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Abstract—Data representing preferences of users are a typical
example of the Big Datasets modern technologies, such as e-
commerce portals, now permit to collect, in an explicit or implicit
fashion. Such data are highly complex, insofar as the number of
items n for which users may possibly express their preferences
is explosive and the collection of items or products a given
user actually examines and is capable of comparing is highly
variable and of extremely low cardinality compared to n. It is
the main purpose of this paper to promote a new representation
of preference data, viewed as incomplete rankings. In contrast
to alternative approaches, the very nature of preference data is
preserved by the ”multiscale analysis” we propose, identifying
here ”scale” with the set of items over which preferences are
expressed, whose construction relies on recent results in algebraic
topology. The representation of preference data it provides shares
similarities with wavelet multiresolution analysis on a Euclidean
space and can be computed at a reasonable cost given the
complexity of the original data. Beyond computational and
theoretical advantages, the ”wavelet like” transform is shown to
compress preference data into relatively few basis coefficients and
thus facilitates statistical tasks such as distribution estimation or
prediction. This is illustrated here by very encouraging empirical
work based on popular benchmark real datasets.

Index Terms—incomplete rankings, multiresolution analysis,
preference data

I. INTRODUCTION

With the ubiquity of sensors (e.g. mobile phones, internet,
social networks) and the recent development of Big Data
management technologies, the preferences of users regarding
a wide variety of products such as movies, songs or books,
restaurants, research papers or even financial services among
others can be observed in real time. This brought the oppor-
tunity to design recommender engines predicting to which
extent a user may prefer a given item compared to other
items. Recommender systems have been increasingly popular
these last few years, providing users with means to find
their way in larger and larger digital catalogs and companies
with the possibility to personalize their offers. Dedicated
applications exploit historical data to produce personalized
recommendation lists through content-based or collaborative
filtering (or else through hybrid approaches), see [1] and
the references therein. In this paper, focus is on the second
approach, where the prediction of a list of items hopefully
ranked according the preferences of a given user is based

on those expressed by similar users. The present paper does
not investigate the issue of defining an appropriate notion
of similarity but focuses on a very different facet of the
analysis of preference data. It tackles the challenging prob-
lem of representing efficiently the distribution of observed
preference data. The major difficulty lies in the fact that
such data are of the form of incomplete rankings: for each
observation, only a few items are ranked and the collection of
ranked items is highly variable. In this respect, none of the
approaches proposed in the literature to process these data is
fully satisfactory. Most of them either relies on the reduction of
the observations to pairwise comparisons, see [2] for instance,
or else consists in fitting a parametric probability distribution
on the set of all permutations of the items and viewing the
available data as truncated realizations of this distribution, see
[3], [4] or more recently [5], [6]. Whereas the former approach
does not exploit the whole information generally carried by
preference data, the latter experiences difficulties in capturing
the variability of real data, as documented in [7] for instance.
Nonparametric kernel-based methods to model probability
distributions on the symmetric group Sn, identified as the
space of complete rankings, have also been recently considered
in the literature, see [8] and [9], but do not scale to a large
number of observations. In contrast, the framework we develop
provides a representation which preserves the ”multiscale”
nature of data expressing preferences, ”scale” being here
assimilated to the collection of items actually ranked for each
observation, see [10]. Although it relies on the topological
properties of the complex of injective words, our approach
to represent the distribution of preference data is directly
inspired by multiresolution wavelet analysis on Rd. These last
two decades, novel harmonic analysis tools such as wavelet
bases and their extensions have indeed revitalized signal and
image processing and high-dimensional data analysis, leading
to sparse representations and efficient algorithms for a wide
variety of statistical tasks: estimation, prediction, denoising,
compression, source separation, clustering, etc. In a similar
manner, the concepts we consider in this paper to handle pref-
erence data can be used to solve a variety of statistical learn-
ing problems (e.g. efficient/sparse representation of rankings,
ranking aggregation), paving the way for a novel approach to



collaborative filtering in particular. It is namely the main goal
of the present article to propose a new method for predicting
(incomplete) rankings based on preference data, fully relying
on the notion of multiresolution analysis (MRA in abbreviated
form) introduced in [10]. Beyond a precise description of
the methodology we promote, experimental results based on
the NETFLIX dataset (see [11]) are also reported, illustrating
its relevance. Computational issues, related to scalability in
particular, are also discussed in depth.

The rest of the paper is structured as follows. Section
II introduces the main notations used throughout the paper
and provides a rigorous formulation of the ranking prediction
problem considered here. Optimal elements are exhibited in
particular. Our approach to predictive ranking is next described
at length in section III, where the specific notion of MRA on
which the statistical method we promote is based is in par-
ticular briefly recalled. The implementation of the procedure
introduced in the present paper together with scaling issues
are discussed in depth in section IV. Preliminary experimental
results based on real datasets are displayed in section V for
illustration purpose.

II. BACKGROUND AND PRELIMINARIES

In this section, the general formalism and the main notations
used throughout the paper are introduced. For any set E of
finite cardinality |E| < ∞, we denote by L(E) = {f : E →
R} the set of real-valued functions on E and set P(E) =
{A ⊂ E | |A| ≥ 2}. The indicator function of a subset S ⊂ E
is denoted by 1S , while the indicator of any event E is denoted
by I{E}, so that 1S(x) = I{x ∈ S} for x ∈ E. The indicator
function of a singleton {x} is called a Dirac function, and
denoted by δx.

A. Mathematical framework

We consider a statistical population of users expressing
preferences as incomplete rankings on the set of items JnK =
{1, . . . , n} with n ≥ 1. The data are thus of the form
(A1, π

(1)), . . . , (AN , π
(N)) where each Ai is a subset of JnK

with at least two elements and each πi is a ranking over
Ai. Each ranking is assimilated to an injective word, i.e. an
expression of the form π = π1 . . . πk, where π1 is the item
ranked first, . . . , πk the item ranked last. The content of a
ranking π is the set c(π) = {π1, . . . , πk} and its length is
|π| = |c(π)|. For any A ∈ P(JnK), we denote by Γ(A) the set
of all rankings of content A and by Γn the set of all incomplete
rankings.

Equipped with these notations, a predictive model for in-
complete rankings then takes the abstract form

π̂ = h(A) with h(A) in Γ(A),

where the prediction rule maps a subset A of P(JnK) to a
ranking in Γ(A) ⊂ Γn. For this predictive task, the input
space is P(JnK), while Γn shall be referred to as the output
space. The goal is to use historical data in order to produce
an accurate mapping. Given the nature of the output values,

an adequate notion of accuracy is defined by a loss function
of the following type:

l :
⋃

A∈P(JnK)

Γ(A)× Γ(A)→ R+.

Examples are provided in subsection II-B below. In the statis-
tical learning framework we develop, the set of preference data
on which a predictive rule is trained are modelled as N ≥ 1
i.i.d. realizations (A1, π

(1)), . . . , (A, π(N)) of a probability
distribution µ on

⋃
A∈P(JnK)A × Γ(A). Such a probability

distribution is necessarily of the form

µ(A, π) = ν(A)pA(π),

where ν(A) represents the probability of observing the pref-
erence of a user in the statistical population of interest on
the subset of items A, and pA(π) represents the probability
of observing the specific ranking π on A, conditioned upon
the observation of a ranking on A. The theoretical risk for the
problem of incomplete rankings prediction is therefore defined,
for a classifier h, as the expectation

R(h) =
∑

A∈P(JnK)

ν(A)
∑

π∈Γ(A)

l(h(A), π)pA(π), (1)

and the related empirical risk by

RN (h) =

N∑
i=1

l(h(Ai), πi). (2)

B. Optimality

The following result exhibits an optimal classifier regarding
the (theoretical) risk minimization problem stated previously.
Its proof is straightforward and left to the reader.

Proposition 1 (Optimal classifier). Let h∗ be any predictive
rule such that h∗(A) is a solution of the minimization problem

min
π∈Γ(A)

∑
π′∈Γ(A)

l(π, π′)pA(π′) (3)

for all A ∈ P(JnK). Then, the predictive rule h∗ has minimum
risk (1).

Notice first that an optimal prediction rule h∗ always exists:
the set Γ(A) is of finite cardinality and, thus, there always
exists a solution to the minimization problem (3). It is however
not necessarily unique. From a practical perspective, observe
also that such a solution is not accessible, because the pA’s
are unknown. If the restriction of the loss function to Γ(A)2,
l|Γ(A)2 , is a metric dA on Γ(A), then h∗(A) can be viewed as
a ”consensus” ranking for the distribution pA with respect to
dA. There is a wide literature about the computation of exact
or approximate consensus rankings, especially for the Kendall
tau distance, defined as the number of discordant pairwise
comparisons:

dA(π, π′) = |{1 ≤ i < j ≤ |A| | (πj − πi)(π′j − π′i) < 0}|,



for π, π′ ∈ Γ(A), see [12]. In the case of the 0−1 loss function
l(π, π′) = I{π 6= π′}, problem (3) becomes

min
π0∈Γ(A)

∑
π 6=π0

pA(π) = min
π0∈Γ(A)

(1− pA(π0))

and the optimal classifier h∗ is then defined by h∗(A) =
argmaxπ∈Γ(A) pA(π). In this paper, we do not specify any
loss function but focus on the estimation of the pA’s based on
the available data instead, which then allows to construct an
approximate version of h∗ according to the plug-in paradigm,
see [13] or [14].

C. The statistical nature of the predictive problem

For A ∈ P(JnK) and π ∈ Γ(A), pA(π) represents the chance
of observing the ranking π on the items of A among all the
possible rankings on A. If there were no relation between the
pA’s, the problem of predicting incomplete rankings would
then boil down to 2n−n−1 independent problems, consisting
each in predicting a full ranking on a fixed subset A ∈ P(JnK)
of items. Yet it seems reasonable to expect that, in most
situations encountered in practice, the distribution of the pref-
erences regarding the pair of items {a, b} carries information
about the distribution of the preferences regarding the subset
of items {a, b, c}. In the literature dedicated to ranking, is
common to assume the existence of a probability distribution
p on Sn such that for all A ∈ P(JnK) and π ∈ Γ(A),

pA(π) =
∑

σ∈Sn(π)

p(σ), (4)

where Sn(π) = {σ ∈ Sn | ∃1 ≤ i1 < · · · < i|π| ≤ n s.t. π =
σi1 . . . σi|π|} is the set of the linear extensions of π to JnK.
The probability distribution p is then referred to as the ranking
model and pA as the marginal of p on A. More generally, we
define the marginal operator MA : L(Sn) → L(Γ(A)) on
A ∈ P(JnK) by

MAf(π) =
∑

σ∈Sn(π)

f(σ)

for f ∈ L(Sn) and π ∈ Γ(A). It is generally vain to attempt
to estimate p in practice in absence of any additional structural
assumption. Indeed available observations usually describe
preferences over subsets A ∈ P(JnK) of very low cardinality
compared to n, providing a censored information solely. How-
ever, from a predictive ranking perspective, predictions need
to be evaluated on observable subsets only. In the subsequent
analysis, we do not consider the problem of estimating the
distribution ν and take it equal to its empirical estimator
ν̂N (A) = |{1 ≤ i ≤ N | Ai = A}|/N . Predictions are then
evaluated on its support A = {A ∈ P(JnK) | ν(A) > 0},
which shall be referred to as the observation design. Now,
it is nevertheless useful in practice to be able to predict
rankings on any subset A ∈ P(JnK), and this is naturally
achieved in a consistent fashion by constructing a ranking
model and then computing its marginals. Notice however that
it is not mandatory to impose the non-negativity of the ranking
model for the purpose of ranking prediction, the definition (3)

of optimal classifiers still being valid. Hence the following
problem.

Problem 1. Find a function p̃ ∈ L(Sn) such that MAp̃ = pA
for all A ∈ A.

If the pA’s are known, this problem boils down to solving
a linear system, of disarming simplicity at first glance, but
actually presenting a great computational challenge. A ranking
model p̃ is indeed described by parameter of dimension n!−1
and for |A| = k, the naive computation of MAp̃(π) requires
to sum over n!/k! terms for each π ∈ Γ(A). If n is around
104 and k around 5, this is by far intractable. Hopefully, the
framework recently developed in [10] to define a multireso-
lution analysis (MRA) of incomplete rankings allows to cope
with this system by expressing it very parsimoniously in an
appropriate ”wavelet basis”. We point out that in practice the
pA’s are unknown, so that the following statistical version of
Problem 1 should be considered.

Problem 2. Based on observations (A1, π1), . . . , (AN , πN ),
find a function p̃N ∈ L(Sn) such that E [MAp̃N ] = pA for
all A ∈ A.

In the next section it is shown at length how to use the
MRA framework for incomplete rankings introduced in [10]
in order to provide computationally feasible solutions to both
of these problems.

D. Related work - Competitors

As recalled in the Introduction section, though of limited
accuracy due to too rigid structural assumptions, statistical
methods based on the Luce-Plackett model (see [3], [4]) can be
extended to incomplete rankings and scale without difficulty.
The Luce’s choice axiom permits to drastically reduce the
model complexity, encapsulated by n parameters solely (in
contrast with the cardinality n! of Sn). It has been used in
a wide variety of applications and several algorithms have
been proposed to infer its parameters, see [5], [6] or [15]
for instance. Several numerical experiments on real datasets
have shown however that its capacity to fit real data is very
limited, the model being too rigid to handle the singularities
observed in practice, refer to [7] and [9]. Two alternative
nonparametric kernel-based approaches have been proposed. A
diffusion kernel is used in the Fourier domain in [8], whereas
a triangular kernel with respect to the Kendall’s tau distance
is considered in [9]. Both approaches deal however with sets
Sn(π) and not directly with incomplete rankings π. This
tends to blend the estimated probabilities of occurence of the
incomplete rankings, inducing a statistical bias as well as a
higher computational complexity. In contrast, the framework
we develop relies on the natural multiresolution structure of
incomplete rankings. To the best of our knowledge, it is the
first that permits to define approximation procedures directly
on the ranked data.

We also point out that, in [16], a multiresolution analysis on
L(Sn) has been proposed. It relies on a multiscale structure
for Sn based on the embedding of subgroups S1 ⊂ . . . ⊂



Sn−1 ⊂ Sn given by Sk ' {σ ∈ Sn | σ(n − j) =
n−j for j = 0, ..., k−1}. It is a first breakthrough in dealing
with singularities of probability distributions on rankings.
However, singularities corresponding to incomplete rankings
cannot be localized with this construction, because incomplete
rankings do not interact well with the group structure of
Sn. Several approaches have been proposed to generalize the
construction of multiresolution analyses and wavelet bases on
discrete spaces, mostly on trees and graphs, see for instance
[17], [18], [19], [20] and [21]. None of them leads however
to our construction for incomplete rankings, which crucially
relies on the topological properties of the complex of injective
words.

The use of topological tools to analyze ranked data has been
introduced in [22] and then pursued in several contributions
such as in [23] or [24]. Their approach consists in modeling
a collection of pairwise comparisons as an oriented flow on
the graph with vertices JnK where two items are linked if the
pair appears at least once amo,g the comparisons observed.
They show that this flow admits a ”Hodge decomposition”
in the sense that it can be decomposed as the sum of three
components, a ”gradient flow” that corresponds to globally
consistent rankings, a ”curl flow” that corresponds to locally
inconsistent rankings, and a ”harmonic flow”, that corresponds
to globally inconsistent but locally consistent rankings. Our
construction also relies on results in topology but it decom-
poses the information in a very different manner, tailored to the
situation where incomplete rankings of any size may possibly
be observed.

III. MRA BASED STATISTICAL ESTIMATION

It is the main purpose of this section to recall key notions
about MRA of incomplete rankings and to show how to it can
be used to define a ranking model. By convention, we define
the empty word 0 as the unique word of content ∅ and length
0.

A. Definitions and properties

For a word π ∈ Γn and A ⊂ c(π), we denote by π|A the
subword of π obtained by keeping the letters in A only. It
represents the ranking induced by π over A. By definition,
MAδσ = δσ|A for A ∈ P(JnK) and σ ∈ Sn. We extend the
marginal operator to L(Γn), still denoting it by MA, by setting
for any π ∈ Γn

MAδπ =

{
δπ|A if A ⊂ c(π),

0 otherwise.

The fundamental result of multiresolution analysis of in-
complete rankings is that for any A ∈ P(JnK), any function
f ∈ L(Γ(A)) can be decomposed as a sum of components that
each localize the information specific to the marginal of f on
a subset B ∈ P(A). Let us introduce some more notations to
be more specific. For τ ∈ Sn, we define supp(τ) = {1 ≤
i ≤ n | τ(i) 6= i}. In [10], it is shown how to build a
family (xτ )τ∈Sn of functions on Γn together with a family of
embedding operators (φA)A∈P(JnK), φA : L(Γn)→ L(Γ(A)),

so that for all A ∈ P(JnK), (φAxτ )supp(τ)⊂A is a basis of
L(Γ(A)) (the operator φJnK is abusively denoted by φn by
convention).

Remark 1. The function xid is actually not defined originally
in [10], we define it here by xid = δ0. We also extend the
φA’s by setting φAxid = 1Γ(A).

This basis can be interpreted as a ”wavelet basis” because
the coefficients in the expansion of a function each localize
a specific piece of information about its marginals. Indeed,
let φA be the following normalized version of the embedding
operator φA

φAδπ =


1

|A|!
φAδπ if π = 0,

1

(|A| − |π|+ 1)!
φAδπ otherwise,

for A ∈ P(JnK). For f ∈ L(Γ(A)), let (cτ (f))supp(τ)⊂A be
the coefficients of its expansion in the basis (φAxτ )supp(τ)⊂A,
i.e. such that

f =
∑

supp(τ)⊂A

cτ (f)φAxτ .

Then by virtue of Proposition 10 of [10], we have:

MBf =
∑

supp(τ)⊂B

cτ (f)φBxτ (5)

for any B ∈ P(A). Hence, only the coefficients cτ (f) for
supp(τ) ⊂ B are involved in the computation of the marginal
of f over B. By substraction, this means that the piece of
information carried by the coefficients cτ (f) for supp(τ) = B
is exactly that which is specific to the marginal of f over B.
Note that formula (5) also implies that

cτ (MBf) = cτ (f) (6)

for supp(τ) ⊂ B.

Example 1. Figure 1 exhibits the normalized wavelet ba-
sis (φ3xτ )τ∈S3

of L(Γ({1, 2, 3})). Each function is rep-
resented on a graph with x-axis representing the elements
of Γ({1, 2, 3}) in the lexicographic order 123, 132, . . . , 321.
There is one wavelet of order 0, namely the constant function
φ3xid, three wavelets of order 2, one for each subset of size 2
in {1, 2, 3}, and two wavelets of order 3, the latter localizing
the piece of information specific to the marginal on {1, 2, 3}.
More generally, for a subset of items A ∈ P(JnK), the piece
of information specific to A is localized by a number of
#{τ ∈ Sn | supp(τ) = A} basis elements, equal to the
number of fixed-point free permutations on a set with |A|
elements.

By its powerful localization properties, multiresolution anal-
ysis of incomplete rankings provides a simple way to solve
both Problems 1 and 2.
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Fig. 1. Normalized wavelet basis of L(Γ({1, 2, 3}))

B. Solutions to Problems 1 and 2

Formula (5) shows that Problem 1 boils down to finding a
function p̃ ∈ L(Sn) such that cτ (p̃) = cτ (pA) for all τ ∈
Sn satisfying the condition supp(τ) ∈

⋃
A∈A P(A). Let SA

denote the set of such τ ’s:

SA := {τ ∈ Sn | supp(τ) ∈
⋃
A∈A
P(A)}.

Now, recalling that pA = MAp for A ∈ A by definition, Eq.
(6) implies that for τ ∈ Sn, cτ (pA) = cτ (p) for all A ∈ A
such that supp(τ) ⊂ A. This means that in the theoretical
setting of Problem 1 where the pA’s are considered to be
known, one directly has access to the coefficients cτ (p) for
all τ ∈ SA, leading to a natural solution for Problem 1. This
is summarized in the following theorem.

Theorem 1. If all the pA’s are known then the cτ (p)’s are
known for all τ ∈ SA, and the function p̃ defined by

p̃ =
∑
τ∈SA

cτ (p)φnxτ

is a solution to Problem 1.

In the statistical setting the pA’s are not considered as
known any more and Problem 2 boils down to finding unbiased
estimators of the cτ (p)’s for all τ ∈ SA. We thus consider
the empirical estimators, defined for A ∈ P(JnK) by

p̂A(π) =
|{1 ≤ i ≤ N | πi = π}|
|{1 ≤ i ≤ N | Ai = A}|

.

Since E[p̂A(π)] = pA(π) for all π ∈ Γ(A), one has
E[cτ (p̂A)] = cτ (pA). For a fixed τ ∈ SA, cτ (p̂A) is then
an unbiased estimator of cτ (p) for any A ∈ A such that
supp(τ) ⊂ A. However, each of these estimators may have
a large variance, therefore we average them so as to produce
the estimator with reduced variance

c̃τ =
∑
A∈A

supp(τ)⊂A

ν(A)cτ (p̂A). (7)

The corresponding function p̃N is then defined by

p̃N =
∑
τ∈SA

c̃τφnxτ , (8)

and the result stated below is straightforward.

Theorem 2. The function p̃N defined by Eq. (8) is a solution
to Problem 2.

The function p̃N is the estimator we propose to predict in-
complete rankings in practice. Though its definition is intuitive
once the MRA framework is set up, we provide more insight
by exhibiting a second interpretation, in terms of weighted
least squares estimation (LSE in short).

C. A weighted LSE in the feature space

By a simple sum inversion, the estimator p̃N defined in (8)
can be rewritten as

p̃N =
∑
A∈A

ν(A)
∑

supp(τ)⊂A

cτ (p̂A)φnxτ . (9)

This formula can be interpreted as follows. For each A ∈
P(JnK), p̂A is a function in L(Γn). The ”wavelet transform”
Ψ : p̂A 7→ (cτ (p̂A))supp(τ)⊂A can be viewed as a mapping
from the ”signal space” L(Γn) to the ”feature space” Rn!,
by extending the collection of coefficients (cτ (p̂A))supp(τ)⊂A
to (cτ (p̂A))τ∈Sn where cτ (p̂A) = 0 if supp(τ) 6⊂ A. The
wavelet transform of p̃N is thus computed as the average of
the wavelet transforms of the p̂A’s, each being weighted by
its frequency of occurrence ν(A). In other words, p̃N is the
solution to the following minimization problem

min
q∈L(Sn)

∑
A∈A

ν(A)‖Ψ(q)−Ψ (p̂A) ‖22, (10)

where ‖ · ‖2 is the usual Euclidean norm on Rn! and therefore

‖Ψ(f)‖22 =
∑
τ∈Sn

cτ (f)2

for any f ∈ L(Γn).
Remark 2. The wavelet basis constructed in [10] for L(Sn)
is not orthogonal and thus for f ∈ L(Sn), we generally have∑
σ∈Sn f(σ)2 6=

∑
τ∈Sn cτ (f)2.

D. How to calculate the wavelet coefficients

We now explain how to compute the wavelet transform f 7→
Ψ(f) = (cτ (f))τ∈Sn . For A ∈ P(JnK) and f ∈ L(Γ(A)), the
cτ (f)’s for supp(τ) ⊂ A are defined as the coefficients of the
expansion of f in the basis (φAxτ )supp(τ)⊂A. They can thus
be obtained by inverting the linear system defined by the |A|!
equations 

∑
supp(τ)⊂A

φAxτ (π)cτ (f) = f(π)

...

for π ∈ Γ(A). Performing this computation for each new ob-
servation or even precomputing the inversions for all A ∈ A is



however intractable in practice. Hopefully, two results allow to
reduce it drastically. First observe that for B ∈ P(A), cτ (f) =
cτ (MBf) for all τ ∈ Sn such that supp(τ) = B, by equation
(6). This implies that the coefficients (cτ (f))supp(τ)=B can be
computed by inverting the smaller system of |B|! equations

∑
supp(τ)=B

xτ (π)cτ (f) = MBf(π)

...

for π ∈ Γ(B). In other words, the computation of cτ (f) only
requires to know the values of the marginal of f on supp(τ)
instead of all the values taken by f . For τ ∈ Sn, we denote
by (ατ (π))π∈Γ(supp(τ)) the scalars such that

cτ (f) =
∑

π∈Γ(supp(τ))

ατ (π)Msupp(τ)f(π) (11)

for any f ∈ L(Γn or equivalently defined by

ατ (π) = cτ (δπ) (12)

for all π ∈ Γ(supp(τ)).
The second result stems from the construction of the wavelet

basis. Proposition 8 of [10] indeed states that for any τ ∈ Sn,
the wavelet function xτ is obtained from a wavelet xτ ′ with
supp(τ ′) = {1, . . . , | supp(τ)|} by a simple relabeling. This
directly implies that ατ is obtained by ατ ′ by the same relabel-
ing. For instance, let τ = (245) and σ : {2, 4, 5} → {1, 2, 3}
defined by σ(2) = 1, σ(4) = 2 and σ(5) = 3. Then for
π ∈ Γ({2, 4, 5}), x(245)(π) = x(123)(σ(π)) and α(245)(π) =
α(123)(σ(π)), where σ(π) is the word σ(π1)σ(π2)σ(π3). This
last fact means that to compute the wavelet transform of any
function f ∈ L(Γ(A)) for A ⊂ JnK with 2 ≤ |A| ≤ k, we
only need to know how to compute the vectors of coefficients
(ατ (π))π∈Γ(supp(τ)) for τ ∈ Sn with supp(τ) = {1, . . . , j},
for j ∈ {2, . . . , k}. In practice we calculate the exact formulas
and hard-code them. For instance for k = 2, α(ab)(ab) = 1/2
and α(ab)(ba) = −1/2, i.e.

c(ab)(f) =
1

2

(
M{a,b}f(ab)−M{a,b}f(ba)

)
.

Eventually, the following proposition shows how to calculate
the coefficients c̃τ involved in the definition of the estimator
p̃N . We shall use it to define map/reduce procedures in section
IV. For π, π′ ∈ Γn, we denote by π ⊂ π′ to say that π is
a subword of π′ (for instance 123 ⊂ 51243, while 312 6⊂
51243).

Proposition 2. For τ ∈ Sn, the coefficient c̃τ defined in (7)
satisfies

c̃τ =
1

N

∑
π∈Γ(supp(τ))

|{1 ≤ i ≤ N | π ⊂ πi}|ατ (π),

Proof. Inserting the expressions of p̂A(π) and ν(A) in (7),

one obtains

c̃τ =
1

N

∑
A∈A

supp(τ)⊂A

cτ

 ∑
π∈Γ(A)

|{1 ≤ i ≤ N | πi = π}|δπ


=

1

N

N∑
i=1

cτ (δπi),

where we recall that cτ (δπ) = 0 if supp(τ) 6⊂ c(π) by
convention. The proof is concluded using equation (11).

E. Estimation and regularization

Once the estimator p̃N is calculated, it is used to estimate
the probabilities of the rankings on any subset A ∈ P(JnK)
via formula (5), which gives

MAp̃N =
∑

supp(τ)⊂A

c̃τφAxτ . (13)

We give more insight about this estimation procedure distin-
guishing two cases.

• A is a subset of an observed set, i.e. A ∈
⋃
B∈A P(B).

All the coefficients cτ (p) for supp(τ) ⊂ A are estimated,
and MAp̃N is an unbiased estimator of MAp.

• A is not a subset of an observed set, i.e. A 6∈⋃
B∈A P(B). In this case, only a portion of the coef-

ficients cτ (p) for supp(τ) ⊂ A are estimated, namely
only those that also belong to SA. The estimator MAp̃N
is then biased

E [MAp̃N ] =
∑

supp(τ)⊂A
τ∈SA

cτ (p)φAxτ

and can be seen as the regularized version where the non-
observed coefficients have been put equal to 0, following
the sparsity inducing paradigm. Other regularization pro-
cedures can be considered, they are left for future work.

IV. IMPLEMENTATION AND SCALING ISSUES

From observation to prediction, the method introduced in
this paper can be decomposed into three phases.

1) Training phase: the model is trained on the observations
(A1, π1), . . . , (AN , πN ) and stored.

2) Probability estimation: for a subset of items A ∈
P(JnK), the estimated probability distribution MAp̃N is
computed.

3) Prediction: a ranking on A is proposed, based on
MAp̃N .

Phase 3 strongly depends on the choice of the loss function.
Investigating how to perform it in a nearly optimal fashion in
a fully general framework is beyond the scope of the present
paper.



A. Training phase

From a formal perspective, the method we have introduced
mainly consists in computing and storing the estimator p̃N .
Representing the latter as a distribution over Sn is however
unfeasible in practice because this would imply the com-
putation and storage of the n! values p̃N (σ) for σ ∈ Sn,
which is intractable as soon as n > 15, whereas n is
around 104 in many applications! By its powerful localization
properties, MRA of incomplete rankings allows to overcome
this difficulty. The estimator p̃N is indeed fully characterized
by the coefficients (c̃τ )τ∈SA defined in (7), and all its marginal
projections as well, by Eq. (13). The training phase thus boils
down to the computation and storage of these coefficients and
the number of such coefficients satisfies the inequality

|SA| =

∣∣∣∣∣ ⋃
A∈A
P(A)

∣∣∣∣∣ ≤ ∑
A∈A

2|A| ≤ N2k0 ,

where N is the number of observations and k0 is the maxi-
mum size of a possibly observed incomplete ranking. In our
experiment on a dataset constructed from the NETFLIX dataset
(see section V), N ' 1.6 × 108 and k0 = 5, leading to
approximately 5 × 109 values. The number of coefficients
is ridiculously small compared to n! (n ' 20000 for the
NETFLIX dataset), but still represents a large volume of com-
plex data. The computation and the storage of the coefficients
(c̃τ )τ∈SA should be thus performed in a distributed key/value
framework. The c̃τ ’s are encoded as key/value pairs 〈tau,c〉,
where tau identifies the associated wavelet and c is the
corresponding coefficient, and their computation is distributed,
based on Proposition 2. The dataflow for the training phase
then consists in the following steps.

1) Collect the preferences encoded as words (for instance,
the word 51243 means that object 5 is preferred to
object 1, itself preferred to object 2, etc.) After this
step is completed, we are left with a possibly very large
list of words, stored as a distributed text file.

2) Count the number of times each word occurs as a
subword of a preference in the file. This is a standard
map/reduce job. After this step is completed, we are left
with a distributed key/value database where each entry
has the form 〈pi,n〉 where pi denotes the preference
encoded as a word and n is an integer representing how
many times pi was present as a subword of a word in
the initial word list.

3) Perform the wavelet analysis per se as the map/reduce
job illustrated by figure 2 (alpha(tau,pi) corre-
sponds to precomputed ατ (π)). After this step is com-
pleted the coefficients are stored as key/value pairs
〈tau,c〉 where tau identifies the associated wavelet
and c is the corresponding coefficient.

The global workflow for the training phase is summarized
in Fig. IV-A.

map : 〈pi,n〉 → (〈tau,alpha(tau,pi) ∗ n〉)tau⊂pi
reduce : (〈tau, ci〉)i∈I → 〈tau,

∑
i∈I ci/N〉

Fig. 2. Wavelet analysis as a single map/reduce job

Data Acquisition

125, 43, . . .

〈12, 146〉, 〈15, 93〉, 〈25, 227〉, 〈125, 18〉, 〈43, 316〉, . . .

〈τ1,−2.157〉, 〈τ2, 1.912〉, . . .

Postprocessing

map/reduce

map/reduce

Fig. 3. Workflow for the training phase: acquire data, turn data into a
key/value database, compute wavelet coefficients as a map/reduce job

B. Probability estimation

Once the coefficients (c̃τ )τ∈SA are computed and stored,
the estimation of the probabilities of the rankings on any subset
A ∈ P(JnK) is performed using formula (13). Thus for |A| =
k, the computational complexity of MAp̃N only depends on
k. An analysis of this complexity will be done in future work.

V. NUMERICAL EXPERIMENTS

For illustration purpose, we present the results of numerical
experiments conducted on two datasets, the SUSHI dataset
(n = 10) and the NETFLIX dataset (n = 17, 770). In both
cases, we generate from raw data incomplete rankings of size
2 to 5 (the maximum size 5 is a consequence of the rating
scale in the NETFLIX dataset).

A. Evaluation setting

The predictions are evaluated through four different loss
functions: the 0 − 1 loss, the Kendall’s tau distance, the
l1 distance (also called Spearman’s footrule metric) and
the l2 distance (also called Spearman’s rho metric). The
two latter are respectively defined, for any A ∈ P(JnK)
and π, π′ ∈ A, by d1(π, π′) =

∑
a∈A |π(a) − π′(a)| and

d1(π, π′) =
∑
a∈A(π(a) − π′(a))2, where for a ∈ A, π(a)

denotes the rank of the item a in π. All these distances are
of course invariant under relabeling of the items, and can thus
evaluate the accuracy of the predictions on different subsets of
items of the same size in a consistent manner. In order to be
fully consistent when dealing with subsets of different sizes,
we use their normalized versions defined for π, π′ ∈ Γ(A)
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Fig. 4. Empirical risk of the plug-in predictors on the SUSHI dataset

with A ∈ P(JnK) by

d(π, π′) =
d(π, π′)

max(ω,ω′)∈Γ({1,...,|A|})2 d(ω, ω′)
,

where d denotes any of the four distances. That way, each loss
function takes its values in [0, 1] for a couple of incomplete
rankings of any size. A classifier is evaluated by its empirical
risk on a test dataset with respect to a loss function. As a
baseline, we compute the expectation and standard deviation
of the risk of the uniformly random classifier that predicts, for
any subset of items A ∈ P(JnK), a ranking π̂ ∈ Γ(A) drawn
uniformly at random.

B. Experiments on the SUSHI dataset

The SUSHI dataset, described in [25] and available at
http://www.kamishima.net, is composed of 5000 full rankings
on a set of 10 sushi varieties. To generate a dataset of
incomplete rankings of size 2 to 5, we first compute, for
each full ranking, all its sub-rankings of size 5. Then each
ranking of size 5 is censored into one of its sub-rankings
of size k ∈ {2, . . . , 5} drawn uniformly at random, k being
equally drawn uniformly at random. We thus obtain a global
dataset of 1, 260, 000 incomplete rankings with size uniformly
distributed on {2, . . . , 5}, for which we keep 80% as a training
set and 20% as a test set. We evaluate the estimator p̃N but
also its truncated versions to scales k = 2, 3, or 4, where
the coefficients c̃τ are put equal to 0 for | supp(τ)| > k, and
compare them to the Plackett-Luce model (fitted via maximum
likelihood estimation using the MM algorithm proposed in
[5]) The results are shown on figure 4. They represent the
empirical risks on the test set for the ”plug-in” predictors of
the five probabilistic models for the four loss functions. All
plug-in predictors are computed exactly. As a baseline, the
expectation and standard deviation of the uniformly random
predictor are given in table I.

TABLE I
EXPECTATION AND STANDARD DEVIATION OF THE UNIFORMLY RANDOM

CLASSIFIER FOR THE SUSHI DATASET

0− 1 loss Kendall’s tau l1 distance l2 distance
Expectation 0.8208 0.5000 0.6145 0.6156

Std. Dev. 6.6× 10−4 6.7× 10−4 7.1× 10−4 6.8× 10−4

In each case, the risk of worse model is lower than that of
the uniformly random predictor by hundreds of standard de-

viations. This is surely explained by the fact that all statistical
models manage to leverage information from historical data to
make better predictions than random, and the amount of the
difference is due to the large size of the test set (252, 000).
Except for the Kendall’s tau distance and the associated plug-
in predictor, the multiresolution approach outperforms the
Plackett-Luce model. An interesting observation is that for
each loss function, the risk of the truncated multiresolution-
based predictor decreases with the scale. This means that each
scale contains a specific part of information that is useful to
make better predictions. It shows in particular that reducing
the observations to pairwise comparisons inherently degrades
the available information, and proves the interest to exploit
higher order information.

C. Experiments on the NETFLIX dataset
The NETFLIX dataset was issued for the Netflix Prize

that took place between October 2, 2006 and September 21,
2009. The training set contains 100, 480, 507 ratings given by
480, 189 users to 17, 770 movies. Each rating is a quadruplet 〈
user, movie, date of grade, grade 〉, where the
grade is an integer between 1 and 5. We use the training set to
generate preference data, on the following simple paradigm: if
a user gave respectively the grades ga and gb to movies a and
b with ga > gb then it means that she prefers movie a to movie
b. More generally if she gave the grades g1 > · · · > gk to the
movies a1, . . . , ak, her preference over the subset of movies
a1, . . . , ak is given by the ranking a1 . . . ak. As the grades are
on a scale from 1 to 5, preferences take the form of incomplete
rankings of maximum size 5. To generate the preference data,
we consider for each user the list of the ratings she gave. As
the average number of ratings per user is approximately 210,
the brutal computation of all the possible preferences would
require around (210/5)5 × 500, 000 = 92 × 1012 operations,
which is too costly. We therefore generate a sub-sample of this
data with the following procedure.

1) For each user, we sort the list of the triplet 〈 movie,
date of grade, grade 〉 by chronological order.

2) We scroll the list and for each new movie, we draw
a subset of m movies among the previously rated and
compute all the possible preferences between them and
the new movie.

This procedure mimics the way a user can rate movies: by
comparing a new movie to some of the movies she previously



rated. As the m previously rated movies are drawn at random,
some may have the same rate. In that case they generate two
different preferences of smaller size. We choose m = 4 so
that preferences of size 5 can appear. For each user, we keep
the first 80% ratings for training and the 20% lasts for test.
We then aggregate the data to obtain a training set and a test
set of respectively 153, 703, 541 and 38, 665, 610 incomplete
rankings.

We collected all the data in a distributed key/value frame-
work and implemented the multiresolution-based estimator
p̃N using map/reduce jobs, as described in section IV. For
computation reasons, we only tested the predictive rule con-
sisting in choosing the ranking with higher probability, for
both the multiresolution-based estimator and the Plackett-Luce
model. We nevertheless evaluated their performance through
the four loss functions considered in the previous section. The
results, as well as the expectation and standard deviation of
the uniformly random classifier, are presented in table II.

TABLE II
RESULTS FOR THE NETFLIX DATASET

0− 1 loss Kendall’s tau l1 distance l2 distance
Expectation 0.7388 0.5000 0.6059 0.5867

Std. Dev. 6.5× 10−5 6.1× 10−5 6.6× 10−5 6.3× 10−5

Plackett-Luce 0.5579 0.3598 0.3934 0.3865
p̃N 0.6042 0.3938 0.4425 0.4328

Again, both statistical models outperform by far the random
classifier. Contrary to the SUSHI dataset, the Plackett-Luce
model performs better than our estimator for all loss functions.
This is surely due to the fact that through its rigid shape, the
Plackett-Luce model captures more efficiently global effects
on the full set of items, namely the average rank of a movie
in any incomplete ranking. It is indeed highlighted in [26] that
the tendencies of some movies to receive higher ratings than
others capture much of the information in Netflix data. On
the contrary the multiresolution-based estimator is best fitted
to capture pure relative preferences effects. This experiment
demonstrates nevertheless the good scalability of MRA of
incomplete rankings and the overall good performance of its
application to ranking prediction calls for further deepening
and new applications.

VI. CONCLUSION

The analysis of preference data, as now collected and
gathered through a variety of applications, raise computational
challenges. Their representation and the modeling of their
variability is far from straightforward, though essential when
considering statistical tasks such as distribution estimation or
predictive ranking. In this paper, we showed the relevance of
MRA of incomplete rankings in this regard. The encouraging
results we obtained also suggest several lines of further
research, to investigate in particular how to combine such
representations with preprocessing techniques (e.g. clustering
methods) in order to design efficient collaborative filtering pro-
cedures, the distributions estimated from real data in practice
being generally highly multimodal.
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