

352x288 1200

176x144 100

c https://www.videolan.org/developers/x264.html

TABLE II. INPUT VIDEO SEQUENCE CHARACTERISTICS

Sequence Bit

rate

(kbps)

Frame

rate

(fps)

Resolution GoP

size

Duration

RedBull
d
 6 000 24 1920x1080 15 s 1 min

Big Buck

Bunny
e

9 000 29.97 1920x1080 3 s 10 min

with a RAP. With GDR, we set the roll distance to 8. In both

cases, no B frames were used and only 1 reference image was

used for prediction. Additionally, we used the “crf” option of

x264, which tries to achieve a given quality and used the same

quality for both GDR and IDR versions. We kept only the

sequences which resulted in a bit rate lower than the initial

one. The exact command line for GDR encoding is provided

below:

x264 --sar 1:1 –o output_video.h264 input_video.h264

--ref 1 --crf <x> --bframes 0 --keyint 8 --vf

resize:<w>,<h> --b-pyramid none --fps <f> --preset

veryslow --tune psnr --psnr --intra-refresh

 Fig. 4 shows the PSNR comparison for the Big Buck Bunny

sequence. The comparison for the Red Bull sequence exhibits

the same pattern. The results, summarized in TABLE III. ,

confirm the finding of [1] but extend these results for HD

content: the GDR coding incurs an overhead, computed

following Bjontegaard metric [8], between 7% and 25% at

roughly constant quality or a PSNR difference between 0.44

dB and 2.55 dB at equivalent bitrate. It can be seen that the

GDR encoding is less penalizing at higher resolutions,

probably because the space for inter/intra prediction is larger,

given that the same number of GDR frame divisions has been

used for all resolutions.

b) ISOBMFF overhead: The packaging in ISO Base

Media files used in our DASH streaming system also

introduces an overhead which can be decomposed in: an initial

overhead due to the packaging of raw media data (e.g. AVC

NAL Units) into the structured ISO format; a specific

overhead for the storage of GDR encoded videos; and the

additional overhead due to the segmentation and

fragmentation required in DASH.

The initial overhead does not depend on the bitrate but does

depend on the number of ISO samples, i.e. the number of

frames per seconds. Our experiments on the Big Buck Bunny

and Red Bull sequences show that the additional overhead

introduced by the simple storage of IDR or GDR encoded

sequences in MP4 files compared to the raw AVC sequence is

negligible. The overhead is of course the biggest for the

sequence with lowest bitrate (e.g. 150 kbps). Typically, across

video sequences, resolutions and bitrates, we have between

0.0019% and 0.26% for the storage of IDR sequences in

ISOBM files compared to raw AVC files. The specific

overhead introduced in GDR compared to AVC is between

0.0042% and 0.37%. Hence, storing GDR sequences costs a

lot more than storing IDR sequences, the overhead is

d http://download.tsi.telecom-paristech.fr/gpac/dataset/dash/mmsys13/video/redbull_10sec/

e http://www.bigbuckbunny.org/index.php/download/

https://www.videolan.org/developers/x264.html
http://download.tsi.telecom-paristech.fr/gpac/dataset/dash/mmsys13/video/redbull_10sec/
http://www.bigbuckbunny.org/index.php/download/

Fig. 5. Comparison of the overhead introduced by the ISOBMF storage

and fragmentation of GDR/IDR streams.

sometimes more than twice, but compared to the video bitrate,

this overhead is still negligible.

When it comes to fragmented MP4, considering a constant

duration segment of 1s, the overhead depends on the number

of fragments per segment, i.e. on the number of frames per

fragment, and on the difference between the GDR and IDR

signaling.

 Fig. 5 shows the result for the Big Buck Bunny sequence, with

the overhead computed with respect to the raw AVC

sequence. We can see that the fragmentation introduces an

overhead, which decreases as the number of frames per

fragment increases. For all resolutions and bitrates, it roughly

is fewer than 2%, except for fragments smaller than 4 frames,

where it can reach up to 9%. For this reason, in section 2, we

will use fragments made of 5 frames. Then, we can see that,

for a given number of frames per fragment, the fragmentation

overhead decreases with the video resolution and bitrate.

Interestingly, since the GDR coding overhead is high for the

sequence with the lowest resolution (25-28%), the additional

fragmentation overhead is relatively smaller (7%) than the

overhead introduced by the fragmentation on the IDR

sequence (9%).

c) HTTP overhead: Finally, the last overhead

introduced by the system is in the delivery of content over

HTTP. In typical DASH scenario, an HTTP request is made

for every media segment. The size of the request is highly

dependent on the information present in the header

(descriptions of the user agent, of the server, list of accept

headers, use of byte ranges…). In [4], the authors report a

typical size of 140 bytes. In [6], the authors report a size of

280 bytes. We can assume an average size of 200 bytes per

request. However, in our approach what matters more is the

overhead introduced by the chunk-transfer encoding.

TABLE III. BJONTEGAARD METRIC FOR GDR/IDR COMPARISON

 Big Buck Bunny Red Bull

delta

PSNR (dB)

Delta bit rate

(%)

delta

PSNR (dB)

Delta bit

rate (%)

1920x1080 0.4401 7.0532 0.4554 7.6407

1280x720 0.4437 7.9916 0.4379 8.6911

704x576 0.6596 10.8178 0.6201 11.3784

960x540 0.5827 9.3572 0.5164 9.4989

640x360 0.7747 11.7519 0.6967 12.1939

352x288 1.2582 17.1335 1.0357 16.5746

176x144 2.5585 28.2752 1.8412 24.6922

According to the HTTP 1.1 specificationf, each chunk is

composed of a string giving the size of the chunk, followed by

extensions, followed by the carriage return and line feed

characters (CRLF), the chunk data and another CRLF. The last

chunk is a chunk of size 0 followed by an optional trailer and

CRLF. Assuming a sequence encoded at 8 Mbps using GDR

encoding, the fragmentation for this high bitrate will add an

overhead of 2% for 1 frame per fragment, and so the average

fragment size will be expressed on 4 hexadecimal characters.

In total, for chunks with no extension or trailer and with each

chunk corresponding to one fragment, in turn corresponding to

either 1 frame or the full segment, each chunk will be at most

8 bytes bigger than the fragment. So at most, at 25 fps, this

gives an additional bitrate of 1.6 kbps, representing 0.02% of

the raw video bitrate, which can be considered negligible.

d) Total overhead: As a summary, the total overhead for

the delivery of a GDR encoded video sequence, stored in

fragmented ISOBMF, delivered with HTTP 1.1, using 1 chunk

per fragment, is mainly the result of the encoding and of the

fragmentation. This overhead will vary, as reported in TABLE

IV. between 12.5% and 56.30% of the same sequence encoded

without GDR using 1 GoP per fragment and 1 fragment per

segment, typical in DASH. We note that the lower overhead is

for HD sequences and can be acceptable in some scenarios.

2) Latency: To validate our approach with respect to

latency, we have instrumented DashCast (respectively

MP4Client) to log the different UTC times at which a frame

was encoded (resp. decoded), at which a fragment was fully

produced (resp. a chunk was fully received), at which a

segment was fully produced (resp. received). We then run

streaming sessions with DashCast, our modified Web Server

and MP4Client in a local network. MP4Client was configured

to remove all network buffering.

We set the segment duration ds to 2 seconds and the fragment

duration dc (equal to the chunk duration) to 200 milliseconds

to obtain 10 chunks per segment. The following DashCast

command was run, grabbing the screen of the computer at a

resolution of 800x600 pixels, at 25 frames per second,

encoding it according to the configuration given in the

dashcast.conf file with GDR encoding, using ‘eods’ marker

and with ASTO equal to ds – dc.
DashCast -vf x11grab -v :0 -seg-dur 2000 -frag-dur

200 -gdr –live -conf dashcast.conf -ast-offset -1800

-vres 800x600 -vfr 25 – seg-marker eods

TABLE IV. VIDEO SEQUENCE BITRATE OVERHEAD (GDR WITH 1 FRAME

PER FRAGMENT VS IDR WITH 1 GOP PER FRAGMENT)

 Big Buck Bunny Red Bull

1920x1080 12.50% 13.39%

1280x720 21.64% 17.60%

704x576 19.56% 19.20%

960x540 17.05% 22.05%

640x360 15.22% 24.00%

352x288 30.45% 32.92%

176x144 56.30% 55.00%

f https://tools.ietf.org/html/rfc2616

https://tools.ietf.org/html/rfc2616

Fig. 6. Chunk latency (fragmentation output/client reception).

DashCast and MP4Client were run on different machines,

whose system times where configured to use Network Time

Protocol (NTP). However, we noticed important mismatch

between the times used by both machines and therefore

decided not to rely on NTP and used a dedicated NTP-inspired

mechanism to synchronize the machines, as follows. Upon

sending the MPD to the client, the web server adds an extra

HTTP header indicating its UTC system time. When the client

receives the MPD from the server, it fetches its own UTC

system time, substracts the time read from the HTTP headers

and obtains an estimated UTC time difference between the

two machines. This difference is assigned to λ. This

mechanism is very simple, and omits the delivery time of the

MPD. We plan to improve that in future work. Additionally, it

is calculated just once and applied every time the availability

start time of a segment is compared to the client system time.

In the future, we plan on using the reception times of the

chunks to adjust this UTC difference.

 Fig. 6 shows the chunk latency, i.e. the difference between the

adjusted UTC times at which a fragment was fully produced

by DashCast and at which it was received by MP4Client client

as an HTTP chunk. As can be seen on the figure, the chunk

latency is of the order of 2-3 milliseconds for every chunk,

except for the first chunk of each segment, where it is in the

order of 50 ms. This is due to the fact that the UTC time

adjustment is only approximate. Manual checking shows that

the real UTC time difference is 50 ms greater. For this reason,

the client actually requests the first chunk 50 ms too late. This

latency is however reduced for the next chunk as it is pushed

by the server and no request is made by the client.

 Fig. 7 shows the frame latency, i.e. the difference between the

time at which a frame was encoded and at which it was

decoded. With 25 frames per seconds, and 200 ms per chunk,

a chunk contains 5 frames. The figure shows 5 peaks, one per

frame, corresponding to the latency of each frame in the

chunk, the first frame being delayed most (160 ms), and the

last suffering almost no latency.

Fig. 7. Access unit latency (encoder output/decoder input).

These experiments validate that, in local networks; very low

latency down to 160 ms (5 frames), between the encoder

output and the decoder input, can be achieved using DASH

amendment 1. Noting that the encoding and decoding times of

a frame are lower than its duration (40 ms), the end-to-end

latency is lower than 240 ms.

V. CONCLUSION

HTTP Streaming is the new approach for streaming video over

the Internet, for live and on demand cases. However, current

approaches, in particular using DASH, are not deployed for

low latency live services. In this paper, we proposed to use the

amendment 1 of DASH in combination with Gradual

Decoding Refresh encoding and to deliver media frames up to

the frame. We measured the overhead introduced by the GDR

encoding and the associated fragmentation. We showed that

especially for high definition content, the overhead in the

order of 13% can be acceptable. We also described an

implementation of a streaming system comprising a DASH

live encoder generator, a DASH-aware web server and a

DASH client. With this system, we validated the approach for

very low latency streaming in local networks, with latency as

low as 240 ms. In future work, we plan to examine how such

low latency system will behave in real content delivery

networks, and to further exploit the combined use of GDR and

chunk encoding to enable fetching segments not from their

start, reducing the initial delay and enabling faster switching.

REFERENCES

[1] Hannuksela, M.M.; Ye-Kui Wang; Gabbouj, M., "Random access using
isolated regions," Image Processing, 2003. ICIP 2003. Proceedings.
2003 International Conference on , vol.3, no., pp.III,841-4 vol.2, 14-17
Sept. 2003, doi: 10.1109/ICIP.2003.1247376

[2] Y.-K. Wang and M.M. Hannukela “Gradual decoder refresh using
isolated regions,” Joint Video Team document JVT-C074, May 2002.
Available online ftp://np.imtc-files.org/jvt-experts/2002-05-Fairfax/JVT-
C074.doc, access July 1st, 2013.

[3] Swaminathan, V.; Sheng Wei, "Low latency live video streaming using
HTTP chunked encoding," Multimedia Signal Processing (MMSP),
2011 IEEE 13th International Workshop on , vol., no., pp.1,6, 17-19
Oct. 2011, doi: 10.1109/MMSP.2011.6093825

[4] Lohmar, T.; Einarsson, T.; Frojdh, P.; Gabin, F.; Kampmann, M.,
"Dynamic adaptive HTTP streaming of live content," World of Wireless,
Mobile and Multimedia Networks (WoWMoM), 2011 IEEE
International Symposium on a , vol., no., pp.1,8, 20-24 June 2011, doi:
10.1109/WoWMoM.2011.5986186

[5] Sodagar, I., "The MPEG-DASH standard for multimedia streaming over
the internet," MultiMedia, IEEE , vol.18, no.4, pp.62,67, April 2011,
doi: 10.1109/MMUL.2011.71

[6] Kofler, I.; Kuschnig, R.; Hellwagner, H., "Implications of the ISO base
media file format on adaptive HTTP streaming of H.264/SVC,"
Consumer Communications and Networking Conference (CCNC), 2012
IEEE , vol., no., pp.549,553, 14-17 Jan. 2012, doi:
10.1109/CCNC.2012.6180986

[7] M. Grafl, C. Timmerer. H. Hellwagner, W. Cherif, A. Ksentini, "Hybrid
scalable video coding for HTTP-based adaptive media streaming with
high-definition content", in Proceedings of the IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM), Madrid, Spain, June 2013.

[8] Bjøntegaard G., "Calculation of average PSNR differences between RD-
curves", ITU-T Q.6/SG 16 Video Coding Experts Group (VCEG), Doc.
VCEG-M33, Austin, Texas, USA, Apr. 2001. Available online
http://wftp3.itu.int/av-arch/video-site/0104_Aus/VCEG-M33.doc,
accessed July 1st, 2013.

