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Abstract

We consider the problem of efficiently exploring the arms of a stochastic bandit to identify
the best subset of a specified size. Under the PAC and the fixed-budget formulations,
we derive improved bounds by using KL-divergence-based confidence intervals. Whereas
the application of a similar idea in the regret setting has yielded bounds in terms of the
KL-divergence between the arms, our bounds in the pure-exploration setting involve the
“Chernoff information” between the arms. In addition to introducing this novel quantity to
the bandits literature, we contribute a comparison between strategies based on uniform and
adaptive sampling for pure-exploration problems, finding evidence in favor of the latter.
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1. Introduction

We consider a stochastic bandit model with a finite number of arms K ≥ 2. Each arm
a corresponds to a Bernoulli distribution with mean pa; the arms are numbered such that
p1 ≥ p2 ≥ ... ≥ pK . Each draw of arm a yields a reward drawn from an unknown distribution
B(pa). In the classical “regret” setting, an agent seeks to sample arms sequentially in order
to maximize its cumulative reward, or equivalently, to minimize its regret. This setting was
originally motivated by clinical trials (Thompson, 1933) wherein the number of subjects
cured is to be maximized through the judicious allocation of competing treatments. By
contrast, the “pure exploration” setting models an off-line regime in which the rewards
accrued while learning are immaterial; rather, the agent has to identify an optimal set of
m arms (1 ≤ m < K) at the end of its learning (or exploration) phase. Such a setting
would naturally suit a company that conducts a dedicated testing phase for its products to
determine which m to launch into the market. Bubeck et al. (2011, see Section 1) present
an informative comparison between the regret and pure-exploration settings.

In this paper, we consider the pure-exploration problem of finding the m best arms,
introduced by Kalyanakrishnan and Stone (2010) as “Explore-m”. This problem, which
generalizes the single-arm-selection problem studied by Even-Dar et al. (2006) (Explore-1),
is as follows. For some fixed tolerance ε ∈ [0, 1], let S∗m,ε be the set of all (ε,m)-optimal
arms: that is, the set of arms a such that pa ≥ pm− ε. Observe that the set of m best arms,
S∗m = {1, 2, . . . ,m}, is necessarily a subset of S∗m,ε. For a given mistake probability δ ∈]0, 1],
our goal is to design an algorithm that after using a finite (but possibly random) number
of samples N returns Sδ, a set of m arms satisfying P(Sδ ⊂ S∗m,ε) ≥ 1− δ. We desire N to
be small in expectation.
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Contrasting with the PAC formulation described above, an alternative goal in the pure-
exploration setting would be to fix a maximum number of samples, n, for learning, and to
find a set Sn of m arms after n rounds such that en := P(Sn 6⊂ S∗m,ε) is minimal. This setting
was proposed by Audibert et al. (2010) for m = 1 (and ε = 0) and generalized by Bubeck
et al. (2013) to arbitrary values of m. We denote this alternative problem Explore-m-FB
(Explore-m with fixed budget). It is interesting to note that indeed these two problems
are related: Gabillon et al. (2012) point out that knowing the problem complexity allows
algorithms for Explore-m to be converted to algorithms for Explore-m-FB, and vice versa.

In the regret setting, a recent line of research has yielded algorithms that are essentially
optimal. While the regret bound for the UCB algorithm of Auer et al. (2002) is optimal
in its logarithmic dependence on the horizon, its accompanying problem-specific constant
does not match the lower bound provided by Lai and Robbins (1985). Garivier and Cappé
(2011) and Maillard et al. (2011) show that by replacing UCB’s Hoeffding’s inequality-
based bounds with upper bounds based on Kullback-Leibler divergence, the constant, too,
becomes optimal (see also Cappé et al. (2013)).

The primary contribution of this paper is a set of similarly-improved bounds for the
pure-exploration setting. We show improvements both for Explore-m and for Explore-m-
FB by replacing Hoeffding-based bounds with KL-divergence-based bounds in corresponding
algorithms. Interestingly, our analysis sheds light on potential differences between the pure-
exploration and regret settings: the improved sample-complexity bounds we obtain here
involve the Chernoff information between the arms, and not KL-divergence as in the regret
setting.

Algorithms for pure-exploration broadly fall into two categories: algorithms based on
uniform sampling and eliminations (Even-Dar et al., 2006; Heidrich-Meisner and Igel,
2009; Bubeck et al., 2013), and fully-sequential algorithms based on adaptive sampling
(Kalyanakrishnan et al., 2012; Gabillon et al., 2012). The second contribution of this paper
is a comparison between these contrasting approaches, through the study of two generic al-
gorithms using confidence intervals, Racing and LUCB. We consider both “Hoeffding” and
“KL” versions of these algorithms: in each case our theoretical and experimental results
point to the superiority of the adaptive sampling heuristic.

This paper is organized as follows. We discuss the complexity of Explore-m(-FB) in
Section 2, introducing Chernoff information as a relevant quantity therein. We present
generic versions of the Racing and LUCB algorithms in Section 3, proceeding to describe
two specific instances, KL-Racing and KL-LUCB, for which we propose a PAC guarantee
and a sample-complexity analysis in Section 4. Section 5 presents corroborative results from
numerical experiments.

2. Complexity measure for the Explore-m problem

While existing algorithms for Explore-m have an expected sample complexity bounded by
O(Hε log(Hε/δ)), the SAR algorithm of Bubeck et al. (2013) for Explore-m-FB (with ε = 0,
which we only allow with the extra assumption that pm > pm+1) satisfies P(Sn 6⊂ S∗m) ≤
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C exp (−n/(C ′ log(K)H0)), where C and C ′ are some constants and

Hε =
∑

a∈{1,2,...K}

1

max(∆2
a, (

ε
2)2)

, with ∆a =

{
pa − pm+1 for a ∈ S∗m,
pm − pa for a ∈ (S∗m)c.

In the regret setting, the following lower bound is known from Lai and Robbins (1985).
If Na(n) denotes the number of draws of arm a and Rn the regret of some algorithm up to
time n, then: if limn→∞Rn = o(nα) for every α > 0 and every bandit problem, then

lim inf
n→∞

E[Na(n)]

log(n)
≥ 1

d(pa, p1)
,

with d, the Kullback-Leibler divergence between two Bernoulli distributions, given by

d(x, y) = KL (B(x),B(y)) = x log

(
x

y

)
+ (1− x) log

(
1− x
1− y

)
.

While E[Na(n)] is only bounded by O(log(n)/∆2
a) for the UCB algorithm (Auer et al.,

2002), it is indeed bounded by log(n)/d(pa, p1) plus some constant for KL-UCB (Cappé
et al., 2013), showing that this algorithm is optimal with respect to Lai and Robbins’
bound.

Note that Lai and Robbins’ result holds for any bandit problem; however, the current
lower bound of Kalyanakrishnan et al. (2012) for Explore-m is a worst-case result stating
that for every PAC algorithm, there exists a bandit problem on which E[N ] ≥ CHε log(m/δ)
(with C of order 10−5). For m = 1, Mannor and Tsitsiklis (2004) derive lower bounds
holding for any problem: their bounds involve a sum of square gaps 1/∆2

a over a set of arms
not too far from the optimal arm, but that does not necessarly contain all the arms. In the
fixed-budget setting, for m = 1, Audibert et al. (2010) state that for every algorithm and
every bandit problem with parameters in [p, 1− p], there exists a permutation of the arms
such that P(Sn 6⊂ S∗m) ≥ exp(−n/C ′H0)) with C ′ = p(1 − p)/(5 + o(1)). In short, there
is only a worst-case result for m > 1, and for m = 1 all the results involve squared-gaps
and some constants. Thus, these existing lower bounds do not preclude algorithms from
achieving upper bounds for Explore-m(-FB) in terms of quantities smaller than H, possibly
involving information-theoretic terms.

In this paper, we derive upper bounds for Explore-m(-FB) in terms of Chernoff infor-
mation, a quantity closely related to KL-divergence. The Chernoff information d∗(x, y)
between two Bernoulli distributions B(x) and B(y) is defined by

d∗(x, y) = d(z∗, x) = d(z∗, y) where z∗ is the unique z such that d(z, x) = d(z, y).

Chernoff information is a relevant quantity in testing problems (Cover and Thomas, 2006).
Let X1, X2, . . . , Xn be n i.i.d. samples and H1 : Xi ∼ B(x) versus H2 : Xi ∼ B(y) be
two alternative hypotheses. For a test φ, let αn(φ) = P1(φ = 2) and βn = P2(φ = 1) be
respectively the type I and type II error. Chernoff’s Theorem states that when the objective
is to minimize both type I and type II error, the best achievable exponent is

d∗(x, y) = lim
n→∞

− 1

n
log min

φ
max(αn(φ), βn(φ)).
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Hence, for small δ, 1
d∗(pa,pm) log(1δ ) (resp. 1

d∗(pa,pm+1)
log(1δ )) represents the minimal

number of samples needed to discriminate between arm a and arm m (resp. arm a and arm
m+ 1) with an error probability smaller than δ, in the simpler case where the parameters
pa and pm are known. This reasoning motivates our first conjecture of a complexity term:

Htarget
ε :=

∑
a∈S∗m

1

max(d∗(pa, pm+1),
ε2

2 )
+

∑
a∈(S∗m)c

1

max(d∗(pa, pm), ε
2

2 )
. (1)

The complexity term H∗ε we derive in Section 4 is a tight upper bound on Htarget
ε .

3. Two classes of algorithms based on Confidence Intervals

To define an algorithm for Explore-m, one needs to specify a sampling strategy (choosing
which arms to draw at each round of the algorithm), a stopping strategy (when to stop)
and a recommendation strategy (choosing a subset of arms in the end). Virtually all the
algorithms proposed to date for pure-exploration problems can be classified according to
their sampling strategy: uniform sampling algorithms maintain a set of remaining arms,
and sample all these remaining arms at each round, whereas adaptive sampling algorithms
sample at each round one or two well-chosen arms.

Just as upper confidence bounds have been used successfully in the regret setting, most
existing algorithms for Explore-m have used both upper and lower confidence bounds on
the means of the arms. We state here a generic version of a uniform sampling algorithm,
Racing, and a generic version of an adaptive sampling algorithm, LUCB. To describe these
contrasting heuristics, we use generic confidence intervals, denoted by Ia(t) = [La(t), Ua(t)],
where t is the round of the algorithm, La(t) and Ua(t) are the lower and upper confidence
bounds on the mean of arm a. Let Na(t) denote the number of draws, and Sa(t) the sum

of the rewards gathered from arm a up to time t. Let p̂a(t) = Sa(t)
Na(t)

be the corresponding
empirical mean reward, and let p̂a,u be the empirical mean of u i.i.d. rewards from arm
a. Additionally, let J(t) be the set of m arms with the highest empirical means at time t
(for the Racing algorithm, J(t) only includes m′ ≤ m arms if m − m′ have already been
selected). Also, lt and ut are two ‘critical’ arms from J(t) and J(t)c that are likely to be
misclassified:

ut = argmax
j /∈J(t)

Uj(t) and lt = argmin
j∈J(t)

Lj(t). (2)

The Racing algorithm The idea of Racing dates back to Maron and Moore (1997), who
introduced it in the context of model selection for finding the (single) best model. The idea
of using both accepts and rejects was then used by Heidrich-Meisner and Igel (2009) in a
setting like Explore-m, applied within the context of reinforcement learning. These authors
do not formally analyze the algorithm’s sample complexity, as we do here. The Racing
algorithm, stated precisely as Algorithm 1, samples at each round t all the remaining arms,
and updates the confidence bounds. Then a decision is made to possibly select the empirical
best arm if its lower confidence bound (LCB) is larger than the upper confidence bounds
(UCBs) of all arms in J(t)c, or to discard the empirical worst arm if its UCB is smaller
than the LCBs of all arms in J(t). The successive elimination algorithm (Even-Dar et al.,
2006) for Explore-1 is a specification of Algorithm 1 using Hoeffding bounds.
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Algorithm 1 Racing algorithm

Require: ε ≥ 0 (tolerance level), U,L (confidence bounds)
R = {1, ...,K} set of remaining arms. S = ∅ set of selected arms.
D = ∅ set of discarded arms. t = 1 (current round of the algorithm)
while |S| < m and |D| < K −m do

Sample all the arms in R update confidence intervals
Compute J(t) the set of empirical m− |S| best arms and J(t)c = R\J(t)
Compute ut and lt according to (2)
Compute aB (resp. aW ) the empirical best (resp. worst) arm in R
if (Uut(t)− LaB (t) < ε) ∪ (UaW (t)− Llt(t) < ε) then

a = argmax
{aB ,aW }

(
(Uut(t)− LaB (t))1Uut (t)−LaB (t)<ε; (UaW (t)− Llt(t))1UaW (t)−Llt (t)<ε

)
Remove arm a: R = R\{a}
If a = aB select a: S = S ∪ {a}, else discard a: D = D ∪ {a}

end if
t=t+1

end while
return S if |S| = m, S ∪R otherwise

The LUCB algorithm A general version of the LUCB algorithm proposed by Kalyanakr-
ishnan et al. (2012) is stated in Algorithm 2, using generic confidence bounds U and L, while
the original LUCB uses Hoeffding confidence regions. Unlike Racing, this algorithm does
not sample the arms uniformly; rather, it draws at each round the two critical arms ut
and lt. This sampling strategy is associated with the natural stopping criterion (B(t) < ε)
where B(t) := Uut(t) − Llt(t). The UGapEc algorithm of Gabillon et al. (2012) is also an
adaptive sampling algorithm, that is very close to LUCB: it uses an alternative definition of
J(t) using confidence bounds on the simple regret, and a correspondingly different stopping
criterion B(t). But as LUCB, it also samples the corresponding critical arms ut or lt.

KL-Racing and KL-LUCB The two algorithms mentioned above both use generic up-
per and lower confidence bounds on the mean of each arm, and one has the intuition that the

Algorithm 2 LUCB algorithm

Require: ε ≥ 0 (tolerance level), U,L (confidence bounds)
t = 1 (number of stage of the algorithm), B(1) =∞ (stopping index)
for a=1...K do

Sample arm a, compute confidence bounds Ua(1), La(1)
end for
while B(t) > ε do

Draw arm ut and lt. t = t+ 1.
Update confidence bounds, set J(t) and arms ut, lt
B(t) = Uut(t)− Llt(t)

end while
return J(t).
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smaller these confidence regions are, the smaller the sample complexity of these algorithms
will be. Most of the previous algorithms use Hoeffding bounds, of the form

Ua(t) = p̂a(t) +

√
β(t, δ)

2Na(t)
and La(t) = p̂a(t)−

√
β(t, δ)

2Na(t)
(3)

for some exploration rate β(t, δ). Previous work (Mnih et al., 2008; Heidrich-Meisner and
Igel, 2009; Gabillon et al., 2012) has also considered the use of empirical Bernstein bounds,
that can be tighter. In this paper, we introduce the use of confidence regions based on
KL-divergence for Explore-m, inspired by recent improvements in the regret setting (Cappé
et al., 2013). We define, for some exploration rate β(t, δ),

ua(t) := max {q ∈ [p̂a(t), 1] : Na(t)d(p̂a(t), q) ≤ β(t, δ)} , and (4)

la(t) := min {q ∈ [0, p̂a(t)] : Na(t)d(p̂a(t), q) ≤ β(t, δ)} . (5)

Pinsker’s inequality (d(x, y) ≥ 2(x − y)2) shows that KL-confidence regions are always
smaller than those obtained with Hoeffding bounds, while they share the same coverage
probability (see Lemma 4 in Appendix A):

p̂a(t)−

√
β(t, δ)

2Na(t)
≤ la(t) and ua(t) ≤ p̂a(t) +

√
β(t, δ)

2Na(t)
. (6)

We define, for a given function β, the KL-Racing and KL-LUCB algorithms with explo-
ration rate β as the instances of Racing and LUCB, respectively, that use ua(t) and la(t)
as confidence bounds. Section 4 provides conditions on β for both algorithms to be PAC
and sample complexity bounds under these conditions. In our theoretical and experimental
analysis to follow, we address the “KL versus Hoeffding” and “uniform versus adaptive
sampling” questions.

Other algorithms and fixed budget setting Apart from the Halving algorithm of
Even-Dar et al. (2006) for Explore-1 (and its adaptation to Explore-m by Kalyanakrishnan
and Stone (2010)) for which the upper bound scales as K/ε2, Racing and LUCB capture
(to the best of our knowledge) all existing algorithms for Explore-m. In the fixed-budget
setting, Bubeck et al. (2013) propose the Successive Accepts and Rejects (SAR) algorithm
for Explore-m-FB, generalizing the Successive Reject algorithm of Audibert et al. (2010)
for Explore-1-FB. In this algorithm, arms are sampled uniformly in each of the K − 1
phases with predetermined length, and at the end of each phase, the empirical best arm
is selected or the empirical worst discarded, according to the empirical gap with J(t)c or
J(t) respectively (a criterion than cannot be formulated with confidence intervals). Some
adaptive sampling algorithms do exist for this setting too, namely UCB-E of Audibert et al.
(2010) for m = 1, or UGapEb of Gabillon et al. (2012). We propose here another adaptive
algorithm for the fixed-budget setting, KL-LUCB-E, studied in Appendix F, derived from
KL-LUCB by choosing the exploration rate β as a function of n.

4. Analysis of KL-Racing and KL-LUCB

Theorem 1, whose proof can be found in Appendix A, gives choices of β such that KL-
Racing and KL-LUCB are correct with probability at least δ (δ-PAC). These choices of
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β lead to the same guarantees as for their Hoeffding counterpart, (Hoeffding)-Racing and
LUCB.

Theorem 1 The (KL)-Racing algorithm using β(t, δ) = log
(
k1Ktα

δ

)
, with α > 1 and

k1 > 1 + 1
α−1 ; and the (KL)-LUCB algorithm using β(t, δ) = log

(
k1Ktα

δ

)
+ log log

(
k1Ktα

δ

)
,

with α > 1 and k1 > 2e+ 1 + e
α−1 + e+1

(α−1)2 , are correct with probability at least 1− δ.

Theorem 2 gives an upper bound on the sample complexity for KL-Racing involving Chernoff
information that holds in high probability. The bound we give for KL-LUCB in Theorem
3 is smaller and holds in expectation. It involves, for c ∈ [pm+1, pm]

H∗ε,c :=
∑

a∈{1,...,K}

1

max(d∗(pa, c), ε2/2)
and H∗ε := min

c∈[pm+1,pm]
H∗ε,c.

In the remainder of the paper, the parameter c ∈ [pm+1, pm] that we introduce in our
analysis will be assumed to be in ]0, 1[, excluding the case pm = pm+1 = 0 or 1.

4.1. A concentration result involving Chernoff information

Our analysis of KL-Racing and KL-LUCB share the need to bound the probability that
some constant c belongs to the interval Ia(t) after this arm has already been sufficiently
sampled. Deriving such a result for intervals based on KL-divergence brings up Chernoff
information:

Lemma 1 Let T ≥ 1 be an integer. Let δ > 0, γ > 0 and c ∈]0, 1[ be such that pa 6= c.

T∑
t=1

P
(
a = ut ∨ a = lt, Na(t) >

⌈
γ

d∗(pa, c)

⌉
, Na(t)d(p̂a(t), c) ≤ γ

)
≤ exp (−γ)

d∗(pa, c)
.

Sketch of the Proof Some functions based on KL-divergence need to be defined in order
to state an optimal concentration result involving KL-divergence in Lemma 2.

Definition 1 Let C1 > 1, (y, c) ∈]0, 1[2, y 6= c. Let sC1(y, c) be the implicit function:

d(sC1(y, c), c) =
d(y, c)

C1
and sC1(y, c) ∈

(
y, c
)
,

where (y, c) denotes the interval [y, c] if y < c, and [c, y] otherwise. We define FC1 as:

FC1(y, c) =
C1d(sC1(y, c), y)

d(y, c)
.

Lemma 2 Let C1 > 1, γ > 0 and c ∈]0, 1[ such that pa 6= c. For any integer T ,

T∑
u=d C1γ

d(pa,c)
e+1

P (ud(p̂a,u, c) ≤ γ) ≤ exp (−FC1(pa, c)γ)

d (sC1(pa, c), pa)
. (7)
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The sum in Lemma 2 is bounded tightly in the recent analysis of KL-UCB by Cappé
et al. (2013, Appendix A.2) for the value C1 = 1. However, the related bound shows no
exponential decay in γ, unlike the one we prove for C1 > 1 in Appendix C. Whereas it was
used to bound an expectation for KL-UCB, we need to bound a probability for KL-LUCB
and thus need this exponential decay. This technical difference ushers in the bifurcation
between Chernoff information and KL-divergence. Indeed, FC1(pa, c), that is the optimal
rate in the exponential (see Appendix C), depends on the problem and to be able to later
choose an exploration rate that does not, we have to choose C1 such that FC1(pa, c) = 1.
As we can see below, there is a unique constant C1(pa, c) satisfying FC1(pa,c)(pa, c) = 1 and
it is related to Chernoff information:

FC1(pa, c) = 1 ⇔ d(sC1(pa, c), pa) =
d(pa, c)

C1
⇔ d(sC1(pa, c), pa) = d(sC1(pa, c), c)

⇔ sC1(pa, c) is the unique z satisfying d(z, pa) = d(z, c).

Hence, C1(pa, c) can be rephrased using Chernoff information which is precisely defined
for two Bernoulli by d∗(pa, c) = d(z∗, c) = d(z∗, pa). One gets

C1(pa, c) = d(pa, c)/d
∗(pa, c). (8)

As detailed in Appendix C, invoking Lemma 2 with this particular value of C1 leads to
Lemma 1.

4.2. Sample Complexity results and discussion

We gather here our two main results on the sample complexity of KL-Racing (Theorem 2,
proof in Appendix B) and KL-LUCB (Theorem 3), proved in Section 4.3.

Theorem 2 Let c ∈ [pm+1, pm]. Let β(t, δ) = log
(
k1Ktα

δ

)
, with α > 1 and k1 > 1 + 1

α−1 .

The number of samples N used in KL-Racing with ε = 0 is such that

P
(
N ≤ max

a∈{1,...,K}

K

d∗(pa, c)
log

(
k1K(H∗ε,c)

α

δ

)
+K,Sδ = S∗m

)
≥ 1− 2δ.

Theorem 3 Let c ∈ [pm, pm+1], ε ≥ 0. Let β(t, δ) = log
(
k1Ktα

δ

)
+ log log

(
k1Ktα

δ

)
with

k1 > 2e+ 1 + e
α−1 + e+1

(α−1)2 . Then with α > 1, KL-LUCB is δ-PAC and

P
(
τ ≤ C0(α)H∗ε,c log

(
k1K(H∗ε,c)

α

δ

))
≥ 1− 2δ.

Moreover, for α > 2, we have the following upper bound on E[τ ]:

E[τ ] ≤ 2C0(α)H∗ε,c log

(
k1K(2H∗ε,c)

α

δ

)
+Kα,

with

Kα :=
δ

k1K(α− 2)
+

δ2α−1

k1(α− 2)
+

2α−1δ

k1

(
1 +

1

e
+ log 2α + log(1 + α log 2)

)
1

(α− 2)2
,

C0(α) such that C0(α) ≥ α log(C0(α)) + 1 +
α

e
.
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Improvements and lower bound The result of Theorem 2 is only a first bound involv-
ing Chernoff information and might be improved to involve a sum over the different arms
rather than a supremum. Note that a sample complexity analysis for Hoeffding-Racing and
KL-Racing can also be derived by adapting that of the successive elimination algorithm of
Even-Dar et al. (2006), leading to this result, that scales in the gaps ∆a (see Section 2):

P

N = O
∑

a∈{1,2,...,K}

1

∆2
a

log

(
K

∆aδ

)
,Sδ = S∗m

 ≥ 1− δ. (9)

Still, the bound in Theorem 2 can be smaller than (9) on some problems, and it does
not involve some big or unspecified constant multiplied by the complexity term. Yet, this
bound gives no information on the sample complexity when the algorithm makes a mistake
(as Kalyanakrishnan et al. (2012) note for successive elimination); and only holds for ε = 0.

For KL-LUCB, as Theorem 3 is true for all c ∈ [pm+1, pm], we can show a more elegant
result on the expectation of N involving the smaller quantity H∗ε mentioned above, for every
ε ≥ 0. For KL-LUCB with parameters 2 < α ≤ 2.2 and 2e+ 1 + e

α−1 + e+1
(α−1)2 < k1 ≤ 13,

E[N ] ≤ 24H∗ε log

(
13(H∗ε )2.2

δ

)
+

18δ

k1(α− 2)2
with H∗ε = min

c∈[pm+1;pm]
H∗ε,c.

We believe that this finite-time upper bound on the expected sample complexity is
the first of its kind involving KL-divergence (through Chernoff information). Pinsker’s
inequality shows that d∗(x, y) ≥ (x− y)2/2 and gives a relationship with the complexity
term Hε (see Section 2) derived by Kalyanakrishnan et al. (2012): H∗ε ≤ 8Hε. Although
H∗ε cannot be shown to be strictly smaller than Hε on every problem, the explicit bound
in (4.2) still improves over that of Kalyanakrishnan et al. (2012) in terms of the hidden
constants. Also, the theoretical guarantees in Theorem 3 hold for smaller exploration rates,
which appear to lower the sample complexity in practice.

Observe that H∗ε is larger than Htarget
ε , conjectured as the “true” problem complexity

in (1). We believe that the parameter c is an artifact of our proof, but are currently unable
to eliminate it. It is worth noting that on problems in which pm and pm+1 are not too
close to 0 or 1, our Chernoff information-based bound is comparable with a KL-divergence-
based bound: numerical evaluations of the function C(pa, c) (see (8)) indeed show that for
pm, pm+1 ∈ [0.001, 0.999],

Htarget
ε ≤ H∗ε ≤ H∗ε, pm+pm+1

2

≤ 9
∑

a∈{1,...,K}

1

max
(
d (pa, (pm + pm+1)/2) , ε

2

2

) .
It is an open problem to show a problem-dependent lower bound for Explore-m, and to
investigate if it involves Chernoff information terms d∗(x, y) or KL-divergence terms d(x, y).

Generalization Although we have only considered Bernoulli distributions in this paper,
note that KL-LUCB (and our proofs) can be extended to rewards in the exponential family
(as shown by Garivier and Cappé (2011) for KL-UCB) by using an appropriate d function.

9
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4.3. Proof of Theorem 3

Theorem 3 easily follows from these two inequalities that holds for any exploration rate:

for α > 1, T ≥ T ∗1 , P (τ ≥ T ) ≤ H∗ε,ce
−β(T,δ) +

∞∑
t=1

(β(t, δ) log(t) + 1)e−β(t,δ) (10)

for α > 2, T ≥ T ∗2 , P (τ ≥ T ) ≤ H∗ε,ce
−β(T,δ) +

KT

2
(β(T, δ) log(T ) + 1)e−β(T/2,δ), (11)

with
T ∗1 = min{T : H∗c,εβ(T, δ) < T} and T ∗2 = min{T : 2H∗c,εβ(T, δ) < T},

and from the bound on T ∗1 and T ∗2 given in Appendix E:

T ∗1 ≤ C0(α)H∗ε,c log

(
k1K(H∗ε,c)

α

δ

)
and T ∗2 ≤ 2C0(α)H∗ε,c log

(
k1K(2H∗ε,c)

α

δ

)
,

with C0(α) as specified in Theorem 3.

We now show (11). For c ∈ [pm+1, pm], if the confidence intervals of arms in J(t) and in
J(t)c are separated by c, the algorithm necessarily has to stop. This simple idea is expressed
in Proposition 1, with a proof provided in Appendix D. To state it, we need to define the
event

Wt =
⋂
a∈S∗m

(ua(t) > pa)
⋂

b∈(S∗m)c

(lb(t) < pb) .

Proposition 1 If Uut − Llt > ε and Wt holds, then either k = lt or k = ut satisfies

c ∈ Ik(t) and β̃k(t) >
ε

2
,

where we define β̃a(t) :=
√

β(t,δ)
2Na(t)

.

The remainder of this proof borrows from Kalyanakrishnan et al. (2012, see Lemma 5). Let
T be some fixed time and τ the stopping time of the algorithm. Our goal is to find an event
on which min(τ, T ) < T ; that is, the algorithm must have stopped after T rounds. Writing
T = dT2 e, we upper bound min(τ, T ):

min(τ, T ) = T +

T∑
t=T

1(Uut (t)−Llt (t)>ε)1Wt +

T∑
t=T

1W c
t

≤ T +
T∑
t=T

[
1(c∈Ilt (t))1(β̃lt (t)>

ε
2
) + 1(c∈Iut (t))1(β̃ut (t)>

ε
2
)

]
+

T∑
t=T

1W c
t

≤ T +
T∑
t=T

∑
a∈{1,2,...,K}

1(a=lt)∨(a=ut)1(c∈Ia(t))1(β̃a(t)>ε/2)
+

T∑
t=T

1W c
t
, (12)

where the first inequality comes from Proposition 1. First, one has that β̃a(t) > ε/2 ⇔
Na(t) < β(t, δ)/(ε2/2). We then split the first sum in the RHS of (12) depending on
whether arm a belongs to the set Aε =

{
a ∈ {1, 2, . . . ,K} : d∗(pa, c) < ε2/2

}
.

10
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min(τ, T ) ≤ T +
∑
a∈Aε

T∑
t=T

1(a=lt∨ut)1
(
Na(t)<

β(t,δ)

ε2/2

) +
∑
a∈Acε

T∑
t=T

1(a=lt∨ut)1(c∈Ia(t)) + 1W c
T ,T

≤ T +
∑
a∈Aε

β(T, δ)

ε2/2
+
∑
a∈Acε

T∑
t=T

1(a=lt)∨(a=ut)1Na(t)≤
⌈
β(T,δ)
d∗(pa,c)

⌉ +RT

where

RT :=
∑
a∈Acε

T∑
t=T

1(a=lt)∨(a=ut)1(c∈Ia(t))1Na(t)>
⌈
β(T,δ)
d∗(pa,c)

⌉ +
T∑
t=T

1W c
t
.

This yields: min(τ, T ) ≤ T+H∗ε,cβ(T, δ)+RT . Introducing T ∗2 = min{T : 2H∗c,εβ(T, δ) < T},
we get that for T > T ∗2 , on the event (RT = 0), min(τ, T ) < T , the algorithm must have
stopped before T . Hence, for such T ,

P(τ ≥ T ) ≤ P
(
∃a ∈ Acε, t ≤ T : a = lt ∨ ut, Na(t) >

β(T, δ)

d∗(pa, c)
, c ∈ Ia(t)

)
︸ ︷︷ ︸

A

+P

 T⋃
T

W c
t


︸ ︷︷ ︸

B

.

We upper-bound term A using Lemma 1 (with γ = β(T, δ)), writing

A ≤
∑
a∈Acε

T∑
t=1

P
(
a = lt ∨ a = ut, Na(t) >

⌈
β(T, δ)

d∗(pa, c)

⌉
, c ∈ Ia(t)

)

≤
∑
a∈Acε

T∑
t=1

P
(
a = lt ∨ a = ut, Na(t) >

⌈
β(T, δ)

d∗(pa, c)

⌉
, Na(t)d(p̂a(t), c) ≤ β(T, δ)

)
≤

∑
a∈Acε

1

d∗(pa, c)
exp (−β(T, δ)) ≤ H∗ε,c exp (−β(T, δ)) ,

and we upper-bound term B using Lemma 4 (Appendix A):

B ≤ K
T∑
t=T

eβ(t, δ)(log t+ 1) exp(−β(t, δ)) ≤ KT

2
β(T, δ)(log T + 1) exp (−β (T/2, δ)) .

This proves (11). The proof of (10) follows along the same lines, except we do not introduce
T and replace it by zero in the above equations. The introduction of T to show (10) is
necessary to be able to upper-bound P(τ ≥ T ) by the general term of a convergent series.

5. Numerical experiments

On the basis of our theoretical analysis from the preceding sections, could we expect the
“KL-ized” versions of our algorithms to perform better in practice? Does being “fully
sequential” make our adaptive sampling algorithms more efficient than uniform sampling
algorithms in practice? In this section, we present numerical experiments that answer both
these questions in the affirmative.

11
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In our experiments, in addition to (KL-)LUCB and (KL-)Racing, we include (KL-)LSC,
an adaptive sampling algorithm akin to (KL)-LUCB. This algorithm uses the same stopping
criterion as (KL)-LUCB, but rather than sample arms ut and lt at stage t, (KL)-LSC samples
the least-sampled arm from J(t) (or J(t)c) that collides (overlaps by at least ε) with some
arm in J(t)c (J(t)). To ensure that all algorithms are provably PAC, we run them with
the following parameters: (KL-)LUCB and (KL-)LSC with α = 1.1, k1 = 405.5, and (KL-)
Racing with α = 1.1, k1 = 11.1. Results are summarized in Figure 1.

As a first order of business, we consider bandit instances with K = 10, 20, . . . , 60 arms;
we generate 1000 random instances for each setting of K, with each arm’s mean drawn
uniformly at random from [0, 1]. We set m = K

5 , ε = 0.1, δ = 0.1. The expected sample
complexity of each algorithm on the bandit instances for each K are plotted in Figure 1(a).
Indeed we observe for each K that (1) the KL-ized version of each algorithm enjoys a
lower sample complexity, and (2) (KL)-LUCB outperforms (KL-)LSC, which outperforms
(KL-)Racing. The differences in sample complexity consistently increase with K.

These trends, aggregated from multiple bandit instances, indeed hold for nearly every
individual bandit instance therein. In fact, we find that KL-izing has a more pronounced
effect on bandit instances with means close to 0 or 1. For illustration, consider instance
B1 (K = 15; p1 = 1

2 ; pa = 1
2 −

a
40 for a = 2, 3, . . . ,K), an instance used by Bubeck et al.

(2013, see Experiment 5). Figure 1(b) compares the runs of LUCB and KL-LUCB both on
B1 (with m = 3, ε = 0.04, δ = 0.1), and a “scaled-down” version B2 (with m = 3, ε = 0.02,
δ = 0.1) in which each arm’s mean is half that of the corresponding arm’s in B1 (and thus
closer to 0). While LUCB and KL-LUCB both incur a higher sample complexity on the
harder B2, the latter’s relative economy is clearly visible in the graph—an advantage that
could benefit applications such as optimizing click-through rates of on-line advertisements.

How conservative are the stopping criteria of our PAC algorithms? In our third exper-
iment, we halt these algorithms at intervals of 1000 samples, and at each stage record the
probability that the set J(t) of m empirical best arms that would be returned at that stage is
non-optimal. Results from this experiment, again on B1 (with m = 3, ε = 0.04, δ = 0.1), are
plotted in Figure 1(c). Notice that (KL)-LUCB indeed drives down the mistake probability
much faster than its competitors. Yet, even if all the algorithms have an empirical mistake
probability smaller than δ after 5,000 samples, they only stop after at least 20,000 episodes,
leaving us to conclude that our formal bounds are rather conservative. On the low-reward
instance B2 (with m = 3, ε = 0.02, δ = 0.1), we observe that KL-LUCB indeed reduces
the mistake probability more quickly than LUCB, indicating a superior sampling strategy.
This difference is between LUCB and KL-LUCB is not apparent on B1 in Figure 1(c).

We test KL-LUCB-log(t), a version of KL-LUCB with an exploration rate of log(t)
(which yields no provable guarantees) as a candidate for Explore-m-FB. On B1 (with
n = 4000), we compare this algorithm with KL-LUCB-E, discussed in Appendix F, which
has a provably-optimal exploration rate involving the problem complexity (H∗ε ≈ 13659).
Quite surprisingly, we find that KL-LUCB-log(t) significantly outdoes KL-LUCB-E for ev-
ery setting of m from 1 to 14. KL-LUCB-log(t) also outperforms the SAR algorithm of
Bubeck et al. (2013), yielding yet another result in favor of adaptive sampling. A tuned
version of KL-LUCB-E (using an exploration rate of n

2×180) performs virtually identical to
KL-LUCB-log(t), and is not shown in the figure.

12



Information Complexity in Bandit Subset Selection

12

10

8

6

4

2

 10  20  30  40  50  60

K

Expected sample complexity / 10000

Racing
KL-Racing

LSC
KL-LSC

LUCB
KL-LUCB

(a)

0.16

0.12

0.08

0.04

0
2018161412108642

Samples / 10000

B2

0.16

0.12

0.08

0.04

0

Fraction of runs (in bins of width 1000)

B1 LUCB
KL-LUCB

(b)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

7654321

Samples / 1000

Empirical mistake probability during run

Racing
KL-Racing

LSC
KL-LSC

LUCB
KL-LUCB

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14

m

Empirical mistake probability after 4000 samples

KL-LUCB-E
Uniform

SAR
KL-LUCB-log(t)

(d)
Figure 1: Experimental results (descriptions in text; plots best viewed in color).

6. Conclusion

This paper presents a successful translation of recent improvements for bandit problems
in the regret setting to the pure-exploration setting. Incorporating confidence intervals
based on KL-divergence into the Racing and LUCB algorithms, which capture almost every
algorithm previously used for Explore-m, we introduce the KL-LUCB and KL-Racing al-
gorithms, which improve both in theory and in practice over their Hoeffding counterparts.
Our experiments also provide the novel insight that adaptive sampling might be superior
to uniform sampling even for Explore-m-FB.

For KL-LUCB, we provide the first finite-time upper bound on the expected sample
complexity involving Chernoff information. Is there a fundamental difference between the
regret and pure-exploration settings that would justify a different complexity measure, albeit
one still based on KL-divergence? A problem-dependent lower bound on the expected
sample complexity of any PAC algorithm for Explore-m could answer this question, and is
left as an interesting open question. As another gap between regret and pure-exploration,
one might consider that no counterpart of the Thompson Sampling algorithm, recently
shown to be optimal in the regret setting (Kaufmann et al., 2012) as well as practically very
efficient, has yet been found for Explore-m(-FB).
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Appendix A. PAC guarantees for (KL)-Racing and (KL)-LUCB

Proof of Theorem 1 The PAC guarantees for (KL)-Racing and (KL)-LUCB follow from
Lemma 3 that states that generic Racing and LUCB algorithm are correct on some event
W . Then the concentration inequalities in Lemma 4 lead to a bound on P(W c) for each
algorithm that depend on β(t, δ). Finally it is easy to check that choices of β(t, δ) in
Theorem 1 lead to P(W c) ≤ δ.

Lemma 3 Racing and LUCB are correct on the event

W =
⋂
t∈N

⋂
a∈S∗m

(Ua(t) > pa)
⋂

b∈(S∗m)c

(Lb(t) < pb).

where U and L denote the generic confidence bounds used by these two algorithms.

Proof for Racing If Racing is not correct, there exists some first round t on which either an
arm in (S∗m,ε)c is selected (first situation), or an arm in S∗m is dismissed (second situation).
Before t, all the arms in the set of selected arms S are in S∗m,ε, and all the arms in set of
discarded arms D are in (S∗)c. In the first situation, let b be the arm in (S∗m,ε)c selected :
for all arms a in J(t)c, one has Ua(t)−Lb(t) < ε. Among these arms, at least one must be in
S∗m. So there exists a ∈ S∗m and b ∈ (S∗ε )c such that Ua(t) < Lb(t) + ε. The second situation
leads to the same conclusion. Hence if the algorithm fails, the following event holds:⋃

t∈N
(∃a ∈ S∗m, ∃b ∈ (S∗m,ε)c : Ua(t)− Lb(t) < ε)

⊂
⋃
t∈N

(
∃a ∈ S∗m, ∃b ∈ (S∗m,ε)c : (Ua(t) < pa) ∪ (Lb(t) > pa − ε > pb)

)
⊂
⋃
t∈N

⋃
a∈S∗m

(Ua(t) < pa)
⋃

b∈(S∗m,ε)c
(Lb(t) > pb) ⊂W c.

Proof for LUCB If LUCB is not correct, there exists some stopping time τ , arm a in S∗m
and an arm b in (S∗m,ε)c such that a ∈ J(τ) and b ∈ J(τ)c. As the stopping condition holds,
on has Ua(t) − Lb(t) < ε. Using the same reasoning as above, if the algorithm fails, the
following event holds:⋃

t∈N

⋃
a∈S∗m

(Ua(t) < pa)
⋃

b∈(S∗m,ε)c
(Lb(t) > pb) ⊂W c.

�

Lemma 4 Let ua(t) and la(t) be the KL-bounds defined in (4) and (5). Let Ua(t) and La(t)
be the Hoeffding bounds defined in (3). For any algorithm and any arm a,

P(ua(t) < pa) = P(la(t) > pa) ≤ e(β(t, δ) log(t) + 1) exp(−β(t, δ)). (13)

P(Ua(t) < pa) = P(La(t) > pa) ≤ e(β(t, δ) log(t) + 1) exp(−β(t, δ)). (14)

For (KL)-Racing, for an arm still in the race:

P(ua(t) < pa) = P(la(t) > pa) ≤ exp(−β(t, δ)). (15)

P(Ua(t) < pa) = P(La(t) > pa) ≤ exp(−β(t, δ)). (16)
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Proof of Lemma 4 Hoeffding’s inequality (resp. Chernoff’s inequality) is enough to derive
(15) (resp. (16)), since for an arm still in the race, Na(t) = t, and p̂a(t) = p̂a,t (no union
bound over Na(t) is needed). For a more general algorithm (including LUCB), sampling
is not uniform, and the self-normalized inequality proved by Garivier and Cappé (2011,
see Theorem 10) leads to the bound (13), which is tighter than what we get by applying
Chernoff inequality and a union bound over Na(t). (14) can be shown using the same
technique as in their proof.

�

Appendix B. Sample complexity analysis of KL-Racing

Let c ∈ [pm+1, pm] and T = dH0,ce. Let W the event defined in Lemma 3 (in Appendix A)
on which the algorithm is correct, and

W̃T =
⋂
t≤T

⋂
a∈A

(
Na(t) >

⌈
β(T, δ)

d∗(pa, c)

⌉
⇒ c /∈ Ia(t)

)
.

On W , KL-Racing has only selected good arms and dismissed bad arms before time t. Let
a ∈ S∗m and ta be the number of samples of a used by the algorithm. A sufficient condition
for a to be selected at time t is that la(t) > c and ub(t) < c for all arms b ∈ (S∗m)c still in

the race. On W̃T this happens when t ≥ max
(
β(T,δ)
d∗(pa,c)

, β(T,δ)
d∗(pm+1,c)

)
+ 1. Hence,

ta ≤ max
a

1

d∗(pa, c)
β(T, δ) + 1.

The same holds for b ∈ (S∗m)c. Therefore on W ∩ W̃T ,

N ≤ max
a∈{1,...,K}

K

d∗(pa, c)
log

(
k1K(H∗0,c)

α

δ

)
+K.

From its definition, P(W c) ≤ δ and

P(W̃ c
T ) ≤

∑
t≤T

∑
a∈A

P
(
Na(t) >

⌈
β(T, δ)

d∗(pa, c)

⌉
, Na(t)d(p̂a(t), c) ≤ β(T, δ)

)
≤
∑
a∈A

∑
t=
⌈

β(t,δ)
d∗(pa,c)

⌉
+1

P (td(p̂a,t, c) ≤ β(T, δ))

(7)

≤
∑
a∈A

e−β(T,δ)

d∗(pa, c)
≤

H∗0,c
k1KTα

δ
(T≥H0,c)

≤ δ.

Appendix C. Proof of concentration Lemmas

The probability we have to bound in order to prove Lemma 2 is

P :=
T∑

u=dC1γ/d(pa,c)e+1

P (ud(p̂a,u, c) ≤ γ) .
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This sum also arises in the analysis of the KL-UCB algorithm and is precisely upper-bounded
by Cappé et al. (2013, see Appendix A.2), for the choice C1 = 1. However, as we want to
bound a probability and not an expectation, the bound in Cappé et al. (2013) is not tight
enough, and we adapt the method proposed to the choice C1 > 1. Introducing

d+(x, c) = d(x, c)1(x<c) and d−(x, c) = d(x, c)1(x>c),

we use:

P ≤
T∑

u=n1(a,c,γ)+1

P
(
ud+(p̂a,u, c) ≤ γ

)
for pa < c, and

P ≤
T∑

u=n1(a,c,γ)+1

P
(
ud−(p̂a,u, c) ≤ γ

)
for pa > c,

with n1(a, c, γ) =
⌈

C1γ
d(pa,c)

⌉
. We now introduce notation that will be useful in the rest of the

proof. The two mappings

d+ : [0, c] −→ [0, d(0, c)] d− : [c, 1] −→ [0, d(1, c)]
x 7→ d(x, c) x 7→ d(x, c)

are bijective and monotone. Then, for α ∈ [0, d(pa, c)], the quantity s∗α(pa, c) is well-defined
by:

d(s∗α(pa, c), c) = α and s∗α(pa, c) ∈ (pa, c).

With this new notation, one has, for a ∈ (S∗m)c:

P
(
ud+(p̂a,u, c) ≤ γ)

)
= P

(
d+(p̂a,u, c) ≤

γ

u

)
= P

(
p̂a,u ≥ s∗γ

u
(pa, c)

)
.

And for a ∈ S∗m:

P
(
ud−(p̂a,u, c) ≤ γ)

)
= P

(
p̂a,u ≤ s∗γ

u
(pa, c)

)
.

Using Chernoff’s concentration inequality and a comparison with an integral yields in both
cases:

P ≤
T∑

u=n1(a,c,γ)+1

exp
(
−ud

(
s∗γ
u

(pa, c), pa

))
≤
∫ ∞
n1(a,c,γ)

exp
(
−ud

(
s∗γ
u

(pa, c), pa

))
du.

With the change of variable u = γv, one has:

P ≤ γ
∫ ∞

C1
d(pa,c)

exp
(
−γvd

(
s∗1
v

(pa, c), pa

))
dv.︸ ︷︷ ︸

mγ

(17)
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An asymptotic equivalent This last integral takes the form∫ ∞
C1

d(pa,c)

exp (−γφ(v)) with φ(v) = vd
(
s∗1
v

(pa, c), pa

)
and φ is increasing. We can use the Laplace method for approximating the integral when
γ goes to infinity.

φ′(v) = d
(
s∗1
v

(pa, c), pa

)
− 1

v

d′
(
s∗1
v

(pa, c), pa

)
d′
(
s∗1
v

(pa, c), c

) ≥ 0.

And φ′
(

C1
d(pa,c)

)
= 0 iff C1 = 1. If C1 > 1 the following equivalent holds:

∫ ∞
C1

d(pa,c)

exp (−γφ(v)) ∼
γ→∞

exp
(
−γφ

(
C1

d(pa,c)

))
γφ′

(
C1

d(pa,c)

) .

Noting that s∗d(pa,c)
C1

(pa, c) = sC1(pa, c), we get

mγ ∼
γ→∞

exp(−γFC1(pa, c))

φ′
(

C1
d(pa,c)

) with FC1(pa, c) =
C1d (sC1(pa, c), pa)

d(pa, c)
.

And φ′
(

C1
d(pa,c)

)
can be written as

φ′
(

C1

d(pa, c)

)
=
d(pa, c)

C1

(
FC1(pa, c)−

d′(sC1(pa, c), pa)

d′(sC1(pa, c), c)

)
.

This asymptotic equivalent shows that, starting from (17), we cannot improve the constant
FC1(pa, c) in the exponential with a bigger (and maybe non problem-dependent) one. If
C1 = 1 the same reasoning holds, but the Laplace equivalent is different and leads to:

mγ ∼
γ→∞

√
γ

√
π

−2φ′′
(

1
d(pa,c)

) ,
which is a trivial upper bound for a probability.

An ‘optimal’ bound of the probability We now give a non-asymptotic upper bound
of (17) involving the optimal rate FC1(pa, c) in the exponential. If v ≥ C1

d(pa,c)
, s∗1

v

(pa, c) ≥
s∗d(pa,c)

C1

(pa, c) and we can use this bound in the integral in (17) to get:

P ≤
∫ ∞

C1
d(pa,c)

exp (−ud (sC1(pa, c), pa)) du =
exp (−FC1(pa, c)γ)

d (sC1(pa, c), pa)
.
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Proof of Lemma 1 For a given value of C1, the following quantity can be upper bounded
by P , using a trick shown in Garivier and Cappé (2011, see Lemma 7).

T∑
t=1

P
(
a = ut ∨ a = lt, Na(t) >

⌈
C1γ

d(pa, c)

⌉
, Na(t)d(p̂a(t), c) ≤ γ

)

= E

[
T∑
t=1

1a=ut∨a=lt1Na(t)>
⌈

C1γ
d(pa,c)

⌉1Na(t)d(p̂a(t),c)≤γ
]

= E

 T∑
t=1

t∑
u=
⌈

C1γ
d(pa,c)

⌉
+1

1a=ut∨a=lt1Na(t)=u1ud(p̂a,u,c)≤γ



≤ E

 T∑
u=
⌈

C1γ
d(pa,c)

⌉
+1

1ud(p̂a,u,c)≤γ

T∑
t=u

1a=ut∨lt1Na(t)=u

 ≤ E

 T∑
u=
⌈

C1γ
d(pa,c)

⌉
+1

1ud(p̂a,u,c)≤γ


=

T∑
u=
⌈

C1γ
d(pa,c)

⌉
+1

P (ud(p̂a,u, c) ≤ γ) .

Using Lemma 2 to upper bound P with the choice of C1 = d∗(pa, c)/d(pa, c) lead to the
inequality of Lemma 1.

Appendix D. Proof of Proposition 1

We first show that at time t, if the stopping condition does not hold (Uut − Llt > ε) and
the event Wt holds, then either c ∈ Iut(t) or c ∈ Ilt(t). This comes from a straightforward
adaptation of the beginning of the proof of Lemma 2 from Kalyanakrishnan et al. (2012).
Then we also observe that if Uut − Llt > ε, the two intervals Iut(t) and Ilt(t) cannot be
too small simultaneously. Indeed, Pinsker’s inequality (6) and the fact that p̂ut(t) < p̂lt(t)
leads to

β̃ut(t) + β̃lt(t) > ε with β̃a(t) :=

√
β(t, δ)

2Na(t)
. (18)

Hence either β̃ut(t) >
ε
2 or β̃ut(t) >

ε
2 . It remains to show that one of k = lt and k = ut such

that c ∈ Ik(t) also satisfies this second condition. This part is the Proof uses properties of
KL-divergence, and cannot directly be adapted from Kalyanakrishnan et al. (2012).

It remains to show that if Uut(t)− Llt(t) > ε, then the four statements below hold.

c ∈ Iut(t) and c > Ult(t) ⇒ β̃ut(t) >
ε

2
. (19)

c ∈ Iut(t) and c < Llt(t) ⇒ β̃ut(t) >
ε

2
. (20)

c ∈ Ilt(t) and c > Uut(t) ⇒ β̃lt(t) >
ε

2
. (21)

c ∈ Ilt(t) and c < Llt(t) ⇒ β̃lt(t) >
ε

2
. (22)
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To prove (19), note that if c ∈ Iut(t) and c > Ult(t), one has

d(p̂ut(t), c) ≤ 2β̃ut(t)
2 and d(p̂lt(t), c) ≥ 2β̃lt(t)

2.

Moreover, as c > Ult , c > p̂lt(t) > p̂ut(t) holds, and therefore d(p̂lt(t), c) ≤ d(p̂ut(t), c).
Hence,

2β̃lt(t)
2 ≤ d(p̂lt(t), c) ≤ d(p̂ut(t), c) ≤ 2β̃ut(t)

2 and β̃lt(t) ≤ β̃ut(t)

This together with β̃lt(t) + β̃ut(t) > ε leads to β̃ut(t) >
ε
2 and proves statement (19). The

proof of statement (21) use identical arguments.

The proof of statement (20) goes as follows :

(Uut(t)− Llt(t) > ε) ∩ (Lut < c) ∩ (c < Llt(t))

⇒ (Uut(t) > c+ ε) ∩ (Lut < c)

⇒ (p̂ut(t) + β̃ut(t) > c+ ε) ∩ (p̂ut(t)− β̃ut(t) < c)

⇒ 2β̃ut(t) > ε.

And the proof of statement (22) is similar.

Appendix E. Upper bound on T1

T ∗1 (resp. T ∗2 ) is the unique solution of the equation

x =
1

β
log

(
tα

η

)
(23)

with β = 1
H∗ for T ∗1 (resp. β = 1

2H∗ for T ∗2 ) and η = δ
k1K

. The bounds given in Section 4.2
come from the following lemma.

Lemma 5 Let x∗ be the solution of (23) with β and η satisfying η < 1
e , β < 1. Then

1

β
log

(
1

βαη

)
≤ x∗ ≤ C0

β
log

(
1

βαη

)
with C0 such that C0 ≥ α log(C0) + 1 + α

e .

Proof x∗ is upper-bounded by any x such that 1
β log

(
xα

η

)
< x. We look for such x of the

form x = C0
β log

(
1
βαη

)
. One has:

1

β
log

(
xα

η

)
=

1

β
log

Cα0
(

log
(

1
βαη

))α
βαη

 =
1

β

[
α logC0 + log

1

βαη
+ α log log

1

βαη

]

≤ 1

β

[
α log(C0) +

(
1 +

α

e

)
log

(
1

βαη

)]
≤ 1

β

[
α log(C0) +

(
1 +

α

e

)]
log

(
1

βαη

)
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where the first inequalities uses that ∀x, x+ α log(x) ≤ (1 + α
e )x and the second inequality

holds because βαη < 1
e . Therefore, choosing C0 such that

α log(C0) +
(

1 +
α

e

)
< C0

yields the inequality 1
β log

(
xα

η

)
< x. The lower bound comes from the fact that the sequence

defined by
t0 = 1, and

tn+1 = 1
β log

(
tαn
η

)
is increasing (β < 1 and η < 1

e imply that t0 ≤ t1) and converges to x∗. Hence,

x∗ ≥ t2 =
1

β
log

(
1

ηβα

)
+
α

β
log log

(
1

η

)
≥ 1

β
log

(
1

ηβα

)
.

�

Appendix F. KL-LUCB for the Fixed Budget Setting

Gabillon et al. (2012) and Kalyanakrishnan (2011, Section 5.4) suggest methods to turn
an algorithm A for Explore-m into an algorithm for Explore-m-FB when the complexity
of the problem is known. Their two ideas have in common to use an exploration rate
depending on n and on the complexity (and no longer on t and δ) and to use the sampling
strategy of algorithm A with this exploration rate during n rounds. The idea of Gabillon
et al. (2012) is to store the sets J(t) and the value of the stopping criteria B(t) of A at
all rounds t = 1, 2, . . . , n and to recommend the set J(t) associated with the smallest value
of B(t) (i.e., the output is the set for which A was the closest from stopping). The idea
of Kalyanakrishnan (2011) is to output the result of A if it has stopped before n, and any
other set otherwise (e.g. the empirical m best arms). Here we focus on this last idea to
define KL-LUCB-E, but the bound on en given in Theorem 4 also holds for the approach
suggested by Gabillon et al. (2012).

Definition 2 Let Ab denote the KL-LUCB algorithm with β(t, δ) = b and τb be the corre-
sponding stopping time. The KL-LUCB-E algorithm with parameter b runs Ab up to at least
round n/2. If τb < n/2, it recommends the output of Ab, else it recommends the empirical
m best arms at round n/2 of Ab.

Theorem 4 The KL-LUCB-E algorithm with parameter b ≤ n
2H∗ε,c

uses at least n samples

of the arms and satisfies

en := P(Sn 6⊂ S∗m,ε) ≤ (Kn+H∗ε,c) exp (−b) .

Especially for b = n
2H∗ε,c

, one gets

en ≤
(
Kn

2
+H∗ε,c

)
exp

(
− n

2H∗ε,c

)
. (24)
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KL-LUCB-E can be seen as a generalization to the Explore-m problem of the UCB-E
algorithm proposed by Audibert et al. (2010) for Explore-1, and the corresponding upper
bound involves Chernoff information. Of course, KL-LUCB-E requires the knowledge of the
complexity of the problem and is therefore not very interesting. A variant of KL-LUCB-E
estimating the complexity on-line could overcome this problem, as Audibert et al. (2010) do
to turn UCB-E into an efficient algorithm. Even when KL-LUCB-E is given the complexity,
our experiments report that it is not very efficient. This can be partly explained by the
fact that on difficult problems (where H∗ε,c is large) (24) is a non trivial bound (smaller
than 1) only for very big values of n. Thus there are no guarantees for KL-LUCB-E to be
practically efficient for reasonable values of n.

The SAR algorithm of Bubeck et al. (2013), based on uniform sampling is more reason-
able since it does not require the complexity of the problem. However, as demonstrated in
our numerical experiments in Section 5, smart sampling based on a “standard” exploration
rate such as log(t) can indeed outperform SAR in practice, even if it lacks a theoretical error
bound. Thus, adaptive sampling appears to be a relevant approach even for Explore-m-FB.

Proof of Theorem 4 We introduce n′ = n
2 and write

en = P(Sn * S∗m,ε|τb ≤ n′)P(τb ≤ n′) + P(Sn * S∗m,ε|τb > n′)P(τb > n′)

≤ P(Sn * S∗m,ε|τb ≤ n′) + P(τb > n′).

If τb ≤ n′, Sn * S∗m,ε implies that Ab must return a wrong set on [0, n′] and as already seen,
that the event W c

n holds, where

Wn =
⋂
t≤n′

⋂
a∈S∗m,ε

(ua(t) > pa)
⋂

b∈(S∗m,ε)c
(lb(t) < pb).

To bound P(τb > n′) we use the same technique as in the proof of Theorem 3 (using the
same notations)

min(τb, n
′) ≤ H∗ε,cb+

∑
a∈Acε

n′∑
t=1

1(a=lt)∨(a=ut)1Na(t)d(p̂a(t),c)≤b1Na(t)> b
d∗(pa,c)

+ 1W c
n︸ ︷︷ ︸

Rn′

.

Hence, for b ≤ n′

H∗ε,c
, on (Rn′ = 0) one has min(τb, n

′) ≤ n′ and Ab has stopped after n′

rounds.

P(τb > n′) ≤ P(W c
n) +

∑
a∈Acε

n′∑
t=1

P
(
a = lt ∨ ut, Na(t) >

b

d∗(pa, c)
, Na(t)d(p̂a(t), c) ≤ b

)
≤ P(W c

n) +H∗ε,c exp(−b).

where the inequality follows from Lemma 1. We have

en ≤ H∗ε,c exp(−b) + 2P(W c
n).
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To bound P(W c
n), we use that for all a,

P(∃t ≤ n′ : ua(t) < pa) = P(∃t ≤ n′ : Na(t)d
+(p̂a(t), pa) ≥ b)

= P(∃t ≤ n′, ∃s ≤ t : sd+(p̂a,s, pa) ≥ b)
= P(∃s ≤ n′ : sd+(p̂a,s, pa) ≥ b)

≤
n′∑
s=1

P(sd+(p̂a,s, pa) ≥ b) ≤ n′ exp(−b),

where the last inequality is a consequence of Chernoff inequality. Symmetrically,

P(∃t ≤ n′ : lb(t) > pb) ≤ n′ exp(−b)

also holds and finally, using an union bound, we get for b ≤ n
2H∗ε,c

,

en ≤ H∗ε,c exp(−b) +
Kn

2
exp(−b).

�
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