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Abstract. Laughter is an important social signal in human communica-
tion. This paper proposes a statistical framework for generating laughter
upper body animations. These animations are driven by two types of
input signals, namely the acoustic segmentation of laughter as pseudo-
phoneme sequence and acoustic features. During the training step, our
statistical framework learns the relationship between the laughter hu-
man motion and the input signals. During the synthesis step, our trained
framework synthesizes automatically natural head and torso animations
from the input signals. Objective and subjective evaluations were con-
ducted to validate this framework. The results show that our proposed
framework is capable of generating laughing upper body movements.
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1 Introduction

Embodied conversational agents, ECAs, are autonomous software characters
with a human-like appearance and communicative capabilities. Several mod-
els of ECAs have been proposed [1],[2] but very few works focus on animation
synthesis for laughing.

Laughter is frequently used in human communication. Laughter is strongly
linked to positive emotions and even more to cheerful mood [3]. Humans laugh at
humorous stimuli or to mark their pleasure when receiving praised statements[4];
they also laugh to mask embarrassment[5] or to be cynical. Laughter can act also
as social indicator of in-group belonging; it can work as speech regulator during
conversation; it can also be used to elicit laughter in interlocutors as it is very
contagious [4].

Laughter morphology involves facial expressions, body movements and vo-
calizations [6]. For hilarious laughter [5], muscular activities include mainly the
zygomatic major, mouth opening and jaw movement. Eyebrows may be raised
or even frown in very intense laughter [6]. Saccadic movements affect the whole
body. Torso may bend back and forth and shoulder may shake. Changes in res-
piration patterns are also prominent. Inhalation and exhalation phases are very
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noticeable. All these movements are done very rhythmically and they are also
highly correlated. Indeed they arise from the same physiological processes [6].

Darwin reported “During excessive laughter the whole body is often thrown
backward and shakes, or is almost convulsed” [7]. Ruch and Ekman [6] described
laughter movements as “rhythmic patterns”, “rock violently sideways, or more
often back and forth”, “nervous tremor ... over the body”, “twitch or tremble
convulsively”. Melo et al. [8] built a virtual character which “convulses the chest
with each chuckle”. It means that periodic motions of head and body are impor-
tant and well-known features during laughter. The periodicity of body motion
was used to distinguish between laughters in[9]. Ruch and Ekman [6] reported
that rhythmical patterns during laughter were usually characterized by frequency
around 5 Hz. Mancini et al. [9] observed 8 videos, which show people laughing
while watching funny images. Laughing persons produce rhythmic body move-
ments with frequencies in the range of [1.27Hz 3.66Hz]. Using such findings
of laughing behaviours, our main objective is to build an animation synthesis
model of upper body movement during laughter.

The aim of this paper is to report head and torso animation synthesis for
a hilarious laughing character. To achieve our aim, a data-driven animation
model is proposed to first learn, from a collected laughter corpus, the relationship
linking the input signals and human motions; then, this trained statistical model
can be used as generator of laughter head and torso animations.

2 Dataset

We created a multimodal dataset of laughter. Three human subjects participated
in the collection of laughter data. During recording session, the subjects watched
funny movies for about 25-40 minutes. Since laughter motion occurs mainly
during social interactions [10], [11], we propose an interactive setup where two
subjects watch funny videos together. Only the movement of one person was
gathered. Three-dimensional torso and head movements and audio signal are
recorded by a motion capture system at 125 frames per second (fps) and a mi-
crophone at 44100 Hz, which were synchronized using the approach described
in [12]. During data processing, all laughter episodes were manually extracted.
In total, we obtain 259 laughter episodes; each one lasts from 1 to 37 seconds.
Then phonetic transcription is extracted by Urbain et al [13], in which 12 laugh-
ter pseudo-phonemes are defined in reference to speech phoneme. Laughter in-
volves very specific sounds that cannot be translated as speech phonemes. For
simplicity, laughter pseudo-phoneme is called phoneme in this paper. Phonetic
transcription contains phoneme (text signal) and its duration. An intensity value
is also provided for each phoneme. Notice that, if one phoneme occurs succes-
sively several times, the sum of phoneme lasting time is viewed as one phoneme
duration. Finally, PRAAT [13] is used to extract acoustic signals at 125 fps
including pitch and energy.
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3 Head and Torso Motion Synthesis

We propose a system to produce head and torso motions featured by 3D rotation
angles (hence a 6 dimensional signal) from a number of input signals which are:
the pseudo-phoneme sequence together with their duration and their intensity
(low or high), and audio features (we use pitch and energy).

Animation Generator To do so we consider building one model of generating
animation for every (phoneme, intensity) pair, we name a model for each pair an
Animation Generator (AG). Since silence phoneme is not labelled by intensity
and the other 11 phonemes are labelled by low or high intensities, we build 23
AGs. Each of these 23 AGs is learned independently from the training corpus
of corresponding (input, output) pairs where the input stands for all the above
input features and the ouput stands for a sequence of animation motion for the 6
data streams we want to learn to synthesize (the 6 dimensions of the animation
signal). Our modeling framework is based on three ideas that we detail now.

– Modeling one dimensional shaking-like movement with what we call Loop
HMM.

– Introducing speech influence on motion through transition probability pa-
rameterization, yielding what we call Transition Parameterized Loop HMM
(TPLHMM).

– Taking into account the dependencies between the 6 dimensions of the ani-
mation movements with coupled HMMs, yielding Coupled TPLHMM (CT-
PLHMM).

Modelling Shaking Motion with a Loop HMM. We propose a specific
HMM that we call a Loop HMM (LHMM) to model (and synthesize) a one-
dimensional shaking-like (and/or trembling) signal (Figure 1). It has an approx-
imate left-to-right chain structure where transitions are allowed from one state
to itself, to the previous and to the next state. Yet it is intended that the tran-
sition probability from one state to the previous state be very small so that a
likely state sequence will depict the entire chain form the first state to the last
state with some hesitation corresponding to few back transitions.

The HMM is designed so that an observation sequence produced along such a
state sequence will correspond to one shake pattern (with some trembling effect
coming from back transitions). There is one Gaussian distribution associated to
each state of the chain, which are set by hand rather than learned, as follows. We
first divide the range of the signal value in N intervals and define N Gaussian
Probability Density Function (PDF), one for each interval. The mean of the
Gaussian distribution for a given interval is the mean of this interval and its
variance is defined according to the width of this interval. Then we assign one
of the PDF to every state of the left-right HMM so that going from the first
state to the last state corresponds to a trajectory of a shaking movement. For
instance in Figure 1, the first state has PDF p2 which outputs intermediate
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values in the observation space, the second state has PDF p3 which outputs
higher values, it is followed by a state with PDF p2, then by a state with PDF
p1 which outputs lower values. If a signal is produced by this HMM along a state
sequence that goes from the first (left) to the last (right) state it will correspond
to a shaking-like motion.

Finally, there is a loop from the last state to the first state to enable the
repetition of such a shaking and trembling pattern. Figure 1 (top) shows one
example of a synthesized motion stream by a LHMM. As can be seen, the ani-
mation inferred by a LHMM shows the repetition of a pattern.

Fig. 1. A Loop HMM whose manual design allows us to model shaking and trembling
one dimensional movements.

Taking into account the dependency with speech Some evidence about
the motion pattern may be gained from taking into account the dependencies
between audio signal and motion during laughter [14]. Audio signal (we use pitch
and energy) may then be used to shape the synthesized animation stream. In
addition to introducing some variability in the inferred animation such a strategy
makes animation look more realistic because of an increased consistency with
the audio signal.

To exploit such a correlation between speech and movements we developed
an extension of our LHMM, whose state transition probabilities depend on
acoustic features. We call these models Transition Parameterized Loop HMM
(TPLHMM). They may be used to model and synthesize one dimensional shak-
ing movements that are linked in some way with speech. We implemented this
idea in a similar way as proposed previously by [15] to take into account the de-
pendency of observations sequences in the HMM framework to what was called
contextual or external variables. The difference lies in that, while in [15] con-
textual variables were used to alter Gaussian PDF means, we use the speech
features to alter the transition probabilities in our TPLHMMM. We consider
that transition probablities from state i to state j at time t are defined accord-
ing to:
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ai,j(t) =
eWi,jθt∑
j′ e

Wi,j′θt
(1)

where θt and W ’ are c-dimensional vectors. θt stands for contextual fea-
tures at time t (e.g. pitch and energy) and W ’s are parameter matrices (to be
learned from data) associated to each possible transition. The parameters of a
TPLHMM (the W ’s) are learned via likelihood maximization with a Generalized
EM algorithm. To ease learning it is initialized with a trained LHMM (HMM).

Isolated and joint modeling of the 6 dimensional animation signal
A first possibility to model and synthesize the 6 dimensional animation sig-
nal is to assume the 6 signals are independent from each others and to learn
independently one LHMM or one TPLHMM per dimension. Alternatively one
could consider jointly modeling head and torso motions. For example, Ruch and
Ekman [6] reported that the backward tilt of the head facilitates the forced
exhalations, while exhalation directly influences torso motion as being done in
DiLorenzo et al. [14]. Therefore, the relationship between head and torso motions
should be modeled jointly for, to be tested, augmenting naturalness of synthe-
sized animations. In our work, we used Coupled HMMs (CHMM) [16] which
have been designed to model multiple interdependent streams of observations.
In a CHMM with K streams of observations, there is one HMM per stream and
transition probabilities account for transiting from K-tuple of states (one state
in each stream’s HMM) to another K-tuple of states. In our experiments we use
6 trained TPLHMMs to initialize one CHMM, we then get a Coupled TPLHMM,
whose transitions are parameterized with speech features. After initialization it
is retrained through maximum likelihood estimation.

Animation Synthesis Given a phoneme sequence of length T , together with
their intensity and duration, we independently synthesize T segments of ap-
propriate duration. Each of the segment is synthesized with the corresponding
model of the (phoneme, intensity) pair, which is either a set of 6 LHMMs, or
a set of 6 TPLHMMs, or a CTPLHMM with 6 streams. In case TPLHMMs or
CTPLHMM are used the acoustic features are exploited to alter the transition
probabilities.

Whatever the models used, the synthesis is performed simply by randomly
generating a state sequence according to transition probability distribution, then
by synthesizing the most likely observation sequence given the state sequence,
which consists in the sequence of the means of the Gaussian distribution of the
states in the sequence.

4 Experiments

Animation synthesis model is built from human data of 2 subjects. The data con-
tains 205 laugh sequences and 25625 frames in total. Human data from another
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subject is used for validation through subjective and objective evaluation stud-
ies. It contains 54 laugh sequences and 6750 frames. Objective and subjective
evaluations are conducted to validate the proposed animation synthesis model.

4.1 Objective Evaluation

As described in Section 3, LHMM and TPLHMM treat separately each dimen-
sion motion of head and torso, while the coupled model can simulate the relation-
ship between them. We first investigate whether such a coupling is relevant; then
we compare the animations synthesized by LHMM, TPLHMM and CTPLHMM
with respect to few quantitative criterion.

Investigating Relation between Head and Torso To investigate the rele-
vance of joint modeling of the 6 dimensions animation we tested the probabilistic
independency between the 6 random variables corresponding to the states that
are occupied at the same time in the 6 streams’ LHMMs. For each pair of streams
we built a contingency table for the two random variables of being in a state in
the HMM for stream 1 while being in a state in the HMM for stream 2, then
we computed a χ2 test to evaluate the independency between the two random
variables. We found that whatever the two streams are and whatever the model
is, i.e whatever the pair (phoneme, intensity) is, the two random variables were
found statistically dependent at a p-value lower than 0.001. This means jointly
modeling the multiple streams is actually relevant and should lead to improved
animation.

Furthermore to quantify the degree of dependency between the multiple
streams we computed relative mutual information. The mutual information be-
tween two random variables X and Y , I(X,Y ), equals the difference between
the entropy of X, H(X) and the conditional entropy of X given Y , H(X|Y ).
If X and Y are independent, Y does not bring any information about X and
I(X,Y ) = 0. Alternatively, if Y includes some information about X, the uncer-
tainty on X is reduced when knowing Y so that the conditional entropy H(X|Y )
is lower than H(X) and I(X,Y ) > 0. Furthermore one can measure the amount
of information Y brings on X by computing a normalized mutual information
Î(X,Y ) = I(X,Y )/H(X) where H(X) is the entropy of X. The normalized
mutual information belongs to the range [0, 1]. It equals 0 if X and Y are fully
independent, while it equals 1 if X may be deterministically predicted from Y .

In all the tests we performed we obtained normalized mutual information
between 17% and 22% which shows that some uncertainty exists between the 6
dimensions of the animation but that it is not fully random either.

As a conclusion, the 6 dimensions of the animation are not independent.
Hence, independent modeling of the 6 streams would be suboptimal, and these
are not deterministically linked, meaning that a pure synchronous modeling of
the 6 streams in a single LHMM or a single TPLHMM would not be a good
option either. Finally these resuts justify our choice of modeling the 6 dimen-
sional animation signal within a coupled HMM that enables modeling a weak
dependency between the streams.
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Similarity between synthesized and real animations We compared our
models by computing 3 criteria which allow evaluating the similarity between
a synthesized signal and a real signal. Basically we consider the quality of the
synthesized signal with respect to three features: the main frequency of the
signal, as extracted by the Periodicity Algorithm [17], the amplitude of this main
frequency, and the energy of this frequency. These criteria allow investigating if
the main features of a shaking-like movement are well modeled by the synthesis
system.

For each of the three features we computed a normalized error (e.g.
∣∣∣ fs−fh

fh

∣∣∣
for the frequency feature, where fs and fh stand for the frequency of the syn-
thesized and of the human animation signals averaged over all phonemes realiza-
tions. The lower such a measure is the closer the synthesized signal is from the
original one. The frequency, amplitude and energy errors obtained for our var-
ious models are reported in Figure 1. According to these measures, TPLHMM
and CTPLHMM do perform much better than LHMM while the difference of
performance between TPLHMM and CTPLHMM is less clear.

Table 1. Performance of the models with respect to the synthesis quality (frequency,
amplitude and energy errors). Performances are averaged results gained on 54 test
sequences (standard deviations are given in brackets).

Model frequency amplitude energy

LHMM 0.21 (0.074) 0.24 (0.100) 0.41 (0.071)

TPLHMM 0.17 (0.063) 0.19 (0.066) 0.34 (0.057)

CTPLHMM 0.17 (0.061) 0.20 (0.059) 0.31 (0.052)

4.2 Subjective Evaluation

Two subjective evaluations were conducted through an online web application.
First, we compare the animations synthesized by TPLHMM and CTPLHMM;
then the best one is compared to human data. The participants were invited
to watch 5 videos of laughing virtual character and to answer few questions for
each video. They could control when to start the videos and could watch them
as many times as they wish. Our aim is to evaluate the behaviors animation
and not the appearance of the virtual agent. We used the same virtual agent to
display motion data for both subjective evaluations. Motion data displayed with
the virtual character consists of head and torso movements (motion capture or
generated data) and facial expression. Facial expression of laughter was com-
puted using our previous approach [18]. The 5 videos used in both subjective
studies last respectively 9s, 10s, 18s, 26s and 27s.

TPLHMM and CTPLHMM Comparison: To compare TPLHMM and
CTPLHMM, both trained models were applied to the 5 test samples. For each
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test sample, a pair of videos was recorded in which the virtual agent’s head and
torso motions were driven respectively by these models. Each pair of video clips
was displayed on the same web page and randomly arranged on the right or
on the left. After watching each pair of video clips, participants were invited
to select the best animation along four dimensions: naturalness of the anima-
tion, synchronization of head and torso movements with laugh sound, correlation
of laughter intensity and torso movements, inter-correlation of head and torso
movement.

This evaluation study involved 120 participants, 67 males and 53 females
with age ranging from 18 to 65 years old (Mean=33.5 years, SD=9.6 years). We
computed 95% confidence intervals that show that CTPLHMM is significantly
better than TPLHMMs with respect to the 4 questions: we obtained a confidence
interval equal to [66% 77%] for CTPLHMM being better than TPLHMMS with
respect to Naturalness, [60% 72%] for Synchronisation, [58% 70%] for Intensity
correlation and [63% 74%] for Head and Torso inter-correlation.

Synthesized and Human Data Comparison: With respect to the results
above, CTPLHMM is perceived as the best animation synthesis framework; so
we use the animations obtained with CTPLHMM in the comparison test with
human data. This subjective evaluation was conducted to investigate how sim-
ilar is the perception of the virtual agent displaying head and torso motions
synthesized by CTPLHMM to the perception of the virtual agent displaying
head and torso motions synthesized by CTPLHMM is similar to the perception
of the virtual agent animated directly by human data. As the previous study, a
comparison test was conducted.

In total, there were 80 participants consisting of 46 males and 34 females
with age ranging from 12 to 78 (M=40.65 years, SD=17.91 years). To verify the
hypothesis, 2 versions (conditions) of the virtual agent animations were created
for each selected test sample. They are human and synthesized motions. There
are a total of 10 video clips (5 input samples × 2 conditions). Each participant
watched 5 video clips, each of which is randomly selected from the 2 conditions.
Each video clip has been evaluated 40 times (i.e., by 40 participants). After
watching each video clip, each participant was invited to answer the same four
questions as in the first evaluation study, but this time the participant answered
using a 5 point Likert scale.

The results are shown in Figure 2. As can be seen, synthesized motion obtains
score less than human motions along the four dimensions: naturalness, synchro-
nization, correlation of laughter intensity and torso movements, inter-correlation
of head and torso movement. T-test shows that there are significant differences
in all terms between human and synthesized data.

4.3 Discussion

The objective evaluation for comparing LHMM, TPLHMM and CTPLHMM
shows that TPLHMM and CTPLHMM perform better than LHMM. It high-
lights that acoustic features and motions are linked. Thus acoustic features can
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Fig. 2. Averaged values of virtual agent animated by animations from human and
synthesized. Significant differences are identified by ? (P < .05). The averaged values
are shown with an histogram and the standard deviation is specified in parenthesis.

be used to capture motion trajectories. In LHMM, inputs of text signals, such
as phoneme, intensity and duration, are global-level features. They do not con-
tain enough information to characterize dynamic motion variance at each time
frame. While, in TPLHMM and CTPLHMM, for each time frame, additional
acoustic features are used to characterize dynamic variance of human motion. In
LHMM and TPLHMM models, head and torso motions are modelled separately.
In other words, they are considered as being independent. However, through the
objective evaluation investigating the relation between head and torso, we found
that head and torso motions are dependent with each other; relationship which
is ignored in the other two models. In our work, coupled model is used to learn
this dependent relation between head and torso movements.

The subjective evaluation compared TPLHMM and CTPLHMM. CTPLHMM
obtains higher score than TPLHMM. In the subjective evaluation on comparing
synthesized and human motions, human data is perceived significantly better
than synthesized data in terms of naturalness, synchronisation, intensity and
correlation of head and torso movements. However the difference in perception
is not so severe (less than 1 on a 5 likert scale). This suggests that the proposed
CTPLHMM is somehow capable of synthesizing human-like head and body mo-
tions.

5 Conclusion

In this paper we have presented an approach to model laughter head and torso
movements, which are very rhythmic and show saccadic patterns. To capture
laughter motion characteristics, we have developed a statistical approach to re-
produce frequency movements, such as shaking and trembling. Our statistical
model takes as input such phoneme sequences and acoustic features of laughter
sound. Then it outputs the head and torso animations of the virtual agent. In
the training model, not only the relation between input and output features is
modelled, but also the relation between head and torso movements is captured.
Experiments show that our model is able to capture the dynamism of laughter
movement, but do not overcome animation from human data.
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13. Urbain, J., Çakmak, H., Dutoit, T.: Automatic phonetic transcription of laughter
and its application to laughter synthesis. In: Proceedings of Affective Computing
and Intelligent Interaction. (2013) 153–158

14. DiLorenzo, P.C., Zordan, V.B., Sanders, B.L.: Laughing out loud: control for
modeling anatomically inspired laughter using audio. ACM Trans. Graph. 27(5)
(2008) 125

15. Wilson, A., Bobick, A.: Parametric hidden markov models for gesture recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence 21(9) (1999)
884–900

16. Brand, M.: Coupled hidden markov models for modeling interacting processes.
Technical report (1997)

17. Sethares, W., Staley, T.: Periodicity transforms. IEEE Transactions on Signal
Processing 47(11) (1999) 2953–2964

18. Ding, Y., Prepin, K., Huang, J., Pelachaud, C., Artières, T.: Laughter animation
synthesis. In: Proceedings of the 2014 International Conference on Autonomous
Agents and Multi-agent Systems. (2014) 773–780


