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Abstract

Thompson Sampling has been demonstrated in many complex bandit models,
however the theoretical guarantees available for the parametric multi-armed bandit
are still limited to the Bernoulli case. Here we extend them by proving asymptotic
optimality of the algorithm using the Jeffreys prior for 1-dimensional exponential
family bandits. Our proof builds on previous work, but also makes extensive use
of closed forms for Kullback-Leibler divergence and Fisher information (through
the Jeffreys prior) available in an exponential family. This allow us to give a finite
time exponential concentration inequality for posterior distributions on exponen-
tial families that may be of interest in its own right. Moreover our analysis covers
some distributions for which no optimistic algorithm has yet been proposed, in-
cluding heavy-tailed exponential families.

1 Introduction

K-armed bandit problems provide an elementary model for exploration-exploitation tradeoffs found
at the heart of many online learning problems. In such problems, an agent is presented with K
distributions (also called arms, or actions) {pa}Ka=1, from which she draws samples interpreted as
rewards she wants to maximize. This objective induces a trade-off between choosing to sample a
distribution that has already yielded high rewards, and choosing to sample a relatively unexplored
distribution at the risk of loosing rewards in the short term. Here we make the assumption that
the distributions, pa, belong to a parametric family of distributions P = {p(· | θ), θ ∈ Θ} where
Θ ⊂ R. The bandit model is described by a parameter θ0 = (θ1, . . . , θK) such that pa = p(· | θa).
We introduce the mean function µ(θ) = EX∼p(·|θ)[X], and the optimal arm θ∗ = θa∗ where a∗ =
argmaxa µ(θa).

An algorithm, A, for a K-armed bandit problem is a (possibly randomised) method for choosing
which arm at to sample from at time t, given a history of previous arm choices and obtained rewards,
Ht−1 := ((as, xs))

t−1
s=1: each reward xs is drawn from the distribution pas . The agent’s goal is to

design an algorithm with low regret:

R(A, t) = R(A, t)(θ) := tµ(θ∗)− EA

[
t∑

s=1

xs

]
.

This quantity measures the expected performance of algorithm A compared to the expected perfor-
mance of an optimal algorithm given knowledge of the reward distributions, i.e. sampling always
from the distribution with the highest expectation.
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Since the early 2000s the “optimisim in the face of uncertainty” heuristic has been a popular ap-
proach to this problem, providing both simplicity of implementation and finite-time upper bounds
on the regret (e.g. [4, 7]). However in the last two years there has been renewed interest in the
Thompson Sampling heuristic (TS). While this heuristic was first put forward to solve bandit prob-
lems eighty years ago in [15], it was not until recently that theoretical analyses of its performance
were achieved [1, 2, 11, 13]. In this paper we take a major step towards generalising these analyses
to the same level of generality already achieved for “optimistic” algorithms.

Thompson Sampling Unlike optimistic algorithms which are often based on confidence intervals,
the Thompson Sampling algorithm, denoted byAπ0

uses Bayesian tools and puts a prior distribution
πa,0 = π0 on each parameter θa. A posterior distribution, πa,t, is then maintained according to the
rewards observed in Ht−1. At each time a sample θa,t is drawn from each posterior πa,t and then
the algorithm chooses to sample at = arg maxa∈{1,...,K}{µ(θa,t)}. Note that actions are sampled
according to their posterior probabilities of being optimal.

Our contributions TS has proved to have impressive empirical performances, very close to those
of state of the art algorithms such as DMED and KL-UCB [11, 9, 7]. Furthermore recent works
[11, 2] have shown that in the special case where each pa is a Bernoulli distribution B(θa), TS using
a uniform prior over the arms is asymptotically optimal in the sense that it achieves the asymptotic
lower bound on the regret provided by Lai and Robbins in [12] (that holds for univariate parametric
bandits). As explained in [1, 2], Thompson Sampling with uniform prior for Bernoulli rewards
can be slightly adapted to deal with bounded rewards. However, there is no notion of asymptotic
optimality for this non-parametric family of rewards. In this paper, we extend the optimality property
that holds for Bernoulli distributions to more general families of parametric rewards, namely 1-
dimensional exponential families if the algorithm uses the Jeffreys prior:
Theorem 1. Suppose that the reward distributions belong to a 1-dimensional canonical exponential
family and let πJ denote the associated Jeffreys prior. Then,

lim
T→∞

R(AπJ , T )

lnT
=

K∑
a=1

µ(θa∗)− µ(θa)

K(θa, θa∗)
, (1)

where K(θ, θ′) := KL(pθ, p
′
θ) is the Kullback-Leibler divergence between pθ and p′θ.

This theorem follows directly from Theorem 2. In the proof of this result we provide in Theorem
4 a finite-time, exponential concentration bound for posterior distributions of exponential family
random variables, something that to the best of our knowledge is new to the literature and of interest
in its own right. Our proof also exploits the connection between the Jeffreys prior, Fisher information
and the Kullback-Leibler divergence in exponential families.

Related Work Another line of recent work has focused on distribution-independent bounds for
Thompson Sampling. [2] establishes that R(AπU , T ) = O(

√
KT ln(T )) for Thompson Sampling

for bounded rewards (with the classic uniform prior πU on the underlying Bernoulli parameter). [14]
go beyond the Bernoulli model, and give an upper bound on the Bayes risk (i.e. the regret averaged
over the prior) independent of the prior distribution. For the parametric multi-armed bandit with K
arms described above, their result states that the regret of Thompson Sampling using a prior π0 is
not too big when averaged over this same prior:

Eθ∼π⊗K0
[R(Aπ0 , T )(θ)] ≤ 4 +K + 4

√
KT log(T ).

Building on the same ideas, [6] have improved this upper bound to 14
√
KT . In our paper, we rather

see the prior used by Thompson Sampling as a tool, and we want therefore to derive regret bounds
for any given problem parametrized by θ that depend on this parameter.

[14] also use Thompson Sampling in more general models, like the linear bandit model. Their result
is a bound on the Bayes risk that does not depend on the prior, whereas [3] gives a first bound on
the regret in this model. Linear bandits consider a possibly infinite number of arms whose mean
rewards are linearly related by a single, unknown coefficient vector. Once again, the analysis in
[3] encounters the problem of describing the concentration of posterior distributions. However by
using a conjugate normal prior, they can employ explicit concentration bounds available for Normal
distributions to complete their argument.
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Paper Structure In Section 2 we describe important features of the one-dimensional canonical
exponential families we consider, including closed-form expression for KL-divergences and the
Jeffreys’ prior. Section 3 gives statements of the main results, and provides the proof of the regret
bound. Section 4 proves the posterior concentration result used in the proof of the regret bound.

2 Exponential Families and the Jeffreys Prior

A distribution is said to belong to a one-dimensional canonical exponential family if it has a density
with respect to some reference measure ν of the form:

p(x | θ) = A(x) exp(T (x)θ − F (θ)), (2)

where θ ∈ Θ ⊂ R. T and A are some fixed functions that characterize the exponential family
and F (θ) = log

(∫
A(x) exp [T (x)θ] dν(x)

)
. Θ is called the parameter space, T (x) the sufficient

statistic, and F (θ) the normalisation function. We make the classic assumption that F is twice
differentiable with a continuous second derivative. It is well known [17] that:

EX|θ(T (X)) = F ′(θ) and VarX|θ[T (X)] = F ′′(θ)

showing in particular that F is strictly convex. The mean function µ is differentiable and stricly
increasing, since we can show that

µ′(θ) = CovX|θ(X,T (X)) > 0.

In particular, this shows that µ is one-to-one in θ.

KL-divergence in Exponential Families In an exponential family, a direct computation shows
that the Kullback-Leibler divergence can be expressed as a Bregman divergence of the normalisation
function, F:

K(θ, θ′) = DB
F (θ′, θ) := F (θ′)− [F (θ) + F ′(θ)(θ′ − θ)] . (3)

Jeffreys prior in Exponential Families In the Bayesian literature, a special “non-informative”
prior, introduced by Jeffreys in [10], is sometimes considered. This prior, called the Jeffreys prior,
is invariant under re-parametrisation of the parameter space, and it can be shown to be proportional
to the square-root of the Fisher information I(θ). In the special case of the canonical exponential
family, the Fisher information takes the form I(θ) = F ′′(θ), hence the Jeffreys prior for the model
(2) is

πJ(θ) ∝
√
|F ′′(θ)|.

Under the Jeffreys prior, the posterior on θ after n observations is given by

p(θ|y1, . . . yn) ∝
√
F ′′(θ) exp

(
θ

n∑
i=1

T (yi)− nF (θi)

)
(4)

When
∫

Θ

√
F ′′(θ)dθ < +∞, the prior is called proper. However, stasticians often use priors which

are not proper: the prior is called improper if
∫

Θ

√
F ′′(θ)dθ = +∞ and any observation makes the

corresponding posterior (4) integrable.

Some Intuition for choosing the Jeffreys Prior In the proof of our concentration result for
posterior distributions (Theorem 4) it will be crucial to lower bound the prior probability of
an ε-sized KL-divergence ball around each of the parameters θa. Since the Fisher information
F ′′(θ) = limθ′→θK(θ, θ′)/|θ − θ′|2, choosing a prior proportional to F ′′(θ) ensures that the prior
measure of such balls are Ω(

√
ε).

Examples and Pseudocode Algorithm 1 presents pseudocode for Thompson Sampling with the
Jeffreys prior for distributions parametrized by their natural parameter θ. But as the Jeffreys prior
is invariant under reparametrization, if a distribution is parametrised by some parameter λ 6≡ θ,
the algorithm can use the Jeffreys prior ∝

√
I(λ) on λ, drawing samples from the posterior on λ.

Note that the posterior sampling step (in bold) is always tractable using, for example, a Hastings-
Metropolis algorithm.

3



Algorithm 1 Thompson Sampling for Exponential Families with the Jeffreys prior
Require: F normalization function, T sufficient statistic, µ mean function

for t = 1 . . .K do
Sample arm t and get rewards xt
Nt = 1, St = T (xt).

end for
for t = K + 1 . . . n do

for a = 1 . . .K do
Sample θa,t from πa,t ∝

√
F ′′(θ) exp (θSa −NaF (θ))

end for
Sample arm At = argmaxaµ(θa,t) and get reward xt
SAt = SAt + T (xt) NAt = NAt + 1

end for

Name Distribution θ Prior on λ Posterior on λ

B(λ) λx(1− λ)1−xδ0,1 log
(

λ
1−λ

)
Beta

(
1
2 ,

1
2

)
Beta

(
1
2 + s, 1

2 + n− s
)

N (λ, σ2) 1√
2πσ2

e−
(x−λ)2

2σ2 λ
σ2 ∝ 1 N

(
s
n ,

σ2

n

)
Γ(k, λ) λk

Γ(k)x
k−1e−λx1[0,+∞[(x) −λ ∝ 1

λ Γ(kn, s)

P(λ) λxe−λ

x! δN(x) log(λ) ∝ 1√
λ

Γ
(

1
2 + s, n

)
Pareto(xm, λ)

λxλm
xλ+1 1[xm,+∞[(x) −λ− 1 ∝ 1

λ Γ (n+ 1, s− n log xm)

Weibull(k, λ) kλ(xλ)k−1e−(λx)k1[0,+∞[ −λk ∝ 1
λk

αλ(n−1)k exp(−λks)

Figure 1: The posterior distribution after observations y1, . . . , yn depends on n and s =∑n
i=1 T (yi)

Some examples of common exponential family models are given in Figure 1, together with the
posterior distributions on the parameter λ that is used by TS with the Jeffreys prior. In addition to
examples already studied in [7] for which T (x) = x, we also give two examples of more general
canonical exponential families, namely the Pareto distribution with known min value and unknown
tail index λ, Pareto(xm, λ), for which T (x) = log(x), and the Weibul distribution with known shape
and unknown rate parameter, Weibull(k, λ), for which T (x) = xk. These last two distributions are
not covered even by the work in [8], and belong to the family of heavy-tailed distributions.

For the Bernoulli model, we note futher that the use of the Jeffreys prior is not covered by the
previous analyses. These analyses make an extensive use of the uniform prior, through the fact that
the coefficient of the Beta posteriors they consider have to be integers.

3 Results and Proof of Regret Bound

An exponential family K-armed bandit is a K-armed bandit for which the reward distributions pa
are known to be elements of an exponential family of distributions P(Θ). We denote by pθa the
distribution of arm a and its mean by µa = µ(θa).
Theorem 2 (Regret Bound). Assume that µ1 > µa for all a 6= 1, and that πa,0 is taken to be the
Jeffreys prior over Θ. Then for every ε > 0 there exists a constant C(ε,P) depending on ε and on
the problem P such that the regret of Thompson Sampling using the Jeffreys prior satisfies

R(AπJ , T ) ≤ 1 + ε

1− ε

(
K∑
a=2

(µ1 − µa)

K(θa, θ1)

)
ln(T ) + C(ε,P).

Proof: We give here the main argument of the proof of the regret bound, which proceed by bound-
ing the expected number of draws of any suboptimal arm. Along the way we shall state concentration
results whose proofs are postponed to later sections.
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Step 0: Notation We denote by ya,s the s-th observation of arm a and byNa,t the number of times
arm a is chosen up to time t. (ya,s)s≥1 is i.i.d. with distribution pθa . Let Y ua := (ya,s)1≤s≤u be
the vector of first u observations from arm a. Ya,t := Y

Na,t
a is therefore the vector of observations

from arm a available at the beginning of round t. Recall that πa,t, respectively πa,0, is the posterior,
respectively the prior, on θa at round t of the algorithm.

We define L(θ) to be such that PY∼p(|θ)(p(Y |θ) ≥ L(θ)) ≥ 1
2 . Observations from arm a such that

p(ya,s|θ) ≥ L(θa) can therefore be seen as likely observations. For any δa > 0, we introduce the
event Ẽa,t = Ẽa,t(δa):

Ẽa,t =

(
∃1 ≤ s′ ≤ Na,t : p(ya,s′ |θa) ≥ L(θa),

∣∣∣∣∣
∑Na,t
s=1,s 6=s′ T (ya,s)

Na,t − 1
− F ′(θa)

∣∣∣∣∣ ≤ δa
)
. (5)

For all a 6= 1 and ∆a such that µa < µa + ∆a < µ1, we introduce
Eθa,t = Eθa,t(∆a) :=

(
µ (θa,t) ≤ µa + ∆a

)
.

On Ẽa,t, the empirical sufficient statistic of arm a at round t is well concentrated around its mean
and a ’likely’ realization of arm a has been observed. On Eθa,t, the mean of the distribution with
parameter θa,t does not exceed by much the true mean, µa. δa and ∆a will be carefully chosen at
the end of the proof.

Step 1: Decomposition The idea of the proof is to decompose the probability of playing a subop-
timal arm using the events given in Step 0, and that E[Na,T ] =

∑T
t=1 P (at = a):

E [Na,T ] =

T∑
t=1

P
(
at = a, Ẽa,t, E

θ
a,t

)
︸ ︷︷ ︸

(A)

+

T∑
t=1

P
(
at = a, Ẽa,t, (E

θ
a,t)

c
)

︸ ︷︷ ︸
(B)

+

T∑
t=1

P
(
at = a, Ẽca,t

)
︸ ︷︷ ︸

(C)

.

where Ec denotes the complement of event E. Term (C) is controlled by the concentration of the
empirical sufficient statistic, and (B) is controlled by the tail probabilities of the posterior distribu-
tion. We give the needed concentration results in Step 2. When conditioned on the event that the
optimal arm is played at least polynomially often, term (A) can be decomposed further, and then
controled by the results from Step 2. Step 3 proves that the optimal arm is played this many times.

Step 2: Concentration Results We state here the two concentration results that are necessary to
evaluate the probability of the above events.
Lemma 3. Let (ys) be an i.i.d sequence of distribution p(· | θ) and δ > 0. Then

P

(∣∣∣∣∣ 1u
u∑
s=1

[T (ys)− F ′(θ)]

∣∣∣∣∣ ≥ δ
)
≤ 2e−uK̃(θ,δ),

where K̃(θ, δ) = min(K(θ + g(δ), θ),K(θ − h(δ), θ)), with g(δ) > 0 defined by F ′(θ + g(δ)) =
F ′(θ) + δ and h(δ) > 0 defined by F ′(θ − h(δ)) = F ′(θ)− δ.

The two following inequalities that will be useful in the sequel can easily be deduced from Lemma
3. Their proof is gathered in Appendix A with that of Lemma 3. For any arm a, for any b ∈]0, 1[,

T∑
t=1

P(at = a, (Ẽa,t(δa))c) ≤
∞∑
t=1

(
1

2

)t
+

∞∑
t=1

2te−(t−1)K̃(θa,δa) (6)

T∑
t=1

P((Ẽa,t(δa))c ∩Na,t > tb) ≤
∞∑
t=1

t

(
1

2

)tb
+

∞∑
t=1

2t2e−(tb−1)K̃(θa,δa), (7)

The second result tells us that concentration of the empirical sufficient statistic around its mean
implies concentration of the posterior distribution around the true parameter:
Theorem 4 (Posterior Concentration). Let πa,0 be the Jeffreys prior. There exists constantsC1,a =
C1(F, θa) > 0, C2,a = C2(F, θa,∆a) > 0, and N(θa, F ) s.t., ∀Na,t ≥ N(θa, F ),

1Ẽa,tP
(
µ(θa,t) > µ(θa) + ∆a|Ya,t

)
≤ C1,ae

−(Na,t−1)(1−δaC2,a)K(θa,µ
−1(µa+∆a))+ln(Na,t)

whenever δa < 1 and ∆a are such that 1− δaC2,a(∆a) > 0.
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Step 3: Lower Bound the Number of Optimal Arm Plays with High Probability The main
difficulty adressed in previous regret analyses for Thompson Sampling is the control of the number
of draws of the optimal arm. We provide this control in the form of Proposition 5 which is adapted
from Proposition 1 in [11]. The proof of this result, an outline of which is given in Appendix D,
explores in depth the randomised nature of Thompson Sampling. In particular, we show that the
proof in [11] can be significantly simplified, but at the expense of no longer being able to describe
the constant Cb explicitly:
Proposition 5. ∀b ∈ (0, 1), ∃Cb(π, µ1, µ2,K) <∞ such that

∑∞
t=1 P

(
N1,t ≤ tb

)
≤ Cb.

Step 4: Bounding the Terms of the Decomposition Now we bound the terms of the decomposi-
tion as discussed in Step 1: An upper bound on term (C) is given in (6), whereas a bound on term
(B) follows from Lemma 6 below. Although the proof of this lemma is standard, and bears a strong
similarity to Lemma 3 of [3], we provide it in Appendix C for the sake of completeness.
Lemma 6. For all actions a and for all ε > 0, ∃ Nε = Nε(δa,∆a, θa) > 0 such that

(B) ≤ [(1− ε)(1− δaC2,a)K(θa, µ
−1(µa + ∆a))]−1 ln(T ) + max{Nε, N(θa, F )}+ 1.

where Nε = Nε(δa,∆a, θa) is the smallest integer such that for all n ≥ Nε
(n− 1)−1 ln(C1,an) < ε(1− δaC2,a)K(θa, µ

−1(µa + ∆a)),

and N(θa, F ) is the constant from Theorem 4.

When we have seen enough observations on the optimal arm, term (A) also becomes a result about
the concentration of the posterior and the empirical sufficient statistic, but this time for the optimal
arm:

(A) ≤
T∑
t=1

P
(
at = a, Ẽa,t, E

θ
a,t, N1,t > tb

)
+ Cb ≤

T∑
t=1

P
(
µ(θ1,t) ≤ µ1 −∆′a, N1,t > tb

)
+ Cb

≤
T∑
t=1

P
(
µ(θ1,t) ≤ µ1 −∆′a, Ẽ1,t(δ1), N1,t > tb

)
︸ ︷︷ ︸

B′

+

T∑
t=1

P
(
Ẽc1,t(δ1) ∩N1,t > tb

)
︸ ︷︷ ︸

C′

+Cb (8)

where ∆′a = µ1 − µa − ∆a and δ1 > 0 remains to be chosen. The first inequality comes from
Proposition 5, and the second inequality comes from the following fact: if arm 1 is not chosen and
arm a is such that µ(θa,t) ≤ µa + ∆a, then µ(θ1,t) ≤ µa + ∆a. A bound on term (C’) is given in
(7) for a = 1 and δ1. In Theorem 4, we bound the conditional probability that µ(θa,t) exceed the
true mean. Following the same lines, we can also show that

P (µ(θ1,t) ≤ µ1 −∆′a|Y1,t)1Ẽ1,t(δ1) ≤ C1,1e
−(N1,t−1)(1−δ1C2,1)K(θ1,µ

−1(µ1−∆′a))+ln(N1,t).

For any ∆′a > 0, one can choose δ1 such that 1− δ1C1,1 > 0. Then, with N = N(P) such that the
function u 7→ e−(u−1)(1−δ1C2,1)K(θ1,µ

−1(µ1−∆′a))+lnu is decreasing for u ≥ N , (B′) is bounded by

N1/b +
∞∑

t=N1/b+1

C1,1e
−(tb−1)(1−δ1C2,1)K(θ1,µ

−1(µ1−∆′a))+ln(tb) <∞.

Step 4: Choosing the Values δa and εa So far, we have shown that for any ε > 0 and for any
choice of δa > 0 and 0 < ∆a < µ1 − µa such that 1 − δaC2,a > 0, there exists a constant
C(δa,∆a, ε,P) such that

E[Na,T ] ≤ ln(T )

(1− δaC2,a)K(θa, µ−1(µa + ∆a))(1− ε)
+ C(δa,∆a, ε,P)

The constant is of course increasing (dramatically) when δa goes to zero, ∆a to µ1 − µa, or ε to
zero. But one can choose ∆a close enough to µ1 − µa and δa small enough, such that

(1− C2,a(∆a)δa)K(θa, µ
−1(µa + ∆a)) ≥ K(θa, θ1)

(1 + ε)
,

and this choice leads to

E[Na,T ] ≤ 1 + ε

1− ε
ln(T )

K(θa, θ1)
+ C(δa,∆a, ε,P).

Using thatR(A, T ) =
∑K
a=2(µ1 − µa)EA[Na,T ] for any algorithm A concludes the proof.
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4 Posterior Concentration: Proof of Theorem 4

For ease of notation, we drop the subscript a and let (ys) be an i.i.d. sequence of distribution pθ,
with mean µ = µ(θ). Furthermore, by conditioning on the value of Ns, it is enough to bound
1ẼuP (µ(θu) ≥ µ+ ∆|Y u) where Y u = (ys)1≤s≤u and

Ẽu =

(
∃1 ≤ s′ ≤ u : p(ys′ |θ) ≥ L(θ),

∣∣∣∣∣
∑u
s=1,s6=s′ T (ys)

u− 1
− F ′(θ)

∣∣∣∣∣ ≤ δ
)
.

Step 1: Extracting a Kullback-Leibler Rate The argument rests on the following Lemma, whose
proof can be found in Appendix B

Lemma 7. Let Ẽu be the event defined by (5), and introduce Θθ,∆ := {θ′ ∈ Θ : µ(θ′) ≥ µ(θ)+∆}.
The following inequality holds:

1ẼuP (µ(θu) ≥ µ+ ∆|Y u) ≤

∫
θ′∈Θθ,∆

e−(u−1)(K[θ,θ′]−δ|θ−θ′|)π(θ′|ys′)dθ′∫
θ′∈Θ

e−(u−1)(K[θ,θ′]+δ|θ−θ′|)π(θ′|ys′)dθ′
, (9)

with s′ = inf{s ∈ N : p(ys|θ) ≥ L(θ)}.

Step 2: Upper bounding the numerator of (9) We first note that on Θθ,∆ the leading term in the
exponential is K(θ, θ′). Indeed, from (3) we know that

K(θ, θ′)/|θ − θ′| = |F ′(θ)− (F (θ)− F (θ′))/(θ − θ′)|
which, by strict convexity of F , is strictly increasing in |θ − θ′| for any fixed θ. Now since µ is
one-to-one and continuous, Θc

θ,∆ is an interval whose interior contains θ, and hence, on Θθ,∆,

K(θ, θ′)

|θ − θ′|
≥ F (µ−1(µ+ ∆))− F (θ)

µ−1(µ+ ∆)− θ
− F ′(θ) := (C2(F, θ,∆))−1 > 0.

So for δ such that 1− δC2 > 0 we can bound the numerator of (9) by:∫
θ′∈Θθ,∆

e−(u−1)(K(θ,θ′)−δ|θ−θ′|)π(θ′|ys′)dθ′ ≤
∫
θ′∈Θθ,∆

e−(u−1)K(θ,θ′)(1−δC2)π(θ′|ys′)dθ′

≤ e−(u−1)(1−δC2)K(θ,µ−1(µ+∆))

∫
Θθ,∆

π(θ′|ys′)dθ′ ≤ e−(u−1)(1−δC2)K(θ,µ−1(µ+∆)) (10)

where we have used that π(·|ys′) is a probability distribution, and that, since µ is increasing,
K(θ, µ−1(µ+ ∆)) = infθ′∈Θθ,∆ K(θ, θ′).

Step 3: Lower bounding the denominator of (9) To lower bound the denominator, we reduce
the integral on the whole space Θ to a KL-ball, and use the structure of the prior to lower bound
the measure of that KL-ball under the posterior obtained with the well-chosen observation ys′ . We
introduce the following notation for KL balls: for any x ∈ Θ, ε > 0, we define

Bε(x) := {θ′ ∈ Θ : K(x, θ′) ≤ ε} .

We have K(θ,θ′)
(θ−θ′)2 → F ′′(θ) 6= 0 (since F is strictly convex). Therefore, there exists N1(θ, F ) such

that for u ≥ N1(θ, F ), on B 1
u2

(θ),

|θ − θ′| ≤
√

2K(θ, θ′)/F ′′(θ).

Using this inequality we can then bound the denominator of (9) whenever u ≥ N1(θ, F ) and δ < 1:∫
θ′∈Θ

e−(u−1)(K(θ,θ′)+δ|θ−θ′|)π(θ′|ys′)dθ′ ≥
∫
θ′∈B1/u2 (θ)

e−(u−1)(K(θ,θ′)+δ|θ−θ′|)π(θ′|ys′)dθ′

≥
∫
θ′∈B1/u2 (θ)

e
−(u−1)

(
K(θ,θ′)+δ

√
2K(θ,θ′)
F ′′(θ)

)
π(θ′|ys′)dθ′ ≥ π

(
B1/u2(θ)|ys′

)
e
−
(

1+
√

2
F ′′(θ)

)
.

(11)
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Finally we turn our attention to the quantity

π
(
B1/u2(θ)|ys′

)
=

∫
B1/u2 (θ)

p(y′s|θ′)π0(θ′)dθ′∫
Θ
p(y′s|θ′)π0(θ′)dθ′

=

∫
B1/u2 (θ)

p(y′s|θ′)
√
F ′′(θ′)dθ′∫

Θ
p(y′s|θ′)

√
F ′′(θ′)dθ′

. (12)

Now since the KL divergence is convex in the second argument, we can write B1/u2(θ) = (a, b).
So, from the convexity of F we deduce that

1

u2
= K(θ, b) = F (b)− [F (θ) + (b− θ)F ′(θ)] = (b− θ)

[
F (b)− F (θ)

(b− θ)
− F ′(θ)

]
≤ (b− θ) [F ′(b)− F ′(θ)] ≤ (b− a) [F ′(b)− F ′(θ)] ≤ (b− a) [F ′(b)− F ′(a)] .

As p(y | θ) → 0 as y → ±∞, the set C(θ) = {y : p(y | θ) ≥ L(θ)} is compact. The map
y 7→

∫
Θ
p(y|θ′)

√
F ′′(θ′)dθ′ <∞ is continuous on the compact C(θ). Thus, it follows that

L′(θ) = L′(θ, F ) := sup
y:p(y|θ)>L(θ)

{∫
Θ

p(y|θ′)
√
F ′′(θ′)dθ′

}
<∞

is an upper bound on the denominator of (12).

Now by the continuity of F ′′, and the continuity of (y, θ) 7→ p(y|θ) in both coordinates, there exists
an N2(θ, F ) such that for all u ≥ N2(θ, F )

F ′′(θ) ≥ 1

2

F ′(b)− F ′(a)

b− a
and

(
p(y|θ′)

√
F ′′(θ′) ≥ L(θ)

2

√
F ′′(θ), ∀θ′ ∈ B1/u2(θ), y ∈ C(θ)

)
.

Finally, for u ≥ N2(θ, F ), we have a lower bound on the numerator of (12):∫
B1/u2 (θ)

p(y′s|θ′)
√
F ′′(θ′)dθ′ ≥ L(θ)

2

√
F ′′(θ)

∫ b

a

dθ′ =
L(θ)

2

√
(F ′(b)− F ′(a)) (b− a) ≥ L(θ)

2u

Puting everything together, we get that there exist constants C2 = C2(F, θ,∆) and N(θ, F ) =
max{N1, N2} such that for every δ < 1 satisfying 1− δC2 > 0, and for every u ≥ N , one has

1ẼuP(µ(θu) ≥ µ(θ) + ∆|Yu) ≤ 2e
1+
√

2
F ′′(θ)L′(θ)u

L(θ)
e−(u−1)(1−δC2)K(θ,µ−1(µ+∆)).

Remark 8. Note that when the prior is proper we do not need to introduce the observation ys′ ,
which significantly simplifies the argument. Indeed in this case, in (10) we can use π0 in place of
π(·|ys′) which is already a probability distribution. In particular, the quantity (12) is replaced by
π0

(
B1/u2(θ)

)
, and so the constants L and L′ are not needed.

5 Conclusion

We have shown that choosing to use the Jeffreys prior in Thompson Sampling leads to an asymp-
totically optimal algorithm for bandit models whose rewards belong to a 1-dimensional canonical
exponential family. The cornerstone of our proof is a finite time concentration bound for posterior
distributions in exponential families, which, to the best of our knowledge, is new to the literature.
With this result we built on previous analyses and avoided Bernoulli-specific arguments. Thompson
Sampling with Jeffreys prior is now a provably competitive alternative to KL-UCB for exponential
family bandits. Moreover our proof holds for slightly more general problems than those for which
KL-UCB is provably optimal, including some heavy-tailed exponential family bandits.

Our arguments are potentially generalisable. Notably generalising to n-dimensional exponential
family bandits requires only generalising Lemma 3 and Step 3 in the proof of Theorem 4. Our result
is asymptotic, but the only stage where the constants are not explicitly derivable from knowledge of
F , T , and θ0 is in Lemma 9. Future work will investigate these open problems. Another possible
future direction lies the optimal choice of prior distribution. Our theoretical guarantees only hold for
Jeffreys’ prior, but a careful examination of our proof shows that the important property is to have,
for every θa,

− ln

(∫
(θ′:K(θa,θ′)≤n−2)

π0(θ′)dθ′

)
= o (n) ,

which could hold for prior distributions other than the Jeffreys prior.
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A Concentration of the Sufficient Statistics: Proof of Lemma 3, and
Inequalities (6) and (7)

Proof of Lemma 3. The proof of Lemma 3 follows from the classical Cramér-Chenoff technique
(see [5]). For any λ > 0.

A :=P

(
1

u

u∑
i=1

[T (yi)− F ′(θ)] ≥ δ

)
= P

(
eλ(

∑u
i=1[T (yi)−F ′(θ)]) ≥ eλuδ

)
≤e−λuδE

[
eλ(

∑u
i=1[T (yi)−F ′(θ)])

]
= e−u(δλ−φa(λ))

where we have used the Markov inequality, and where

φa(λ) := lnEX|θ
[
eλ(T (X)−F ′(θ))

]
= F (θ + λ)− F (θ)− λF ′(θ).

Now we optimize in λ by choosing λ > 0 that maximizes

δλ− φa(λ) = λ(δ + F ′(θ))− F (θ + λ) + F (θ) := f(λ).

f(λ) is differentiable in λ and its minimum, λ∗, satisfies f ′(λ∗) = 0 i.e.

F ′(θ + λ∗) = δ + F ′(θ).

(Note that λ∗ > 0 since F ′ is increasing). Finally, we get

A ≤ e−u((δ+F ′(θ))λ∗−F (θ+λ∗)+F (θ)) =e−u(F ′(θ+λ∗)λ∗−F (θ+λ∗)+F (θ)) = e−uK(θ+λ∗,θ).

The same reasoning leads to the upper bound

P

(
1

u

u∑
s=1

[T (ys)− F ′(θ)] ≤ −δ

)
≤ e−uK(θ−ν∗,θ),

where ν∗ is such that F ′(θ − ν∗) = F ′(θ)− δ.

For the proof of inequalities (6) and (7), we intoduce the notation Y ua,s′ = Y sa \{ya,s} (the first u
observations of arms a exept observation ya,s′ ). First note that we have Ẽca,t ⊆ Ba,Na,t

⋃
Da,Na,t ,

with

Ba,s = (∀s′ ∈ [1, s], p(ya,s′ |θa) ≤ L(θa)) ,

Da,s =

∃s′ ∈ {1, . . . s} :

∣∣∣∣∣∣ 1

s− 1

s∑
k=1,k 6=s′

(T (ya,k)− F ′(θa))

∣∣∣∣∣∣ ≥ δa
 .

Indeed, we have used that for two sequences of event Fs′ and Gs′ ,(
s⋃

s′=1

Fs′ ∩Gs′
)c

=
⋂
s′≤s

F cs′ ∪Gcs′ ⊂
⋂
s′≤s

F cs′ ∪

 ⋃
s′′≤s

Gcs′′

 =

⋂
s′≤s

F cs′

 ∪
⋃
s′≤s

Gcs′

 .

One then has
T∑
t=1

P(at = a, Ẽca,t(δ)) ≤ E

[
T∑
t=1

t∑
s=1

1(at=a,Na,t=s)(1Ba,s + 1Da,s)

]

≤ E

[
T∑
s=1

1Ba,s

]
+ E

[
T∑
s=1

1Da,s

]

≤
T∑
s=1

P (p(ya,1|θa) ≤ L(θa))
s

+

T∑
s=1

s∑
s′=1

P

∣∣∣∣∣∣ 1

s− 1

s∑
k=1,k 6=s′

(T (ya,k)− F ′(θa))

∣∣∣∣∣∣ ≥ δa


≤
∞∑
s=1

(
1

2

)s
+

∞∑
s=1

se−(s−1)K̃(θa,δa),
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where we use that the definition of L(θ) gives P (p(ya,1|θa) ≤ L(θa)) ≤ 1
2 . This leads to inequality

(6). To proof (7), we write:
T∑
t=1

P(Ẽa,t(δa)c ∩Na,t > tb) ≤ E

[
T∑
t=1

t∑
s=tb

1Na,t=s(1Ba,s + 1Da,s)

]

≤
T∑
t=1

t∑
s=tb

P(p(ya,1|θa) ≤ L(θa))s

+

T∑
t=1

t∑
s=tb

s∑
s′=1

P

∣∣∣∣∣∣ 1

s− 1

s∑
k=1,k 6=s′

(T (ya,k)− F ′(θa))

∣∣∣∣∣∣ ≥ δa


≤
T∑
t=1

t

(
1

2

)tb
+

T∑
t=1

t2 exp(−tbK̃(θa, δ)).

B Extracting the KL-divergence: Proof of Lemma 7

We assume that the event Ẽu holds, s′ ≤ u. So, on this event we have

P (µ(θu) ≥ µ+ ∆|Y u) =

∫
θ′∈Θθ,∆

u∏
s=1,s6=s′

p(ys | θ′)p(ys′ |θ′)π(θ′)dθ′

∫
θ′∈Θ

u∏
s=1,s 6=s′

p(ys | θ′)p(ys′ |θ′)π(θ′)dθ′

=

∫
θ′∈Θθ,∆

u∏
s=1,s 6=s′

p(ys|θ′)
p(ys|θ) p(ys′ |θ

′)π(θ′)dθ′

∫
θ′∈Θ

u∏
s=1,s 6=s′

p(ys|θ′)
p(ys|θ) p(ys′ |θ

′)π(θ′)dθ′

=

∫
θ′∈Θθ,∆

e−(u−1)K[Y ′u,θ,θ′]π(θ′|ys′)dθ′∫
θ′∈Θ

e−(u−1)K[Y ′u,θ,θ′]π(θ′|ys′)dθ′

where π(θ|ys′) denotes the posterior distribution on θ after observation ys′ and

K[Y us′ , θ, θ
′] :=

1

u− 1

u∑
s=1,s6=s′

ln
p(ys | θ)
p(ys | θ′)

denotes the empirical KL-divergence obtained from the observations Y us′ = Y u \ {ys′}. Introducing

r(Y us′ , θ
′) = K[Y us′ , θ, θ

′]− EX|θ
(

ln
p(X | θ)
p(X | θ′)

)
,

we can rewrite

P (µ(θu) ≥ µ+ ∆|Y u) =

∫
θ′∈Θθ,∆

e−(u−1)(K[θ,θ′]+r(Y ′u,θ′))π(θ′|ys′)dθ′∫
θ′∈Θ

e−(u−1)(K[θ,θ′]+r(Y ′u,θ′))π(θ′|ys′)dθ′
.

Now, a direct computation show that

|r(Y ′u, θ′)| ≤ |θ − θ′|

∣∣∣∣∣∣ 1

u− 1

u∑
s=1,s 6=s′

[T (ys)− F ′(θ)]

∣∣∣∣∣∣ . (13)

Indeed, for any θ, θ′ ∈ Θ

ln
p(y | θ)
p(y | θ′)

= T (y)(θ − θ′)− [F (θ)− F (θ′)],
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and one also recalls that

K(θ, θ′) = F ′(θ)(θ − θ′)− [F (θ)− F (θ′)]. (14)

Hence

|r(Y us′ , θ, θ′)| =

∣∣∣∣∣∣ 1

u− 1

u∑
s=1,s6=s′

[
ln
p(ys | θ)
p(ys | θ′)

−K(θ, θ′)

]∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

u− 1

u∑
s=1,s6=s′

[(T (x)− F ′(θ))(θ − θ′)]

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1

u− 1

u∑
s=1,s 6=s′

[T (ys)−∇F (θ)]

∣∣∣∣∣∣ |θ′ − θ|.
The inequality (13) leads to the result, using that on Ẽu,∣∣∣∣∣∣ 1

u− 1

u∑
s=1,s6=s′

[T (ys)− F ′(θ)]

∣∣∣∣∣∣ ≤ δ
C Proof of Lemma 6

From Theorem 4 we know that, for Na,t ≥ N(θa, F ),

1Ẽa,tP((Eθa,t)
c | Ft) = 1Ẽa,tP((Eθa,t)

c | Ya,t)

≤ C1,ae
−(Na,t−1)(1−δaC2,a)K(θa,µ

−1(µa+∆a))+lnNa,t

≤ e−(Na,t−1)((1−δaC2,a)K(θa,µ
−1(µa+∆a))−ln(C1,aNa,t)/(Na,t−1))

Let Nε = Nε(δa,∆a, θa) be the smallest integer such that for all n ≥ Nε

ln(C1,an)

n− 1
< ε(1− δaC2,a)K(θa, µ

−1(µa + ∆a)).

Defining

LT :=
lnT

(1− ε)(1− δaC2,a)K(θa, µ−1(µa + ∆a))

we have that for all t and T such that Na,t − 1 ≥ max(LT , Nε, N(θa, F )),

1Ẽa,tP(µ(θa(t) > µ(θa) + ∆a | Ft) ≤
1

T
.

Let τ = inf{t ∈ N | Na,t ≥ max(LT , Nε, N(θa, F )) + 1}. τ is a stopping time with respect to Ft.
Then,

T∑
t=1

P
(
at = a, (Eθa,t)

c, Ẽa,t

)
≤ E

[
τ∑
t=1

1(at=a)

]
+ E

[
T∑

t=τ+1

1(at=a)1Ẽa,t1(Eθa,t)
c

]

= E[Na,τ ] + E

[
T∑

t=τ+1

1(at=a)1Ẽa,tP
(
(Eθa,t)

c | Ft
)]

= E[Na,τ ] + E

[
T∑

t=τ+1

1(at=a)1Ẽa,tP (µ(θa(t) > µ(θa) + ∆a | Ya,t)

]

≤ LT + 1 + max(Nε, N(θa, F )) + E

[
T∑

t=τ+1

1

T

]
≤ LT + max(Nε, N(θa, F )) + 2.
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D Controling the Number of Optimal Plays: Outline Proof of Proposition 5

The proof of this proposition is quite detailed, and essentially the same as the proof given for Propo-
sition 1 in [11], which we will sometimes refer to. However, in generalising to the case of exponen-
tial family bandits we show how to avoid the need to explicity calculate posterior probabilities that
lead to Lemma 4 in [11]. While simplifying the proof we loose the ability to specify the constants
explicitly, and so the analysis becomes asymptotic, but holds for every b ∈]0, 1[.

Sketch of the proof and key results Let τj be the occurrence of the jth play of the optimal arm
(with τ0 := 0). Let ξj := (τj+1 − 1)− τj : this random variable measures the number of time steps
between the jth and the (j + 1)th play of the optimal arm, and so

∑K
a=2Na,t =

∑N1,t

j=0 ξj . We then
upper bound P(N1,t ≤ tb) as in [11]:

P(N1,t ≤ tb) ≤ P
(
∃j ∈

{
0, .., tbc

}
: ξj ≥ t1−b − 1

)
≤
btbc∑
j=0

P(ξj ≥ t1−b − 1︸ ︷︷ ︸
:=Ej

) (15)

We introduce the interval Ij = {τj , τj + dt1−b − 1e}: on the event Ej , Ij is included in {τj , τj+1}
and no draw of arm 1 occurs on I. We also introduce for each arm a 6= 1 da := µ1−µa

2 .

The idea of the rest of the analysis is based on the following remark. If on a subinterval I ⊆
[τj , τj+1[ of size f(t) arm 1 is not drawn and all the samples of the suboptimal arms fall below
µ2 + d2 < µ1, then for all s ∈ I, µ(θ1,s) ≤ µ2 + d2. On I, the sequence (θ1,s) is i.i.d. with
distribution π1,τj , and hence,

P(∀s ∈ I, µ(θ1,s) ≤ µ2 + δ) ≤
(
P
(
µ(θ1,τj ) ≤ µ2 + δ2

))f(t)

At this point, an asymptotic result, telling that the posterior on θ1 concentrates to a Dirac in θ1 (the
Bernstein-Von-Mises theorem, see [16]) , leads to

P(µ(θ1,τj ) ≤ µ2 + δ2) →
j→∞

0.

Assuming that ∀j, P(µ(θ1,τj ) ≤ µ2 + δ2) 6= 1, we have shown the following Lemma, which plays
the role of an asymptotic couterpart for Lemma 3 in [11].

Lemma 9. There exists a constant C = C(π0) < 1, such that for every (random) interval I
included in Ij and for every positive function f , one has

P (∀s ∈ I, µ(θ1,s) ≤ µ2 + δ2, |I| ≥ f(t)) ≤ Cf(t).

Another key lemma is the following which generalizes Lemma 4 in [11]. The proof of this lemma
is standard: it proceeds by conditioning on the event Ẽa,t1 and applying Theorem 4, and Lemma 3.

Lemma 10. For every a ∈ A, δ > 0, there exist constants Ca = Ca(µa, δ, F ) and N such that for
t ≥ N ,

P (∃s ≤ t,∃a 6= 1 : µ(θa,s) > µa + da, Na,s > Ca ln(t)) ≤ 2(K − 1)

t2
.

The rest of the proof proceeds by finding a subinterval of Ij on which all the samples of all the
suboptimal arms indeed fall below the corresponding thresholds µa + da. This is done exactly as in
[11] and we recall the main steps of the proof below. Before that, we need to introduce the notion of
saturated, suboptimal action.

Definition 11. Let t be fixed. For any a 6= 1, an action a is said to be saturated at time s if it has been
chosen at least Ca ln(t) times, i.e. Na,t ≥ Ca ln(t). We shall say that it is unsaturated otherwise.
Furthermore at any time we call a choice of an unsaturated, suboptimal action an interruption.

1Using Ẽa,t in place of Ea,t from [11] only changes slightly the constant Ca.
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Step 1: Decomposition of Ij We want to study the process of saturation on the event Ej = {ξj ≥
t1−b − 1}. We start by decomposing the interval Ij = {τj , τj + dt1−b − 1e} into K subintervals:

Ij,l :=

{
τj +

⌈
(l − 1)(t1−b − 1)

K

⌉
, τj +

⌈
l(t1−b − 1)

K

⌉}
, l = 1, . . . ,K.

Now for each interval Ij,l, we introduce:

• Fj,l: the event that by the end of the interval Ij,l at least l suboptimal actions are saturated;
• nj,l: the number of interruptions during this interval.

We use the following decomposition to bound the probability of the event Ej :

P(Ej) = P(Ej ∩ Fj,K−1) + P(Ej ∩ Fcj,K−1) (16)

Note that the quantities Ej , Ij,l, Fj,l and nj,l all depend on t, however we suppress this dependency
for notational convenience. However, we keep in mind that we bound the different probabilities for
t ≥ N , so that Lemma 10 applies.

Step 2: Bounding P(Ej ∩Fj,K−1) On the event Ej ∩Fj,K−1, only saturated suboptimal arms are
drawn on the interval Ij,K . Using Lemma 10, we get

P(Ej ∩ Fj,K−1) ≤P({∃s ∈ Ij,K , a 6= 1 : µ(θa,s) > µa + da} ∩ Ej ∩ Fj,K−1)

+ P({∀s ∈ Ij,K , a 6= 1 : µ(θa,s) ≤ µa + da} ∩ Ej ∩ Fj,K−1)

≤P(∃s ≤ t, a 6= 1 : µ(θa,s) > µa + da, Na,t > Ca ln(t))

+ P({∀s ∈ Ij,K , a 6= 1 : µ(θa,s) > µa + da} ∩ Ej ∩ Fj,K−1)

≤2(K − 1)

t2
+ P({∀s ∈ Ij,K : µ(θ1,s) ≤ µ2 + d2} ∩ Ej)

≤2(K − 1)

t2
+ C

t1−b−1
K .

for 0 < C < 1 as in Lemma 9. The second last inequality comes from the fact that if arm 1 is not
drawn, the sample θ1,s must be smaller than some sample θa,s and therefore smaller than µ2 + d2.

Step 3: Bounding P(Ej ∩ Fcj,K−1) A similar argument to that employed in Step 2 can be used in
an induction to show that for all 2 ≤ l ≤ K, if t is larger than some deterministic constant Nµ1,µ2,b

specified in the base case,

P(Ej ∩ Fcj,l−1) ≤ (l − 2)

(
2(K − 1)

t2
+ C

t1−b−1

CK2 ln(t)

)
We refer the reader to [11] for a precise description of the induction. For l = K we then get

P(Ej ∩ Fcj,K−1) ≤ (K − 2)

(
2(K − 1)

t2
+ C

t1−b−1

CK2 ln(t)

)
. (17)

Step 4: Conclusion Putting Steps 2 and 3 together we obtain that for t ≥ N0 :=
max(N,Nµ1,µ2,b),

P(Ej(t)) ≤
2(K − 1)2

t2
+ C

t1−b−1
K + (K − 2)KC ln(t)C

t1−b−1

CK2 ln(t) ,

P(N1,t ≤ tb) ≤
2(K − 1)2

t2−b
+ tbC

t1−b−1
K + (K − 2)KCtb ln(t)C

t1−b−1

CK2 ln(t) ,

where we use 15. It then follows that
∞∑
t=1

P(N1,t ≤ tb) ≤ N0 +

∞∑
t=N0+1

P(Ej) = Cb = Cb(π0, µ1, µ2,K) <∞.
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