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1Institut Télécom, Télécom ParisTech, UMR 7539, CNRS. E-mail:
cohen@telecom-paristech.fr

2LAGA (Laboratoire Analyse, Gometrie et Applications), UMR 7539, CNRS,
Department of Mathematics, University of Paris XIII and University of Paris VIII,
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Abstract. Minimal linear codes are such that the support of every code-
word does not contain the support of another linearly independent code-
word. Such codes have applications in cryptography, e.g. to secret sharing
and secure two-party computations. We pursue here the study of min-
imal codes and construct infinite families with asymptotically non-zero
rates. We also introduce a relaxation to almost minimal codes, where
a fraction of codewords is allowed to violate the minimality constraint.
Finally, we construct new minimal codes based on hyperovals.
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1 Introduction

A minimal codeword [Mas93,Mas95] c of a linear code C is a codeword
such that its support (set of non-zero coordinates) does not contain the
support of another linearly independent codeword. Minimal codewords
are useful for defining access structures in secret sharing schemes using
linear codes. The problem of finding a code in which all nonzero codewords
are minimal, called a minimal linear code has first been envisioned in
[DY03] and later studied in [SL12,CCP13,CMP13].

In [CCP13], the motivation for finding minimal linear codes is in a
new proposal for secure two-party computation.

Minimal codes are close to intersecting and separating codes [CL85],
[CELS03], [CCP13]. Such codes have been suggested for applications to
oblivious transfer [BCS96], secret sharing [AB98] ,[DY03],[SL12] or digital
fingerprinting [Sch06].

We will focus here on the q-ary case, since secret-sharing and secure
two-party computations both demand a large alphabet.

We pursue in Section 2 the study of [CCP13,CMP13] on bounds for
minimal linear codes and construct families of minimal codes with bet-
ter rates (asymptotically nonzero). We relax the notion of minimality



to almost-minimality, thus exhibiting families with improved asymptotic
rates. We also describe in Section 3 new minimal codes using trace func-
tions and hyperovals, following the works of [DY03,SL12,CMP13].

2 Minimal Codes – Bounds and Constructions

2.1 Definitions – Notations

We denote by |F | the cardinality of a set F . Let q = ph, where p is
a prime number and h ∈ N∗. An [n, k, d]q code is a vector subspace
of Fnq of dimension k with minimum Hamming distance d. Let dmax be
the maximal distance between two codewords of C, or, equivalently, the
maximal Hamming weight of a codeword of C. Normalized parameters
will be denoted by R = k/n, δ = d/n, δmax = dmax/n.

The support of a codeword c ∈ C is supp(c) = {i ∈ {1, . . . , n}|ci 6=
0}. The Hamming weight of a codeword c ∈ C denoted by wt(c) is the
cardinality of its support : wt(c) = |supp(c)|. A codeword c covers a
codeword c′ if supp(c′) ⊂ supp(c).

Definition 1 (Minimal codeword). [Mas93] A codeword c is minimal
if it only covers Fq · c.

Definition 2 (Minimal linear code). [DY03] A linear code C is min-
imal if every non-zero codeword c ∈ C is minimal, i. e. if no pair (c, c′)
of independent codewords s is ”bad” (has supp(c′) ⊂ supp(c)).

Definition 3 (Almost-minimal linear code). A linear code C is said
(ε)almost-minimal if at most q2εk pairs of codewords are bad, for some
fixed ε with 0 ≤ ε < 1/2.

For a complete treatment of coding theory, we refer to the book of
MacWilliams and Sloane [MS77]. We extend in the next paragraph some
results of [CMP13] to almost-minimal codes.

2.2 Bounds on almost-minimal codes

Theorem 1 (Maximal Bound). Let C an almost- minimal linear [n, k, d]
q-ary code, then R ≤ logq(2)/(1− ε) + o(1).

Proof. By definition, at most qεk+1 codewords can share the same sup-
port. Thus, |C| = qk ≤ qεk+12n and R = k/n ≤ logq(2)/(1− ε) + o(1).



Theorem 2 (Minimal Bound). For any positive R = k/n such that

R ≤ 1
2−2ε logq(

q2

q2−q+1
) + o(1), there exists an infinite sequence of [n, k]

almost-minimal linear codes.

Proof. Let us fix n and k. For a ∈ Fnq , such that |supp(a)| = i, there are
qi − q linearly independent vectors b such that supp(b) ⊂ supp(a). The

pair (a, b) belongs to

[
n− 2
k − 2

]
linear [n, k] codes, where

[
x
k

]
denotes the

q-ary Gaussian binomial coefficient. There are less than
n∑
i=0

(
n
i

)
(q − 1)i(qi − q) = (1 + (q − 1)q)n − qn+1 ≤ (q2 − q + 1)n such

ordered bad (a, b) pairs. As long as q2εk
[
n
k

]
≥
[
n− 2
k − 2

]
(q2 − q + 1)n ,

there are linear [n, k] codes containing no more than q2εk bad pairs, i. e.

almost-minimal codes. For k/n ≤ 1
2−2ε logq(

q2

q2−q+1
) + o(1), this quantity

is positive.

2.3 Constructions

There exists a sufficient condition on weights for a given linear code to
be minimal.

Proposition 1. [AB98] Let C be an [n, k, d] code. Let d and dmax be the
minimum and maximum nonzero weights respectively. If d

dmax
> q−1

q then
C is minimal.

Remark 1. Note that the stronger sufficient condition d
n >

q−1
q is too de-

manding to get asymptotically good codes; indeed, by the Plotkin bound
[MS77], for any code, not necessarily linear, of length n, size M and dis-
tance d, if d > (q − 1)n/q, then M ≤ d/(d− (1− q−1n)).

2.4 Infinite constructions

The general idea is to concatenate a q-ary “seed” or inner code (e.g. a
simplex) with an infinite family of algebraic-geometric (AG) codes (the
outer codes) [TV91], in such a way as to obtain a high enough minimum
distance and conclude by Proposition 1.

In practice, we can take the seed to be Sq,r[n = (qr − 1)/(q − 1), k =
r, d = qr−1]q (with δ > (q − 1)/q), set r = 2m and concatenate with
AG[N,K = NR,D = N∆]q2m . These codes exist lying almost on the
Singleton bound, namely satisfying R+∆ = 1− (qm − 1)−1 > (q − 1)/q.



This concatenation results in the family C[nN, kK, dD]q. If dD/nN =
δ∆ > (q − 1)/q, minimal by Proposition 1.

It is not hard to check that, for example, choosing q large and α small
enough, m ≥ 2, ∆ = (q − 1)/q + α,R = 1/q − 1/(qm − 1)− α > 0, this is
the case.

To summarize, we construct infinite families of codes withR = 2m(1/q−
1/(qm−1)−α)(q−1)/(q2m−1) ≈ 2m/q2m satisfying δ/δmax > (q−1)/q,
thus minimal. Note that, by the Plotkin bound, they necessarily satisfy
δ < (q − 1)/q, so the fact that δmax < 1 is crucial.

3 An explicit construction of minimal linear codes via a
hyperoval

Let us begin with some background related to Boolean functions theory
and finite geometry.

3.1 Some additional background

Definition 4 (Trace function over Fqr). Let q be a power of a prime
number. The trace function Trqr/q : Fqr → Fq is defined as:

Trqr/q(x) :=

r−1∑
i=0

xq
i

= x+ xq + xq
2

+ · · ·+ xq
r−1
.

The trace function from Fqr to its prime subfield is called the absolute
trace function.

An (n, r)-function F or (vectorial function) is a mapping from F2n to
F2r . When r = 1, F is said to be a Boolean function. The component
functions of F are the Boolean functions x 7→ Trr1(vF (x)), v 6= 0. Given
a Boolean function f defined on F2n , its Walsh transform is the discrete
Fourier transform of its sign function, that is, χ(f) := (−1)f where χ is
the canonical additive character.

Definition 5 (The Walsh transform). The Walsh transform of f de-
noted by χ̂f is defined as: ∀a ∈ F2n , χ̂f (a) =

∑
x∈F2n

(−1)f(x)+Tr
n
1 (ax).

Finally, a Boolean function f on F2n (n even) is bent if and only if its
Walsh transform satisfies χ̂f (a) = ±2

n
2 for all a ∈ F2n . A vectorial func-

tion is said to be bent if all its components are bent. The dual f̃ of a
bent Boolean function f is defined by the relation χ̂f (ω) = 2

n
2 (−1)f̃(ω),

∀ω ∈ F2n .



A hyperoval in the projective space of dimension 2 on F2n (denoted
by PG2(2

n)) can be defined as follows.

Definition 6 (Hyperoval). A hyperoval in PG2(2
n) is a set of 2n + 2

points, no three points of them collinear (that is, lying on a line1).

A certain type of polynomials on F2n gives rise to hyperovals in PG2(2
n):

Definition 7 (Oval polynomial). An oval polynomial on F2nis a poly-
nomial G on F2n such that the set {(1, t, G(t)), t ∈ Fn2}∪{(0, 0, 1), (0, 1, 0)}
(denoted by D(G)) forms a hyperoval of PG2(2

n) (for short, o-polynomial).

There is a close connection between hyperovals and o-polynomials
since a hyperoval of PG2(2

n) can be represented by D(G) where G is
an o-polynomial on F2n . In fact, there exists a necessary and sufficient
condition for a mapping over F2n to give a hyperoval of PG2(2

n). This
leads to a reformulation of the definition of an o-polynomial given as
follows.

Definition 8 (Oval polynomial). A permutation polynomial G over
F2n is an o-polynomial if, for every γ ∈ F2n, the function

z ∈ F2n 7→

{
G(z+γ)+G(γ)

z if z 6= 0

0 if z = 0

is a permutation of F2n.

3.2 A construction of a class of q-ary linear minimal codes
via Segre hyperoval

Let m be a positive integer. Let us consider the set of points in PG2(2
m)

defined as D(6) := {(1, t, t6), t ∈ F2m} ∪ {(0, 0, 1), (0, 1, 0)}. According to
Segre and Bartocci [SB71], for m > 3 odd, D(6) is a hyperoval of PG2(2

m)
called Segre hyperoval. Moreover, according to Maschietti [Mas98], D(6)
is a hyperoval of PG2(2

m) if and only if, gcd(2m − 1, 6) = 1 and the
equation x6 + x + a = 0 has either zero or two distinct solutions in F2m

(with m ≥ 3) for every a ∈ F2m .
For m = 3, the equation x6 +x+a = 0 (*) has either zero or two distinct
solutions in F2m . Indeed, if a = 0, then (*) admits 0 and 1 as solutions.
If a 6= 0, then (*) is equivalent to the equation x7 + x2 + ax = 0 (when
x 6= 0), that is, x2 + ax+ 1 = 0. The latter equation has necessarily two
distinct solutions which are distinct (otherwise, it would yield a = 0, a

1 We say a point p = (x0, · · · , xn) is on a line L[y0, · · · , yn] if x0y0+x1y1+· · ·xnyn = 0.



contradiction). Therefore, D(6) is a hyperoval on PG2(2
m) with m > 2

odd.
In the following, we construct a minimal code from a Segre hyperoval.
We state the main result of this section.

Proposition 2. Let D(6) := {(1, t, t6), t ∈ F2m} ∪ {(0, 0, 1), (0, 1, 0)} be
the Segre hyperoval of PG2(2

m) with m > 2 odd. Define Γ as Γ := F2m×
F2m \ ({(x, 0), x ∈ F2m}∪{(0, y), y ∈ F2m}) = {(δi, ζi), 1 ≤ i ≤ (2m−1)2}.
Let h and m be two positive integers such that h divides m. For any
a ∈ F2m, define the function Φa associate to D(6) as

Φa : Γ −→ F2h

(x, y) 7−→ Φa(x, y) := Tr2m/2h(ax3·2
m+1−11y6)

Moreover, define a linear code C over F2h as :

C := {c̄a = (Φa(δ1, ζ1), · · · , Φa(δ(2m−1)2 , ζ(2m−1)2)), a ∈ F2m}.

Then the linear code C is a minimal code associated to D(6) with param-
eters [(2m − 1)2, mh , 2

m−h(2h − 1)(2m − 1)].

Proof. Only the minimum distance and minimality assertions need check-
ing. For every m > 2 odd, D(6) is a hyperoval of PG2(2

m), hence
G(z) = z6 is an o-polynomial on F2m . According to [Mes13], for ev-
ery a ∈ F?2m , the (2m,m)-function (x, y) ∈ F2m × F2m 7→ Φa(x, y) is
a bent vectorial function of the form Φa(x, y) = Tr2m/2h(axG(yx2

m−2))

with G(z) = z6. Therefore, all the components of Φa are bent Boolean
functions belonging to the class H introduced by Carlet and Mesnager
[CM11]. Let ψaω (ω ∈ F?2m) be a component of of Φa. ψaω is of the
form ψaω(x, y) = Tr2m/2(aωx

3·2m+1−11y6). Since ψaω is bent, its Walsh
transform takes only the values ±2m, that is, χ̂ψaω(x, y) = ±2m. Now, re-

call that ∀(z, t) ∈ F2m × F2m , χ̂ψaω(z, t) = 2m(−1)ψ̃aω(z,t), where ψ̃aω
denotes the dual function of ψaω. According to [CM11], ψ̃aω(α, β) =
1 if the equation z6 + βz = α has no solution in F2m , and 0 other-
wise. In particular, ψ̃aω(0, 0) = 0, that is χ̂ψaω(0, 0) = 2m. Now, on
one hand,

∑
ω∈F

2h
χ̂ψaω(0, 0) = 22m+h − 2hwt(c̄a), according to Cohen

et al [CMP13]. On the other hand,
∑

ω∈F
2h
χ̂ψaω(0, 0) = χ̂ψ0(0, 0) +∑

ω∈F?
2h
χ̂ψaω(0, 0). Hence,

∑
ω∈F

2h
χ̂ψaω(0, 0) = 22m + 2m(2h − 1). Col-

lecting the two expressions of the sum
∑

ω∈F
2h
χ̂ψaω(0, 0), we deduce that

the Hamming weight of any non-zero codeword of C equals wt(c̄a) =
22m − 22m−h − 2m + 2m−h = 2m−h(2h − 1)(2m − 1). The code C has con-
stant weight equal to the claimed minimum distance, and is thus minimal,
which completes the proof.



Open problem

Is it true that the best achievable rate of (almost) minimal codes is a
decreasing function of q? A weaker statement holds: if q divides q′, then a
q′- (almost) minimal code yields a q-ary (almost) minimal code with the
same rate.
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