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Abstract. Plateaued functions are significant in cryptography as they possess
various desirable cryptographic properties. Two important classes of plateaued

functions are those of bent functions and semi-bent functions, due to their

combinatorial and algebraic properties. Constructions of bent functions have
been extensively investigated. However only few constructions of semi-bent

functions have been proposed in the literature. In general, finding new con-

structions of bent and semi-bent functions is not a simple task. The paper is
devoted to the construction of semi-bent functions with even number of vari-

ables. We show that bent functions give rise to primary and secondary-like

constructions of semi-bent functions.

1. Introduction

A Boolean function over the Galois field F2n is said r-plateaued if the values of

its Walsh transform belong to the set {0,±2
n+r
2 }. Plateaued functions [30, 29] are

significant in cryptography as they possess desirable various cryptographic char-
acteristics such as high nonlinearity, resiliency, propagation criteria, low additive
autocorrelation and high algebraic degree. Two important classes of plateaued
functions are those of bent functions and of semi-bent functions, due to their alge-
braic and combinatorial properties.

Bent functions introduced in 1974 [9] ,[27] are extremal objects in combina-
torics and Boolean function theory. Bent functions exist only with even number of
variables. They have been studied for about 35 years (even more, under the name
of difference sets in elementary Abelian 2-groups). The motivation for the study
of these particular difference sets is mainly cryptographic but bent functions play
also a role in sequence theory, as difference sets and especially in coding theory, as
elements of Reed-Muller (RM) codes. Indeed, bent functions realize the maximal
possible distance from first-order RM codes; RM codes are quite popular, partic-
ularly in view of their recursive structure, exploited for their decoding in a few
influencial papers by Ilya Dumer (see [10],[1] for recent advances). By achieving
optimum nonlinearity, bent functions permit to resist linear attacks in the best
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possible way. Bent functions also satisfy the propagation criterion with respect to
the non-zero vector. But, being neither balanced nor correlation immune, they are
improper for direct cryptographic use. Thanks to the well known Parseval identity,
the maximum nonlinearity they attain implies that the Hadamard Walsh transform
of an n-variable (n even) bent function takes only the two values ±2n/2. A good
survey of bent functions can be found in the book chapter of Carlet [4].

Semi-bent functions have been introduced by Chee, Lee and Kim [8] and previ-
ously investigated under the name of three-valued almost optimal Boolean functions
[2]. Semi-bent functions exist in even or odd dimension. In both cases, they are
defined in terms of Walsh Hadamard transform. In even dimension, an n-variable
Boolean function is said to semi -bent if its Hadamard Walsh transform takes three
values 0 and ±2

n+2
2 . Very recently, the development of the theory of semi-bent

functions has increased. The motivation for their study is firstly related to their
use in cryptography (we recall that in the design of cryptographic functions, various
characteristics need be considered simultaneously). Indeed, unlike bent functions,
semi-bent functions can also be balanced and resilient. They also possess various
desirable characteristics such as a low Hadamard transform (which provides pro-
tection against fast correlation attacks [19] and linear cryptanalysis [18]), have low
autocorrelation, satisfy the propagation criteria and high algebraic degree. Sec-
ondly, beside their practical use in cryptography, they are also widely used in code
division multiple access (CDMA) communication systems for sequence design [11],
[26], [12], [13], [14], [15], [16].

A lot of research has been devoted to designing constructions of bent functions.
The reader can see [4] for general constructions of bent functions and the paper
[20] for a complete state of the art on bent functions over the Galois field F2n .
However, only few constructions have been proposed for semi-bent functions. In
even dimension, there exist some constructions of quadratic semi-bent functions
([7] and in [28]) and infinite classes of semi-bent functions with maximal algebraic
degree obtained very recently in [6]. The reader can also see the reference [21] for
recent results dealing with the constructions of semi-bent functions via Dillon and
Niho exponents under some conditions (on the coefficients of the Boolean functions
defined on F2n) directly related to the Kloosterman sums; in particular, it was
shown in [24] and [21] that the zeros and the value four of binary Kloosterman
sums give rise to semi-bent functions in even dimension with maximum degree, as
well as to constructions of semi-bent functions of multiples traces terms under some
conditions (on the coefficients of the Boolean functions defined on F2n) involving
the Dickson polynomials. Very recently, it was shown in [6] and [23] that the oval
polymomials from finite projective geometry give rise to several constructions of
semi-bent functions. In these references, several constructions of semi-bent func-
tions in bivariate representation obtained from bent functions have been provided.

In this paper, we focus on the constructions of semi-bent functions. The idea
is to exploit the known constructions of bent functions to design new semi-bent
functions and therefore extend the list of the known primary constructions of semi-
bent functions in even dimension. We organize this paper as follows. Section
2 is an introductory part providing some preliminaries including definitions and
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background related to Boolean functions. Section 3 is devoted to the constructions
of semi-bent functions from bent functions. Firstly, we revisited a part of a joint
work of the second author with Carlet [6] by studying more in details (and providing
a direct proof) of those constructions on the Galois field F2n (n even) by considering
n
2 -spreads of F2n . Secondly, we treat the case of a kind of recursive construction
of semi-bent functions (we shall call it a ”secondary-like construction”). We prove
that an indirect sum involving both bent and semi-bent functions leads to semi-
bent functions. Finally, we construct semi-bent functions on F2n+2 coming from
bent functions on F2n .

2. Notation and preliminaries

For any set E, E? = E \ {0} and #E will denote the cardinality of E.

• Boolean functions and polynomial forms:
Let n be a positive integer. A Boolean function f in n variables is a mapping from
Fn2 to F2. In cryptography, the most usual representation of these functions is the
algebraic Normal Form (ANF) :

f(x1, · · · , xn) =
∑

I⊆{1,...,n}

aI

(∏
i∈I

xi

)
where the aI ’s are in F2. The terms

∏
i∈I xi are called monomials. The algebraic

degree of a Boolean function f equals the global degree of its (unique) ANF, that
is, the maximum degree of those monomials whose coefficients are nonzero.
Another possible representation of Boolean functions uses the identification between
the vector-space Fn2 and the finite field F2n . It represents any Boolean function as

a polynomial in one variable x ∈ F2n of the form f(x) =
∑2n−1
j=0 ajx

j where the aj ’s
are elements of the field. This representation exists for every function from F2n to
F2n and such function f is Boolean if and only if a0 and a2n−1 belong to F2 and
a2j = a2

j for every j 6= 0, 2n − 1, where 2j is taken modulo 2n − 1. This allows
representing f(x) in a (unique) trace expansion of the form called its polynomial
form. First, recall that, for any positive integer k and r dividing k, the trace
function from F2k to F2r , denoted by Trkr , is the mapping defined as:

Trkr (x) :=

k
r−1∑
i=0

x2ir = x+ x2r + x22r

+ · · ·+ x2k−r .

In particular, we denote the absolute trace over F2 of an element x ∈ F2n by

Trn1 (x) =
∑n−1
i=0 x

2i . We make use of the following known property of the trace
function Trn1 (x) = Trn1 (x2) and for every integer r dividing k, the transitivity
property of Trkr , that is, Trk1 = Trr1 ◦ Trkr .
Now, the polynomial form of a Boolean function defined on F2n f is given by :

f(x) =
∑
j∈Γn

Tr
o(j)
1 (ajx

j) + ε(1 + x2n−1)

where
-Γn is the set of integers obtained by choosing one element in each cyclotomic class
of 2 modulo 2n− 1 (the most usual choice for j is the smallest element in its cyclo-
tomic class, called the coset leader of the class),
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- o(j) is the size of the cyclotomic coset of 2 modulo 2n − 1 containing j,
- aj ∈ F2o(j) ,
- ε = wt(f) modulo 2 where wt(f), is the Hamming weight of the image vector of
f , that is, the cardinality of its support supp(f) := {x ∈ F2n | f(x) = 1}.

The algebraic degree of f is then equal to the maximum 2-weight of an expo-
nent j for which aj 6= 0 if ε = 0 and to n if ε = 1. Recall that the 2-weight w2(j)
of an integer j equals by definition the number of 1’s in its binary expansion. In
particular an affine function is a Boolean function whose algebraic degree is at most
1.

• Walsh-Hadamard transform

Let χ : F2 7→ Z denote the nontrivial additive character of F2 . The “sign”
function of a Boolean function f is the integer-valued function χf = (−1)f .

Let f be a Boolean function defined on Fn2 . Then the Walsh Hadamard trans-
form of f is the discrete Fourier transform of χf , whose value at ω ∈ Fn2 is defined
as follows:

∀ω ∈ Fn2 , χ̂f (ω) =
∑
x∈Fn2

(−1)f(x)+ω·x

where ”·” is the scalar product in Fn2 defined as x · y =
∑n
i=1 xiyi.

The notion of Walsh transform refers to a scalar product (note that in the
definition of the Walsh transform, we can take any inner product; the cryptographic
properties are not related to a particular choice, therefore the issue of the choice
of the isomorphism does not arise). When Fn2 is identified with the field F2n by an
isomorphism between these two n-dimensional vector spaces over F2 , it is convenient
to choose the isomorphism such that the canonical scalar product ”·” in Fn2 coincides
with the canonical scalar product in F2n , which is the trace of the product : x · y =∑n
i=1 xiyi = Trn1 (xy) for x, y ∈ F2n . Thus if f is a Boolean function defined on F2n

then, the Walsh Hadamard transform of f is the discrete Fourier transform of χf ,
whose value at ω ∈ F2n is defined as follows:

∀ω ∈ F2n , χ̂f (ω) =
∑
x∈F2n

(−1)f(x)+Trn1 (ωx).

The Walsh transform satisfies the well-known Parseval’s relation∑
ω∈F2n

χ̂f
2
(ω) = 22n

and also the inverse Fourier formula∑
ω∈F2n

χ̂f (ω) = 2n(−1)f(0).

Thanks to Parseval’s relation and the inverse Fourier formula, one can prove
the following well-known statement.

Lemma 2.1. Let f be a function on F2n such that for all ω ∈ F2n , χ̂f (ω) ≥ 0,
then f is linear.

• Bent functions and semi-bent functions:

Bent functions can be defined in terms of the Walsh transform as follows.
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Definition 2.2. A Boolean function f : F2n → F2 (n even) is said to be bent
if χ̂f (ω) = ±2

n
2 , for all ω ∈ F2n .

Using Parseval’s identity, one can prove (see for instance [22]) the following
useful criterion of bentness in terms of congruence.

Lemma 2.3. Let g be a function on F2n with n = 2m. Then g is bent if and
only if ∀ω ∈ F2n , χ̂g(ω) ≡ 2m (mod 2m + 1).

Semi-bent functions on F2n exist for can n even or n odd. But we are interested
in this paper only in semi-bent functions when n even. Such functions are defined
as follows.

Definition 2.4. A Boolean function f : F2n → F2 (n even) is said to be

semi-bent if χ̂f (ω) ∈ {0,±2
n+2
2 }, for all ω ∈ F2n .

It is well known (see for instance [4]) that the algebraic degree of a bent and a
semi-bent (with n even) Boolean function defined on F2n is at most n

2 . Consequently,
the Hamming weight of all these functions is even. Therefore, the polynomial form
of these functions is

(2.1) ∀x ∈ F2n , f(x) =
∑
j∈Γn

Tr
o(j)
1 (ajx

j)

where Γn, o(j) are defined as above and aj ∈ F2o(j) .

From now, n = 2m is an (even) integer.

3. Constructions of semi-bent functions from bent functions

In the sequel, we present several constructions of semi-bent functions involving
bent functions.

3.1. Constructions of semi-bent functions on the Galois field F2n by
considering m-spreads.
First recall that every non-zero element x of F2n has a unique decomposition (called
the polar decomposition) as: x = yu with y ∈ F?2m and u ∈ U where U is the set
defined by {u ∈ F2n | norm(u) = 1} = {u ∈ F2n | u2m+1 = 1}. In the sequel, U
will always denote the cyclic group of (2m + 1)-st roots of unity.

An m-spread of F2n can be defined as follow.

Definition 3.1. An m-spread of F2n is a set of pairwise supplementary m-
dimensional subspaces of F2n whose union equals F2n .

In a joint work of the author with Carlet [6], semi-bent functions on F2n such
that their restrictions to the elements of an m-spread have degree at most 1 have
been investigated. As far as we know, the only m-spread in the literature is the
set {uF2m , u ∈ U} where U := {u ∈ F2n | u2m+1 = 1} (viewed in F2n) and
its image by the linear automorphisms. Note that such an m-spread viewed in
bivariate representation (that is, viewed in F2n ≈ F2m × F2m) corresponds to the
sets {Ea, E∞} where Ea := {(x, ax) ; x ∈ F2m} and E∞ := {(0, y) ; y ∈ F2m}.

First let Cn be the set of Boolean functions f : F2n → F2 such that the restric-
tion to uF?2m is constant for every u ∈ U with f(0) = 0. And let Ln be the set
of Boolean functions on F2n such that the restriction to uF?2m is linear for every
u ∈ U with f(0) = 0. Note that f ∈ Cn means that there exists a Boolean function
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b : U → F2 such that f(uy) = b(u), ∀u ∈ U,∀y ∈ F?2m with f(0) = 0. While f ∈ Ln
means that there exist a mapping a : U → F2m and a Boolean function b : U → F2

such that f(uy) = Trm1 (a(u)y), ∀u ∈ U,∀y ∈ F?2m .
In univariate form, functions of Cn are the so-called Dillon-like functions built

with Dillon-like exponents. The name of Dillon-like exponent has been introduced
in [20]. Such exponents are of the form s(2m − 1). In [22], the second author has
proved the following statement.

Proposition 3.2. ([22]) Let n = 2m. Let f be a Boolean function defined on
F2n such that f(0) = 0. The three assertions are equivalent:

(1) f(x) =
∑
i
Tr

o(di)
1 (aix

di) with ∀i, di ≡ 0 (mod 2m − 1);
(2) ∀u ∈ U , the restriction of f to uF?2m is constant (that is, f(uy) =

f(u),∀y ∈ F?2m);
(3) ∀ω ∈ F2n the restriction of f to ωF?2m is constant (that is, f(ωy) =

f(ω),∀y ∈ F?2m).

The following statement has been proved in a joint work of the second author
with Carlet [5].

Proposition 3.3. ([5]) Let f be a Boolean function over F2n and f(t) =∑2n−1
d=0 adt

d its univariate representation. Then the restrictions of f to the vec-
torspaces ωF2m , ω ∈ F?2n , are all linear if and only if the only exponents d such
that ad 6= 0 are congruent to powers of 2 modulo 2m − 1, more precisely, d ≡ 2j

(mod 2m − 1) for some j, 0 ≤ j ≤ m− 1.

The exponents d in the previous proposition are currently called the Niho ex-
ponents since they were first studied by Niho in his thesis [26]. Moreover, it is
well known that a Niho exponent d (always understood modulo 2n − 1) can be
written in normalized form as d = (2m − 1)s + 1 with 0 < s < 2m − 1 (note that
d ≡ −2s + 1 modulo 2m + 1). In univariate form, functions of Ln are called Niho
functions since they are constructed via Niho exponents. Now, let us introduce the
following notation.

Notation 3.4. Denote by Dn the bent functions in Cn and by Nn the bent
functions in Ln.

According to the discussion above, we have

Dn = {f | f(x) =
∑
i

Tr
o(di)
1 (aix

di) with ∀i, di ≡ 0 (mod 2m−1), f bent with f(0) = 0}

and

Nn = {f | f(x) =
∑
i

Tr
o(di)
1 (aix

di) with ∀i, di = (2m−1)si+1, 2 ≤ si ≤ 2m, f bent withf(0) = 0}.

A list of the known functions in Dn can be found in [25] with additional func-
tions in [17]. A list of the known functions in Nn can be found for instance in
[20].

In the following, semi-bent functions on F2n such that their restrictions to the
elements of the m-spread uF2m are affine, are revisited. We introduce the following
notation.
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Notation 3.5.

An := {f : F2n → F2 s.t the restriction to uF?2m is affine for every u ∈ U}.
Note that f ∈ An means that there exists a mapping a : U → F2m and a

Boolean function b : U → F2 such that f(uy) = Trm1 (a(u)y) + b(u), ∀u ∈ U,∀y ∈
F?2m .

We denote by fa,b (where a : U → F2m and b : U → F2) a function in An.
Therefore, we have the following natural decomposition:

fa,b = fa,0 + f0,b

where fa,0 is a Boolean function defined on F2n such that its restrictions to uF?2m
(u ∈ U) are linear and f0,b is a Boolean function on F2n such that its restrictions
to uF?2m (u ∈ U) are constant.

Remark 3.6. fa,b ∈ An if and only if 1 + fa,b ∈ An. Indeed, if fa,b ∈ An then,
∀u ∈ U, ∀y ∈ F?2m , we have

1 + fa,b(uy) = Trm1 (a(u)y) + b′(u)

with b′(u) := b(u) + 1, which means that 1 + fa,b ∈ An. The converse is trivial, and
we have 1 + fa,b = fa,b+1.

Notation 3.7. For ε ∈ {0, 1}, set

Aεn := {f ∈ An | fa,b(0) = ε}.
We have

Aεn = A0
n ∪ A1

n = A0
n ∪ (1 +A0

n)

where 1 + A0
n is the complement of functions in A0

n. In the following, we are
interested in identifying the functions in An which are semi-bent. Since semi-
bentness is affine invariant, it suffices to study the semi-bent functions in A0

n.
The Walsh transform of a function in A0

n can be expressed as follows.

Proposition 3.8. Let fa,b be a function in A0
n. Then the Walsh transform of

fa,b equals χ̂fa,b(ω) = 1−
∑
u∈U (−1)b(u) + 2m

∑
u∈U |a(u)+Trnm(ωu)=0(−1)b(u),∀ω ∈

F2n .

Proof. Let fa,b ∈ A0
n. For all ω ∈ F2n , we have (using the polar decomposition

and the properties of trace functions)

χ̂fa,b(ω) = 1 +
∑
x∈F?

2n

(−1)fa,b(x)+Trn1 (ωx)(3.1)

= 1 +
∑
u∈U

∑
y∈F?

2m

(−1)fa,b(uy)+Trn1 (ωuy)

= 1 +
∑
u∈U

∑
y∈F?

2m

(−1)Tr
m
1 (a(u)y)+b(u)+Trm1 (Trnm(ωu)y)

= 1 +
∑
u∈U

( ∑
y∈F2m

(−1)Tr
m
1 (a(u)y)+b(u)+Trm1 (Trnm(ωu)y) − (−1)b(u)

)
= 1−

∑
u∈U

(−1)b(u) +
∑
u∈U

∑
y∈F2m

(−1)Tr
m
1 (a(u)y)+b(u)+Trm1 (Trnm(ωu)y)

= 1−
∑
u∈U

(−1)b(u) +
∑
u∈U

(−1)b(u)
∑
y∈F2m

(−1)Tr
m
1 ((a(u)+Trnm(ωu))y).
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But
∑
y∈F2m

χ(Trm1

(
(a(u) + Trnm(ωu))y

)
=

{
2m if a(u) + Trnm(ωu) = 0
0 otherwise

that is,
∑
y∈F2m

(−1)
Trm1

(
(a(u)+Trnm(ωu))y

)
= 2mδ0(a(u) + Trnm(ωu)), where δ0

is such that δ(x) = 1 if x = 0 and, 0 otherwise.

χ̂fa,b(ω) = 1−
∑
u∈U

(−1)b(u) +
∑
u∈U

(−1)b(u)2mδ0(a(u) + Trnm(ωu))(3.2)

= 1−
∑
u∈U

(−1)b(u) + 2m
∑

u∈U |a(u)+Trnm(ωu)=0

(−1)b(u).

�

Next we provide an alternative direct proof of the following theorem (Corollary
5, [6]) which identifies in particular all the semi-bent functions in An. The reader
can notice that the theorem has been obtained in [6] by applying Theorem 1 in
[6]. Moreover, the statement concerns only the functions whose restrictions to the
m-spreads are affine but not constant and not linear (in fact, it is proved in [5] that
there exist no semi-bent functions whose restrictions to the m-spreads are linear).

Theorem 3.9. Let n = 2m with m > 2. A semi-bent function in An can be
written as the sum of a (bent) function in Dn and a (bent) function in Nn, where
An, Dn and Nn are defined as in Notation 3.5 and Notation 3.4.

Proof. According to the discussion above, it suffices to treat the case of semi-
bent functions in A0

n. So, let fa,b ∈ A0
n.

According to Proposition 3.8,

χ̂fa,b(ω) = 1−
∑
u∈U

(−1)b(u) + 2m
∑
u∈Eω

(−1)b(u),∀ω ∈ F2n

where Eω := {u ∈ U | a(u) + Trnm(ωu) = 0}.
Now, fa,b is semi-bent if and only if χ̂fa,b(ω) ∈ {0,±2m+1},∀ω ∈ F2n , which implies

that χ̂fa,b(ω) ≡ 0 (mod 2m),∀ω ∈ F2n , that is,
∑
u∈U (−1)b(u) ≡ 1 (mod 2m).

Therefore,
∑
u∈U (−1)b(u) ∈ {1, 1 + 2m, 1 − 2m} (since the multiplicative group U

is of order 2m + 1). Three cases have to be considered.
Recall the following decomposition: fa,b = fa,0+f0,b , where fa,0 (resp. f0,b) is such
that its restrictions to each multiplicative coset uF?2m (u ∈ U) is constant (resp.
linear).
• Case 1:

∑
u∈U (−1)b(u) = 1.

The function f0,b is such that its restrictions to the multiplicative cosets uF?2n are
constant for every u ∈ U . Hence, for every ω ∈ F2n the restriction of f0,b to ωF?2m is
constant (that is, f0,b(ωy) = f0,b(ω),∀y ∈ F?2m). Indeed, if ω ∈ F?2n , then using the
polar decomposition, we have: ω = uz with u ∈ U and z ∈ F?2m . Hence, ∀y ∈ F?2m ,
f0,b(ωy) = f0,b(uzy) = f0,b(u) = f0,b(uz) = f0,b(ω).

Consider the polynomial form of f0,b: f0,b(x) =
∑2n−2
i=1 Tr

o(i)
1 (aix

i) + a2n−1x
2n−1

(since f0,b(0) = 0). Then (since y ∈ F?2m ⊂ F?2n and yi = 1 for i ≡ 0 (mod 2m−1)),
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we have: ∀ω ∈ F2n , ∀y ∈ F?2m ,

f0,b(ωy) =

2n−2∑
i=1

Tr
o(i)
1 (aiω

iyi) + a2n−1ω
2n−1(3.3)

=

2n−2∑
i=1|i≡0 (mod 2m−1)

Tr
o(i)
1 (aiω

i) + a2n−1ω
2n−1

+

2n−2∑
i=1|i 6≡0 (mod 2m−1)

Tr
o(i)
1 (aiω

iyi) + a2n−1ω
2n−1.

Now, note that for y = 1, we have

f0,b(ω) =

2n−2∑
i=1|i≡0 (mod 2m−1)

Tr
o(i)
1 (aiω

i + a2n−1ω
2n−1)

+

2n−2∑
i=1|i 6≡0 (mod 2m−1)

Tr
o(i)
1 (aiω

i) + a2n−1ω
2n−1.

But we have f0,b(ωy) + f0,b(ω) = 0, ∀ω ∈ F2n ,∀y ∈ F?2m . Therefore, ∀ω ∈ F2n ,∀y ∈
F?2m ,

∑2n−2
i=1|i 6≡0 (mod 2m−1) Tr

o(i)
1 (ai(y

i + 1)ωi) = 0 Now, using the unicity of the

polar decomposition, we obtain ∀i ∈ [1, 2n − 2], i 6≡ 0 (mod 2m − 1), ai(y
i + 1) = 0.

In particular, if y equals a primitive element β of F2m then yi = βi 6= 1. Hence,
∀i ∈ [1, 2n − 2], i 6≡ 0 (mod 2m − 1), ai = 0, which proves that the polynomial form

of f0,b is: f0,b(x) =
∑
i
Tr

o(di)
1 (aix

di) with ∀i, di ≡ 0 (mod 2m − 1). At this stage,

let us prove that the condition
∑
u∈U (−1)b(u) = 1 is equivalent to the fact that f0,b

is bent. To this end, let us compute the Walsh transform of f0,b for ω ∈ F2n .

χ̂f0,b(ω) =
∑
x∈F2n

(−1)
∑
i Tr

o(di)
1 (aix

di )+Trn1 (ωx)(3.4)

= 1 +
∑
x∈F?

2n

(−1)
∑
i Tr

o(di)
1 (aix

di )+Trn1 (ωx)

= 1 +
∑
u∈U

∑
y∈F?

2m

(−1)
∑
i Tr

o(di)
1 (aiy

diudi )+Trn1 (ωyu)

= 1 +
∑
u∈U

∑
y∈F?

2m

(−1)
∑
i Tr

o(di)
1 (aiu

di )+Trn1 (ωyu)

= 1 +
∑
u∈U

(−1)
∑
i Tr

o(di)
1 (aiu

di )
∑
y∈F?

2m

(−1)Tr
n
1 (ωyu)

= 1 +
∑
u∈U

(−1)
∑
i Tr

o(di)
1 (aiu

di )
∑
y∈F2m

(−1)Tr
n
1 (ωyu)

−
∑
u∈U

(−1)
∑
i Tr

o(di)
1 (aiu

di ).

Firstly, if ω = 0 then, χ̂f (0) = 1+2m
∑
u∈U (−1)

∑
i Tr

o(di)
1 (aiu

di )−
∑
u∈U (−1)

∑
i Tr

o(di)
1 (aiu

di ).

Hence, the condition
∑
u∈U (−1)b(u) = 1 is equivalent to χ̂f (0) = 2m that is, f0,b
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bent. Otherwise, if ω 6= 0 then,
∑
y∈F2m

χ(Trn1 (ωyu)) =
∑
y∈F2m

χ(Trm1 (Trnm(ωu)y))

=

{
2m if Trnm(ωu) = 0, that is, if u2m−1 = ω1−2m

0 otherwise.

Since x 7→ x2m−1 is a permutation of U then,
∑
y∈F2m

χ(Trn1 (ωyu))

=

{
2m if u = ω−1

0 otherwise.

Therefore, χ̂f (ω) = 1 −
∑
u∈U (−1)

∑
i Tr

o(di)
1 (aiu

di ) + 2m(−1)f(ω−1). Hence, f0,b

is bent if and only if
∑
u∈U (−1)

∑
i Tr

o(di)
1 (aiu

di ) = 1 that is,
∑
u∈U (−1)b(u) = 1.

Therefore, we have proved that the condition on b(u) implies that f0,b is bent.

Moreover, for every ω ∈ F2n , χ̂fa,b(ω) = 2m
∑
u∈Eω (−1)b(u) ∈ {0,±2m+1}. Hence,∑

u∈Eω (−1)b(u) ≡ 0 (mod 2). But
∑
u∈Eω (−1)b(u) ≡

∑
u∈Eω 1 (mod 2). Thus,

#Eω ≡ 0 (mod 2) that is, #Eω is even for every ω ∈ F2n . Set #Eω = 2κ(ω)
with κ(w) ∈ Z. Now, we have fa,0(uy) = Trm1 (a(u)y). Hence, χ̂fa,0(ω) = 1 −∑
u∈U (−1)0 + 2m

∑
u∈Eω (−1)0, that is, χ̂fa,0(ω) = 1−#U + 2m#Eω = 2m(#Eω−

1). Therefore, χ̂fa,0(ω) = 2m(2κ(ω) − 1) ≡ −2m (mod 2m+1) ≡ 2m (mod 2m+1).
Thus, according to Lemma 2.3, fa,0 is bent and then, fa,0 belongs to Ln.

• Case 2:
∑
u∈U (−1)b(u) = 1 + 2m.

Since #U = 2m + 1, the mapping u 7→ b(u) vanishes on U . Thus fa,b = fa,0. Now,
recall that we have χ̂fa,0 = 2m(#Eω − 1),∀ω ∈ F2n . Since fa,b is semi-bent then,

2m(#Eω−1) ∈ {0,±2m+1}, that is, #Eω ∈ {1, 3}. Hence, χ̂fa,0 ≥ 0 which implies,
according to Lemma 2.1, that fa,0 is linear and its Walsh spectrum equals {0, 2n}.
This contradicts the semi-bentness of fa,0 = fa,b. The Case 2 is thus excluded.

• Case 3:
∑
u∈U (−1)b(u) = 1− 2m.

One can prove that there exists a unique uo ∈ U such that b(u0) = 0 and b(u) = 1
for every u ∈ U\{u0}. Indeed, for ε ∈ {0, 1} denote byBε the set {u ∈ U | b(u) = ε}.
We have

∑
u∈U (−1)b(u) =

∑
u∈B0

(−1)b(u)+
∑
u∈B1

(−1)b(u) = 1−2m = #B0−#B1.

Hence, #B0 = 1 and #B1 = 2m (since #B0 + #B1 = #U = 2m + 1).
The function u ∈ U 7→ b(u) thus equals 1U + 1u0F2m

and fa,b = fa,0 + 1U + 1u0F2m
.

Now, we have χ̂fa,b(ω) = 2m + 2m
∑
u∈Eω (−1)b(u),∀ω ∈ F2n (where Eω is defined

as above). Since fa,b is semi-bent, one has necessarily 2m(1 +
∑
u∈Eω (−1)b(u)) ∈

{0,±2m+1}, that is 1 +
∑
u∈Eω (−1)b(u) ∈ {0,±2}. But (−1)b(u) ≡ 1 (mod 2).

Hence #Eω is odd (in particular, #Eω ≥ 1). But fa,0(uy) = Trm1 (a(u)y), hence
χ̂fa,0(ω) = 1 −

∑
u∈U (−1)0 + 2m

∑
u∈Eω (−1)0 = 2m(#Eω − 1) ≥ 0. According

to Lemma 2.1, we deduce that the function fa,0 is linear. Thus, fa,b = fa,0 +
1U + 1u0F2m

with fa,b semi-bent and fa,0 + 1U is an affine function. Therefore the
function g := 1u0F2m

is semi-bent. Thus its Hamming weight wt(g) ∈ {2n−1 −
2m, 2n−1 + 2m, 2n−1} (since χ̂g(0) = 2n − 2wt(g) ∈ {0, 2m+1,−2m+1}). But (using
the definition of g) we have wt(g) = 2m. We conclude that for m > 2 the function
g can not be semi-bent. The proof follows. �

3.2. A construction of semi-bent functions via the indirect sum.
In 2004, Carlet [3] has introduced a secondary construction of bent functions that
he called indirect sum. This construction generalizes the well-known direct sum
given by Dillon and Rothaus [9, 27] and is defined as follows.
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Definition 3.10. Let n = r+ s where r and s are positive integers. Let f1, f2

be Boolean functions defined on F2r and g2, g2 be two Boolean functions defined
on F2s . Define h as follows (that is, h is the concatenation of the four functions f1,
f1 ⊕ 1, f2 and f2 ⊕ 1, in an order controled by g1(y) and g2(y)):

∀(x, y) ∈ F2r × F2s , h(x, y) = f1(x) + g1(y) + (f1(x) + f2(x))(g1(y) + g2(y)).

This construction was used in [3] to construct bent functions from bent func-
tions in lower dimension. In the following, we show that the indirect sum could be
used to construct semi-bent functions from both bent and semi-bent functions in
lower dimension. More precisely, we prove the following result which can be viewed
as a secondary-like construction 1.

Theorem 3.11. Let n = r+s with r and s two even intergers. Let h be defined
as in Definition 3.10. Suppose that f1 and f2 are semi-bent on F2r and that g1 and
g2 are bent on F2s . Then h is semi-bent on F2n .

Proof. Set r = 2ρ and s = 2σ. Let’s compute the Walsh transform of h for
every (a, b) ∈ F2r × F2s . We have

χ̂h(a, b) =
∑
x∈F2r

∑
y∈F2s

χ(f1(x)+g1(y)+(f1(x)+f2(x))(g1(y)+g2(y))+Trr1(ax)+Trs1(by)).

Now, one can split the sum depending whether g1(y) + g2(y) is equal to 1 or not :

χ̂h(a, b) =
∑
x∈F2r

∑
y∈F2s |g1(y)+g2(y)=1

χ(f2(x) + g1(y) + Trr1(ax) + Trs1(by))

+
∑

y∈F2s |g1(y)+g2(y)=0

χ(f1(x) + g1(y) + Trr1(ax) + Trs1(by)).

Now, note that the indicator of the set {y ∈ F2s | g1(y) + g2(y) = 1} can be written

as 1−χ(g1(y)+g2(y))
2 . Similarly, one can write the indicator of the set {y ∈ F2s |

g1(y) + g2(y) = 0} as 1+χ(g1(y)+g2(y))
2 . Hence,

χ̂h(a, b) = χ̂f1(a)

(
χ̂g1(b) + χ̂g2(b)

2

)
+ χ̂f2(a)

(
χ̂g1(b)− χ̂g2(b)

2

)
.

Now, if g1 and g2 are bent, then(
χ̂g1(b)− χ̂g2(b)

2

)(
χ̂g1(b) + χ̂g2(b)

2

)
=

1

4

(
(χ̂g1(b))

2 − (χ̂g2(b))
2
)

= 0

and thus only the two following situations can occur

χ̂g1(b)− χ̂g2(b)

2
= 0 and

χ̂g1(b) + χ̂g2(b)

2
= ±2σ

or
χ̂g1(b)− χ̂g2(b)

2
= ±2σ and

χ̂g1(b) + χ̂g2(b)

2
= 0.

Now f1 and f2 being semi-bent : χ̂f1(a) ∈ {0,±2ρ+1} and χ̂f2(a) ∈ {0,±2ρ+1}.
Therefore χ̂h(a, b) ∈ {0,±2ρ+σ+1} proving that h is semi-bent. �

1As opposed to ”secondary constructions ” which means constructions of new functions from
ones having the same properties.
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Remark 3.12. Obviously, the roles of f1 and f2 can be exchanged with those
of g1 and g2. This means that one can exchange the property of bentness and
semi-bentness in Theorem 3.11, that is, suppose that f1 and f2 are bent and that
g1 and g2 are semi-bent.

3.3. A construction of semi-bent functions from bent functions by
field extension.
Another kind of construction of semi-bent functions from bent functions is given
by the simple following statement.

Proposition 3.13. Let n be an even positive integer. Let f be a Boolean
function over F2n . For δ ∈ F4 , we define a Boolean function fδ over F2n+2 '
F2n × F4 by

fδ(y, z) = f(y) + Tr2
1(δz),∀y ∈ F2n , z ∈ F4 .

If f is bent over F2n then fδ is semi-bent over F2n+2 .

Proof. Let us compute the Walsh transform at every ω := (ω′, ω1) ∈ F2n×F4 .

χ̂fδ(ω) =
∑
y∈F2n

∑
z∈F22

(−1)fδ(y,z)+Tr
n
1 (ω′y)+Tr21(ω1z)(3.5)

=
∑
y∈F2n

(−1)f(y)+Trn1 (ω′y)
∑
z∈F22

(−1)Tr
2
1(z(ω1+δ)

= χ̂f (ω′)
∑
z∈F22

(−1)Tr
2
1(z(ω1+δ).

Now, since f is bent then χ̂f (ω′) = ±2
n
2 . On the other hand,

∑
z∈F22

(−1)Tr
2
1(z(ω1+δ) =

{
4 if ω1 = δ
0 otherwise.

Hence, χ̂fδ(ω) ∈ {0, 2n+2
2 +1,−2

n+2
2 +1} proving that fδ is semi-bent on F2n×F4 .

�

4. Conclusion

A lot of research has been devoted to designing constructions of bent functions.
This paper investigates constructions of semi-bent functions. To this end, bent
functions are exploited to produce new semi-bent functions and thereby extend the
list of known primary constructions of semi-bent functions in even dimension.

References

1. M. Burnashev and I. Dumer, Error-exponents for recursive Decoding of Reed-Muller codes on
a binary-symmetric channel, IEEE Trans. Inform Theory vol 52, No 11, 2006, pp. 4880–4892.

2. A. Canteaut, C. Carlet, P. Charpin, and C. Fontaine., On cryptographic properties of the
cosets of R(1,m), IEEE Transactions on Information Theory, vol. 47, 2001, pp. 1494–1513.

3. C. Carlet, On the secondary constructions of resilient and bent functions, Proceedings of
the Workshop on Coding, Cryptography and Combinatorics 2003, published by Birkhäuser
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