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Abstract—MEG/EEG source imaging allows for the non-
invasive analysis of brain activity with high temporal and good
spatial resolution. As the bioelectromagnetic inverse problem is
ill-posed, a priori information is required to find a unique source
estimate. For the analysis of evoked brain activity, spatial sparsity
of the neuronal activation can be assumed. Due to the convexity,
`1-norm based constraints are often used for this, which however
lead to source estimates biased in amplitude and often suboptimal
in terms of source selection. As an alternative, non-convex
regularization functionals such as `p-quasinorms with 0 < p < 1
can be used. In this work, we present a MEG/EEG inverse
solver based on a `2,0.5-quasinorm penalty promoting spatial
sparsity as well as temporal stationarity of the brain activity.
For solving the resulting non-convex optimization problem, we
propose the iterative reweighted Mixed Norm Estimate, which is
based on reweighted convex optimization and combines a block
coordinate descent scheme and an active set strategy to solve
each surrogate problem efficiently. We provide empirical evidence
based on simulations and analysis of MEG data that the proposed
method outperforms the standard Mixed Norm Estimate in terms
of active source identification and amplitude bias.
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I. INTRODUCTION

MEG/EEG source imaging delivers insights into the active
brain with high temporal and good spatial resolution in a
non-invasive way by solving the ill-posed bioelectromagnetic
inverse problem. In order to render its solution unique, con-
straints have to be imposed reflecting assumptions on the
neuronal sources. Several non-linear source reconstruction
methods were introduced, which have in common to favor
source configurations consisting of a small set of focal sources
to explain the MEG/EEG data. Among these is regression
with `1-norm regularization, known as LASSO or Minimum
Current Estimate in MEG/EEG signal processing. It is a convex
surrogate for the optimal, but NP hard regularized regression
with a `0-norm. Due to its convexity, this approach allows for
fast algorithms with guaranteed global convergence. However,
the resulting source estimates are biased in amplitude and
often suboptimal in terms of source selection [1]. Regularized
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regression based on logarithmic or `p-quasinorm penalties with
0 < p < 1 yields sparser and less biased estimates than
the standard LASSO at the expense of convexity [1]. The
resulting optimization problem can be solved with e.g. iterative
reweighted LASSO, i.e., solving iterative reweighted convex
surrogate problems [1], [2].

The aforementioned approaches are applicable to single
measurement vector problems. Hence, they cannot account for
the temporal characteristics of the brain activity. To overcome
this drawback, the Mixed-Norm Estimate (MxNE) was intro-
duced [3]. MxNE is a variant of Group LASSO (GLASSO),
i.e., regularized regression with a `2,1-mixed-norm, adapted
for MEG/EEG source reconstruction, in which the neuronal
activation at each source location is treated as a separate group.
The `2-norm per group imposes stationarity on the source
estimates, while the `1-norm over groups promotes spatial
sparsity. However, GLASSO estimates are suboptimal in terms
of amplitude bias and feature selection just as the standard
LASSO. Hence, regularized regression using `2,p-quasinorm
penalties with 0 < p < 1 is proposed, which can be solved by
iterative reweighted GLASSO [4].

In this paper, we propose a sparse MEG/EEG source
imaging approach based on regularized regression with a
`2,0.5-quasinorm penalty. We solve the non-convex optimiza-
tion problem by iterative reweighted MxNE. Each MxNE
iteration is solved efficiently by combining a block coordinate
descent scheme and an active set strategy. The resulting
algorithm is applicable to MEG/EEG inverse problems with
and without orientation constraint, running in a few seconds
on real MEG/EEG problems. We provide empirical evidence
using simulations and analysis of MEG data that the proposed
method outperforms MxNE in terms of active source identifi-
cation and amplitude bias.

Notation
We mark vectors with bold letters, a ∈ RN and matrices with
capital bold letters, A ∈ RN×M . The transpose of a vector or
matrix is denoted by aT and AT . ai identifies the ith element
of a vector, Ai,. the ith row, and A.,j the jth column, and
Ai,j the element in the ith row and jth column of a matrix.
‖A‖Fro indicates the Frobenius norm, ‖A‖ the spectral norm,
and ‖A‖p,q the `p,q-mixed-norm or quasinorm of A with

‖A‖p,q =

(∑
i

(∑
j |Ai,j |p

) q
p

) 1
q
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II. MATERIALS AND METHODS

A. The inverse problem

The MEG/EEG forward problem describes the linear
relationship between the MEG/EEG measurements
M ∈ RN×T (N number of sensors, T number of time
instants) and the neuronal activation X ∈ R(P ·O)×T

(P number of source locations, O number of dipoles
per source location). The model reads:

M = GX + E , (1)

where G ∈ RN×(P ·O) is the gain matrix and E ∼ N (0, λI) is
the measurement noise, which is assumed to be additive, white,
and Gaussian. This assumption is acceptable on the basis of a
proper spatial whitening of the data.

To find a unique solution to the ill-posed MEG/EEG
inverse problem, priors have to be imposed on X,
P(X) ∼ exp(−Ω(X)). Here, we set Ω(X) = ‖X‖0.52,0.5, i.e.,
we assume, that only a few focal sources with stationary
activation are active during a cognitive task by promoting
spatial sparsity and temporal stationarity. The maximum a
posteriori estimate is obtained by solving:

X̂ = arg min
X

1

2
‖M−GX‖2Fro + λ‖X‖0.52,0.5

= arg min
X

1

2
‖M−GX‖2Fro + λ

∑
i

√
‖Xi,.‖2

(2)

Regularization with a `2,0.5-quasinorm imposes a block
row sparsity structure on X, where each block corresponds
to the neuronal activation at a specific source location. The
`2-norm per group promotes temporal stationarity of the source
estimates, while the `0.5-quasinorm over groups promotes
spatial sparsity. When a free or loose orientation constraint
is used, we need to combine the three dipoles belonging to
a specific source location by applying an additional `2-norm
penalty over orientations [5]. The resulting `2,2,0.5-quasinorm
is equivalent to a `2,0.5-quasinorm by reshaping X.

B. Iterative reweighted Mixed Norm Estimate

Based on the framework of Difference of Convex func-
tions programming or Majorization-Minimization algorithms,
it was shown, that regularized regression problems with a
`2,p-quasinorm penalty can be solved by iterative reweighted
GLASSO [1], [2], [4]. For the MEG/EEG source recon-
struction problem in Eq. (2), we hence propose the iterative
reweighted MxNE (irMxNE) optimization schemes in Eq. (3).

X̂k+1 = arg min
X

1

2
‖M−GX‖2Fro + λ

∑
i

‖Xi,.‖2
2
√
‖Xk

i,.‖2

= arg min
X

1

2
‖M−GX‖2Fro + λ

∑
i

wki ‖Xi,.‖2
(3)

For sources with ‖Xk
i,.‖2 = 0, the optimization problem in

Eq. (3) has an infinite regularization term, which may impair
the stability. A smoothing parameter ε is thus typically added
to avoid weights to become zero [1], [2]. In contrast, we
reformulate the weighted MxNE subproblems to apply the
weights by scaling the gain matrix as given in Eq. (4). Besides

avoiding an additional smoothing parameter, this reformulation
allows to restrict the source space in each MxNE iteration to
sources with ‖Xk

i,.‖2 > 0 decreasing the computation time.

X̃k+1 = arg min
X

1

2
‖M−GWkX‖2Fro + λ

∑
i

‖Xi,.‖2,

X̂k+1 = WkX̃k+1

(4)

with Wk being a diagonal matrix with Wk
i,i = 1/wki .

For solving the weighted MxNE subproblems, we use a
block coordinate descent (BCD) scheme [6]. The convergence
of each weighted MxNE iteration is controlled by means of
the dual gap [3]. In practice, we terminate the BCD procedure,
when the current solution Xk is ε-optimal with ε = 10−6,
i.e., the dual gap ηk < 10−6. Moreover, we apply an active
set strategy [7], which significantly reduces the computation
time of the weighted MxNE subproblems. We terminate the
irMxNE when ‖Xk − Xk−1‖∞ < τ with a user specified
tolerance level τ , which we set to 10−6 throughout this paper.
Due to the non-convexity of the optimization problem in
Eq. (2), the results depend on the initialization. For iterative
reweighted LASSO, Gasso et al. showed that initialization with
w1 = 1 provides reasonable results [2]. As analyzing the
effect of initialization is beyond the scope of this paper, we
use the proposed initialization. Consequently, the first iteration
of irMxNE is equivalent to solving a standard MxNE problem.
Pseudo code for irMxNE with fixed orientation constraint is
provided in Algorithm 1.

Algorithm 1 Iterative reweighted MxNE

Require: Measurements M, gain matrix G, regularization
parameter λ > 0, dual gap threshold ε > 0, irMxNE
stop criterion threshold τ , number of sources S, number of
iterations per MxNE iteration I , and the number of MxNE
iterations K.

1: Initialization: X0 = 0, w1 = 1
2: for k = 1 to K do
3: Gk = GWk with Wk = diag(wk)−1

4: for s = 1 to S do
5: ls = ‖(Gk

.,s)
TGk

.,s‖ = ‖Gk
.,s‖2

6: end for
7: Initialization: Y0 = 0, R = M, η0 > ε, 0 ≺ µµµ ≺ l−1

8: for i = 1 to I do
9: for s = 1 to S do

10: Yi
s,. = Yi−1

s,. + µs(G
k
.,s)

TR

11: Yi
s,. = Yi

s,.

(
1− µsλ

‖Yi
s,.‖2

)+
12: R = R−Gk

.,s

(
Yi
s,. −Yi−1

s,.

)
13: end for
14: Compute dual gap ηi
15: if ηi < ε then
16: break
17: end if
18: end for
19: Xk = WkYi

20: wk+1 = 1 /
(
2(
∑
i (Xk

s,i)
2)1/4

)
21: if ‖Xk −Xk−1‖∞ < τ then
22: break
23: end if
24: end for



C. Simulation setup

To provide a reproducible and reasonably fast comparison
of MxNE and irMxNE, we generated a simulation data set with
20 sensors and 200 sources with fixed orientation. Five sources
were randomly selected to be active each with a random acti-
vation (50 samples) drawn from a standard normal distribution.
To make the comparison independent of the forward model and
the sources’ spatial configuration, the columns of the linear
forward operator were drawn from a multivariate standard
normal distribution and normalized to 1. In a second simu-
lation, we built a correlated gain matrix from a multivariate
normal distribution N (0, Σ) with Σ being a Toeplitz matrix
generated from a vector v with vk = 0.95k−1, k = 1 : 200.
White Gaussian noise was added to set the signal-to-noise ratio
(SNR), which we define here as ‖Msignal‖2Fro/‖Mnoise‖2Fro. For
comparing the success rate of recovering the true active set,
we compute the F1-score according to Eq. (5), where A(X) is
the active set of X with A(X) = {j : ‖Xj,.‖2 > 0}, |A(X)|
the number of elements in A(X), X∗ the simulated source
activation, and X̂ the source estimate.

F1 = 2
|A(X̂) ∩ A(X∗)|
|A(X̂)|+ |A(X∗)|

(5)

D. Experimental MEG data

For evaluating the performance of MxNE and irMxNE on
real MEG data, we use data recorded during left auditory
stimulation, which is part of a publicly available MEG/EEG
dataset [8]. The MEG data were recorded using a 306-channel
Elekta Neuromag Vectorview system (Neuromag Elekta LTD,
Helsinki) with a bandpass of 0.1 - 172 Hz and digitized at
600 samples/s. For simplicity, we report results for the mag-
netometer data. Signal preprocessing consisted of lowpass
filtering at 40 Hz, signal-space projection for suppressing
environmental noise, baseline correction and spatial whitening
based on 200 ms prestimulus data, and averaging. The gain
matrix was computed using a set of 7498 cortical locations and
a boundary element model. Source estimation was performed
using an analysis window from 60 - 120 ms containing the
N100m component of the auditory evoked field with fixed
orientation constraint and depth compensation (ρ = 0.8).

III. RESULTS

A. Simulation study

The F1-scores for MxNE and irMxNE are presented in
Fig. 1 by showing the mean over 100 repetitions. With the
uncorrelated gain matrix and SNR = 10, both methods reach
high F1-scores, but only irMxNE allows for F1-score = 1, i.e.,
an exact reconstruction of the active set in all repetitions.
This F1-score is achieved for a range of regularization pa-
rameters, which facilitates the choice of λ. For SNR = 2, the
maximum F1-score for MxNE is reduced, whereas irMxNE is
still able to allow for an exact reconstruction. However, the
range of regularization parameters, for which irMxNE reaches
F1-score ≈ 1, is smaller compared to SNR = 10. With the
correlated gain matrix and SNR = 10, irMxNE reaches a
F1-score > 0.8, which is significantly higher than the F1-score
for MxNE. For SNR = 2, the F1-scores for both approaches
are clearly reduced (F1-scores < 0.4). However, the F1-score
for irMxNE is approximately 3 times higher.
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Fig. 1: F1-score as a function of the regularization parameter
λ for MxNE (red) and irMxNE (green) using simulated data
with SNR = 10 (solid) and SNR = 2 (dashed). We present
the mean over 100 repetitions for an uncorrelated (diamond)
and a correlated gain matrix (star).

In summary, irMxNE outperforms MxNE in terms of
maximum F1-score in all simulations. MxNE requires high
regularization parameters to reach its maximum F1-score,
which increases the amplitude bias.

B. Experimental MEG data

Based on the real MEG data, we analyzed the convergence
speed of a single weighted MxNE iteration. We compare
the applied BCD scheme with the Fast Iterative Shrinkage
Thresholding Algorithm (FISTA) [9], an iterative proximal
gradient method. We can see from Fig. 2, that the BCD scheme
outperforms FISTA in terms of computation time. Applying
the active set strategy reduced computation time for MxNE
by a factor of 100. This allows to compute irMxNE on real
MEG/EEG source localization problems in a few seconds.
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Fig. 2: Dual gap for MxNE with loose orientation constraint
on real MEG data using BCD and FISTA without (dashed)
and with active set strategy (solid).

Subsequently, we applied both MxNE and irMxNE on the
real MEG data. Fig. 3a shows the active set as a function of
the regularization parameter λ, which is given as a percentage
of λmax (see [3] for details). The corresponding explained
variances with and without debiasing are illustrated in Fig. 3b.
Debiasing is performed here by estimating a scaling factor for
each active source as proposed in [5]. Source reconstruction
with irMxNE yields sparser source estimates for all regular-
ization parameters. Moreover, the number of active sources
reconstructed with irMxNE is stable for a wide range of
regularization parameters, whereas the size of the active set
obtained with MxNE is more dependent on λ. The explained
variance for MxNE without debiasing is highly dependent on
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Fig. 3: Active set size and explained variance before (dashed)
and after debiasing (solid) obtained with MxNE and irMxNE
for the N100m component after left auditory stimulation.

the regularization parameter, whereas the explained variance
for irMxNE is more stable and significantly higher for higher
λ. Compared to MxNE with debiasing, irMxNE yields a
comparable explained variance both in terms of amount and
stability with the advantage of providing a sparser source
model. The results indicate, that the amplitude bias is reduced
using irMxNE. Fig. 4 illustrates reconstructed source locations
and activations for selected regularization parameters. MxNE
with λ/λmax = 40% shows activation in both auditory
cortices each represented by several highly correlated dipoles.
Increasing λ eliminates the sources on the right hemisphere,
whereas two highly correlated dipoles are reconstructed on
the left hemisphere explaining only 30% of the total variance.
In contrast, irMxNE with λ/λmax = 25% reconstructs single
dipoles in both auditory cortices, which explain approximately
80% of the total variance.

IV. DISCUSSION AND CONCLUSION

In this work, we presented irMxNE, a MEG/EEG inverse
solver based on regularized regression with a `2,0.5-quasinorm
penalty. The resulting non-convex optimization problem is
solved by iteratively solving convex surrogate optimization
problems, which allows for fast algorithms and convergence
control at each iteration. The combination of a block coordi-
nate descent scheme and an active set approach significantly
decreases the computation time making the proposed method
run in a few seconds on real size MEG/EEG source reconstruc-
tion problems. Due to the non-convexity, the irMxNE solution
depends on the initialization. Analyzing the convergence of
iterative reweighted GLASSO algorithms is an open research
question [4], which is beyond the scope of this contribution.
By choosing the initialization such that the first iteration is
equivalent to computing a standard MxNE, the irMxNE source
estimate is at least as sparse as the MxNE solution. More-
over, we obtained empirical evidence based on simulations
and analysis of MEG data, that irMxNE outperforms MxNE
in terms of active source identification and amplitude bias.
In conclusion, the presented inverse solver is a promising
approach for M/EEG source analysis.

(a) MxNE: λ/λmax = 40%

(b) MxNE: λ/λmax = 85%

(c) irMxNE: λ/λmax = 25%, convergence after 6 iterations

Fig. 4: Comparison of MxNE and irMxNE using real MEG
data. The images show the estimated source location and
activation for MxNE with debiasing (a, b) and irMxNE (c)
for the N100m component after left auditory stimulation.
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