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Abstract

The task of reconstructing a matrix given a sample of observed entries is known
as the matrix completion problem. It arises in a wide range of problems, in-
cluding recommender systems, collaborative filtering, dimensionality reduction,
image processing, quantum physics or multi-class classification to name a few.
Most works have focused on recovering an unknown real-valued low-rank ma-
trix from randomly sub-sampling its entries. Here, we investigate the case where
the observations take a finite number of values, corresponding for examples to
ratings in recommender systems or labels in multi-class classification. We also
consider a general sampling scheme (not necessarily uniform) over the matrix
entries. The performance of a nuclear-norm penalized estimator is analyzed the-
oretically. More precisely, we derive bounds for the Kullback-Leibler divergence
between the true and estimated distributions. In practice, we have also proposed
an efficient algorithm based on lifted coordinate gradient descent in order to tackle
potentially high dimensional settings.

1 Introduction

Matrix completion has attracted a lot of contributions over the past decade. It consists in recovering
the entries of a potentially high dimensional matrix, based on their random and partial observations.
In the classical noisy matrix completion problem, the entries are assumed to be real valued and ob-
served in presence of additive (homoscedastic) noise. In this paper, it is assumed that the entries take
values in a finite alphabet that can model categorical data. Such a problem arises in analysis of vot-
ing patterns, recovery of incomplete survey data (typical survey responses are true/false, yes/no or
do not know, agree/disagree/indifferent), quantum state tomography [13] (binary outcomes), recom-
mender systems [18, 2] (for instance in common movie rating datasets, e.g., MovieLens or Neflix,
ratings range from 1 to 5) among many others. It is customary in this framework that rows represent
individuals while columns represent items e.g., movies, survey responses, etc. Of course, the obser-
vations are typically incomplete, in the sense that a significant proportion of the entries are missing.
Then, a crucial question to be answered is whether it is possible to predict the missing entries from
these partial observations.
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Since the problem of matrix completion is ill-posed in general, it is necessary to impose a low-
dimensional structure on the matrix, one particularly popular example being a low rank constraint.
The classical noisy matrix completion problem (real valued observations and additive noise), can be
solved provided that the unknown matrix is low rank, either exactly or approximately; see [7, 15, 17,
20, 5, 16] and the references therein. Most commonly used methods amount to solve a least square
program under a rank constraint or a convex relaxation of a rank constraint provided by the nuclear
(or trace norm) [10].

The problem of probabilistic low rank matrix completion over a finite alphabet has received much
less attention; see [22, 8, 6] among others. To the best of our knowledge, only the binary case
(also referred to as the 1-bit matrix completion problem) has been covered in depth. In [8], the
authors proposed to model the entries as Bernoulli random variables whose success rate depend
upon the matrix to be recovered through a convex link function (logistic and probit functions being
natural examples). The estimated matrix is then obtained as a solution of a maximization of the
log-likelihood of the observations under an explicit low-rank constraint. Moreover, the sampling
model proposed in [8] assumes that the entries are sampled uniformly at random. Unfortunately,
this condition is not totally realistic in recommender system applications: in such a context some
users are more active than others and some popular items are rated more frequently. Theoretically,
an important issue is that the method from [8] requires the knowledge of an upper bound on the
nuclear norm or on the rank of the unknown matrix.

Variations on the 1-bit matrix completion was further considered in [6] where a max-norm (though
the name is similar, this is different from the sup-norm) constrained minimization is considered. The
method of [6] allows more general non-uniform samplings but still requires an upper bound on the
max-norm of the unknown matrix.

In the present paper we consider a penalized maximum log-likelihood method, in which the log-
likelihood of the observations is penalized by the nuclear norm (i.e., we focus on the Lagrangian
version rather than on the constrained one). We first establish an upper bound of the Kullback-
Leibler divergence between the true and the estimated distribution under general sampling distribu-
tions; see Section 2 for details. One should note that our method only requires the knowledge of
an upper bound on the maximum absolute value of the probabilities, and improves upon previous
results found in the literature.

Last but not least, we propose an efficient implementation of our statistical procedure, which is
adapted from the lifted coordinate descent algorithm recently introduced in [9, 14]. Unlike other
methods, this iterative algorithm is designed to solve the convex optimization and not (possibly non-
convex) approximated formulation as in [21]. It also has the benefit that it does not need to perform
full/partial SVD (Singular Value Decomposition) at every iteration; see Section 3 for details.

Notation

Define m1 ∧m2 := min(m1,m2) and m1 ∨m2 := max(m1,m2). We equip the set of m1 ×m2

matrices with real entries (denoted Rm1×m2 ) with the scalar product 〈X|X ′〉 := tr(X>X ′). For a
given matrixX ∈ Rm1×m2 we write ‖X‖∞ := maxi,j |Xi,j | and, for q ≥ 1, we denote its Schatten
q-norm by

‖X‖σ,q :=

(
m1∧m2∑
i=1

σi(X)q

)1/q

,

where σi(X) are the singular values of X ordered in decreasing order (see [1] for more details on
such norms). The operator norm of X is given by ‖X‖σ,∞ := σ1(X). Consider two vectors of
p − 1 matrices (Xj)p−1

j=1 and (X ′j)p−1
j=1 such that for any (k, l) ∈ [m1] × [m2] we have Xj

k,l ≥ 0,
X ′jk,l ≥ 0, 1−

∑p−1
j=1 X

j
k,l ≥ 0 and 1−

∑p−1
j=1 X

′j
k,l ≥ 0. Their square Hellinger distance is

d2
H(X,X ′) :=

1

m1m2

∑
k∈[m1]
l∈[m2]

p−1∑
j=1

(√
Xj
k,l −

√
X ′jk,l

)2

+

√√√√1−
p−1∑
j=1

Xj
k,l −

√√√√1−
p−1∑
j=1

X ′jk,l

2
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and their Kullback-Leibler divergence is

KL (X,X ′) :=
1

m1m2

∑
k∈[m1]
l∈[m2]

p−1∑
j=1

Xj
k,l log

Xj
k,l

X ′jk,l
+ (1−

p−1∑
j=1

Xj
k,l) log

1−
∑p−1
j=1 X

j
k,l

1−
∑p−1
j=1 X

′j
k,l

 .

Given an integer p > 1, a function f : Rp−1 → Rp−1 is called a p-link function if for any x ∈ Rp−1

it satisfies f j(x) ≥ 0 for j ∈ [p− 1] and 1−
∑p−1
j=1 f

j(x) ≥ 0. For any collection of p− 1 matrices
(Xj)p−1

j=1 , f(X) denotes the vector of matrices (f(X)j)p−1
j=1 such that f(X)jk,l = f(Xj

k,l) for any
(k, l) ∈ [m1]× [m2] and j ∈ [p− 1].

2 Main results

Let p denote the cardinality of our finite alphabet, that is the number of classes of the logistic model
(e.g., ratings have p possible values or surveys p possible answers). For a vector of p − 1 matrices
X = (Xj)p−1

j=1 of Rm1×m2 and an index ω ∈ [m1] × [m2], we denote by Xω the vector (Xj
ω)p−1
j=1 .

We consider an i.i.d. sequence (ωi)1≤i≤n over [m1]× [m2], with a probability distribution function
Π that controls the way the matrix entries are revealed. It is customary to consider the simple
uniform sampling distribution over the set [m1] × [m2], though more general sampling schemes
could be considered as well. We observe n independent random elements (Yi)1≤i≤n ∈ [p]n. The
observations (Y1, . . . , Yn) are assumed to be independent and to follow a multinomial distribution
with success probabilities given by

P(Yi = j) = f j(X̄1
ωi
, . . . , X̄p−1

ωi
) j ∈ [p− 1] and P(Yi = p) = 1−

p−1∑
j=1

P(Yi = j)

where {f j}p−1
j=1 is a p-link function and X̄ = (X̄j)p−1

j=1 is the vector of true (unknown) parameters
we aim at recovering. For ease of notation, we often write X̄i instead of X̄ωi

. Let us denote by ΦY

the (normalized) negative log-likelihood of the observations:

ΦY(X) = − 1

n

n∑
i=1

p−1∑
j=1

1{Yi=j} log
(
f j(Xi)

)
+ 1{Yi=p} log

1−
p−1∑
j=1

f j(Xi)

 , (1)

For any γ > 0 our proposed estimator is the following:

X̂ = arg min
X∈(Rm1×m2 )p−1

maxj∈[p−1] ‖Xj‖∞≤γ

ΦλY (X) , where ΦλY (X) = ΦY(X) + λ

p−1∑
j=1

‖Xj‖σ,1 , (2)

with λ > 0 being a regularization parameter controlling the rank of the estimator. In the rest of the
paper we assume that the negative log-likelihood ΦY is convex (this is the case for the multinomial
logit function, see for instance [3]).

In this section we present two results controlling the estimation error of X̂ in the binomial setting
(i.e., when p = 2). Before doing so, let us introduce some additional notation and assumptions. The
score function (defined as the gradient of the negative log-likelihood) taken at the true parameter X̄ ,
is denoted by Σ̄ := ∇ΦY(X̄). We also need the following constants depending on the link function
f and γ > 0:

Mγ = sup
|x|≤γ

2| log(f(x))| ,

Lγ = max

(
sup
|x|≤γ

|f ′(x)|
f(x)

, sup
|x|≤γ

|f ′(x)|
1− f(x)

)
,

Kγ = inf
|x|≤γ

f ′(x)2

8f(x)(1− f(x))
.
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In our framework, we allow for a general distribution for observing the coefficients. However, we
need to control deviations of the sampling mechanism from the uniform distribution and therefore
we consider the following assumptions.
H1. There exists a constant µ ≥ 1 such that for all indexes (k, l) ∈ [m1]× [m2]

min
k,l

(πk,l) ≥ 1/(µm1m2) .

with πk,l := Π(ω1 = (k, l)).

Let us define Cl :=
∑m1

k=1 πk,l (resp. Rk :=
∑m2

l=1 πk,l) for any l ∈ [m2] (resp. k ∈ [m1]) the
probability of sampling a coefficient in column l (resp. in row k).
H2. There exists a constant ν ≥ 1 such that

max
k,l

(Rk, Cl) ≤ ν/(m1 ∧m2) ,

Assumption H1 ensures that each coefficient has a non-zero probability of being sampled whereas
H2 requires that no column nor row is sampled with too high probability (see also [11, 16] for more
details on this condition).

We define the sequence of matrices (Ei)
n
i=1 associated to the revealed coefficient (ωi)

n
i=1 by

Ei := eki(e
′
li

)> where (ki, li) = ωi and with (ek)m1

k=1 (resp. (e′l)
m2

l=1) being the canonical ba-
sis of Rm1 (resp. Rm2 ). Furthermore, if (εi)1≤i≤n is a Rademacher sequence independent from
(ωi)

n
i=1 and (Yi)1≤i≤n we define

ΣR :=
1

n

n∑
i=1

εiEi .

We can now state our first result. For completeness, the proofs can be found in the supplementary
material.
Theorem 1. Assume H1 holds, λ ≥ 2‖Σ̄‖σ,∞ and ‖X̄‖∞ ≤ γ. Then, with probability at least
1− 2/d the Kullback-Leibler divergence between the true and estimated distribution is bounded by

KL
(
f(X̄), f(X̂)

)
≤ 8 max

(
µ2

Kγ
m1m2 rank(X̄)

(
λ2 + c∗L2

γ(E‖ΣR‖σ,∞)2
)
, µeMγ

√
log(d)

n

)
,

where c∗ is a universal constant.

Note that ‖Σ̄‖σ,∞ is stochastic and that its expectation E‖ΣR‖σ,∞ is unknown. However, thanks to
Assumption H2 these quantities can be controlled.

To ease notation let us also define m := m1 ∧m2, M := m1 ∨m2 and d := m1 +m2.
Theorem 2. Assume H 1 and H 2 hold and that ‖X̄‖∞ ≤ γ. Assume in addition that n ≥
2m log(d)/(9ν). Taking λ = 6Lγ

√
2ν log(d)/(mn), then with probability at least 1 − 3/d the

folllowing holds

Kγ

‖X̄ − X̂‖2σ,2
m1m2

≤ KL
(
f(X̄), f(X̂)

)
≤ max

(
c̄
νµ2L2

γ

Kγ

M rank(X̄) log(d)

n
, 8µeMγ

√
log(d)

n

)
,

where c̄ is a universal constant.
Remark. Let us compare the rate of convergence of Theorem 2 with those obtained in previous
works on 1-bit matrix completion. In [8], the parameter X̄ is estimated by minimizing the negative
log-likelihood under the constraints ‖X‖∞ ≤ γ and ‖X‖σ,1 ≤ γ

√
rm1m2 for some r > 0. Under

the assumption that rank(X̄) ≤ r, they could prove that

‖X̄ − X̂‖2σ,2
m1m2

≤ Cγ

√
rd

n
,

where Cγ is a constant depending on γ (see [8, Theorem 1]). This rate of convergence is slower
than the rate of convergence given by Theorem 2. [6] studied a max-norm constrained maximum
likelihood estimate and obtained a rate of convergence similar to [8].
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3 Numerical Experiments

Implementation For numerical experiments, data were simulated according to a multinomial
logit distribution. In this setting, an observation Yk,l associated to row k and column l is distributed
as P(Yk,l = j) = f j(X1

k,l, . . . , X
p−1
k,l ) where

f j(x1, . . . , xp−1) = exp(xj)

1 +

p−1∑
j=1

exp(xj)

−1

, for j ∈ [p− 1] . (3)

With this choice, ΦY is convex and problem (2) can be solved using convex optimization algo-
rithms. Moreover, following the advice of [8] we considered the unconstrained version of problem
(2) (i.e., with no constraint on ‖X‖∞), which reduces significantly the computation burden and has
no significant impact on the solution in practice. To solve this problem, we have extended to the
multinomial case the coordinate gradient descent algorithm introduced by [9]. This type of algo-
rithm has the advantage, say over the Soft-Impute [19] or the SVT [4] algorithm, that it does not
require the computation of a full SVD at each step of the main loop of an iterative (proximal) algo-
rithm (bare in mind that the proximal operator associated to the nuclear norm is the soft-thresholding
operator of the singular values). The proposed version only computes the largest singular vectors
and singular values. This potentially decreases the computation by a factor close to the value of the
upper bound on the rank commonly used (see the aforementioned paper for more details).

Let us present the algorithm. Any vector of p− 1 matrices X = (Xj)p−1
j=1 is identified as an element

of the tensor product space Rm1×m2 ⊗ Rp−1 and denoted by:

X =

p−1∑
j=1

Xj ⊗ ej , (4)

where again (ej)p−1
j=1 is the canonical basis on Rp−1 and ⊗ stands for the tensor product. The set of

normalized rank-one matrices is denoted by

M :=
{
M ∈ Rm1×m2 |M = uv> | ‖u‖ = ‖v‖ = 1, u ∈ Rm1 , v ∈ Rm2

}
.

Define Θ the linear space of real-valued functions onM with finite support, i.e., θ(M) = 0 except
for a finite number of M ∈ M. This space is equipped with the `1-norm ‖θ‖1 =

∑
M∈M |θ(M)|.

Define by Θ+ the positive orthant, i.e., the cone of functions θ ∈ Θ such that θ(M) ≥ 0 for all
M ∈M. Any tensor X can be associated with a vector θ = (θ1, . . . , θp−1) ∈ Θp−1

+ , i.e.,

X =

p−1∑
j=1

∑
M∈M

θj(M)M ⊗ ej . (5)

Such representations are not unique, and among them, the one associated to the SVD plays a key
role, as we will see below. For a given X represented by (4) and for any j ∈ {1, . . . , p− 1}, denote
by {σjk}n

j

k=1 the (non-zero) singular values of the matrix Xj and {ujk,vjk}n
j

k=1 the associated singular
vectors. Then, X may be expressed as

X =

p−1∑
j=1

nj∑
k=1

σjku
j
k(vjk)> ⊗ ej . (6)

Defining θj the function θj(M) = σjk if M = ujk(vjk)>, k ∈ [nj ] and θj(M) = 0 otherwise, one
obtains a representation of the type given in Eq. (5).

Conversely, for any θ = (θ1, . . . , θp−1) ∈ Θp−1, define the map

W : θ →Wθ :=

p−1∑
j=1

W j
θ ⊗ e

j with W j
θ :=

∑
M∈M

θj(M)M

and the auxiliary objective function

Φ̃λY (θ) = λ

p−1∑
j=1

∑
M∈M

θj(M) + ΦY(Wθ) . (7)
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The map θ 7→ Wθ is a continuous linear map from (Θp−1, ‖ · ‖1) to Rm1×m2 ⊗ Rp−1, where
‖θ‖1 =

∑p−1
j=1

∑
M∈M |θj(M)|. In addition, for all θ ∈ Θp−1

+

p−1∑
j=1

‖W j
θ ‖σ,1 ≤ ‖θ‖1 ,

and one obtains ‖θ‖1 =
∑p−1
j=1 ‖W

j
θ ‖σ,1 when θ is the representation associated to the SVD decom-

position. An important consequence, outlined in [9, Proposition 3.1], is that the minimization of (7)
is actually equivalent to the minimization of (2); see [9, Theorem 3.2].

The proposed coordinate gradient descent algorithm updates at each step the nonnegative finite sup-
port function θ. For θ ∈ Θ we denote by supp(θ) the support of θ and for M ∈M, by δM ∈ Θ the
Dirac function onM satisfying δM (M) = 1 and δM (M ′) = 0 if M ′ 6= M . In our experiments we
have set to zero the initial θ0.

Algorithm 1: Multinomial lifted coordinate gradient descent
Data: Observations: Y , tuning parameter λ
initial parameter: θ0 ∈ Θp−1

+ ; tolerance: ε; maximum number of iterations: K
Result: θ ∈ Θp−1

+
Initialization: θ ← θ0, k ← 0
while k ≤ K do

for j = 0 to p− 1 do
Compute top singular vectors pair of (−∇ΦY(Wθ))j : uj , vj

Let g = λ+ minj=1,...,p−1〈∇ΦY |uj(vj)>〉
if g ≤ −ε/2 then

(β0, . . . , βp−1) = arg min
(b0,...,bp−1)∈Rp−1

+

Φ̃λY
(
θ + (b0δu0(v0)> , . . . , bp−1δup−1(vp−1)>)

)
θ ← θ + (β0δu0(v0)> , . . . , βp−1δup−1(vp−1)>)
k ← k + 1

else
Let gmax = maxj∈[p−1] maxuj(vj)>∈supp(θj) |λ+ 〈∇ΦY |uj(vj)>〉|
if gmax ≤ ε then

break
else

θ ← arg min
θ′∈Θp−1

+ ,supp(θ′j)⊂supp(θj),j∈[p−1]

Φ̃λY (θ′)

k ← k + 1

A major interest of Algorithm 1 is that it requires to store the value of the parameter entries only
for the indexes which are actually observed. Since in practice the number of observations is much
smaller than the total number of coefficients m1m2, this algorithm is both memory and computa-
tionally efficient. Moreover, using an SVD algorithm such as Arnoldi iterations to compute the top
singular values and vector pairs (see [12, Section 10.5] for instance) allows us to take full advantage
of gradient sparse structure. Algorithm 1 was implemented in C and Table 1 gives a rough idea
of the execution time for the case of two classes on a 3.07Ghz w3550 Xeon CPU (RAM 1.66 Go,
Cache 8Mo).

Simulated experiments To evaluate our procedure we have performed simulations for matri-
ces with p = 2 or 5. For each class matrix Xj we sampled uniformly five unitary vector pairs
(ujk, v

j
k)5
k=1. We have then generated matrices of rank equals to 5, such that

Xj = Γ
√
m1m2

5∑
k=1

αku
j
k(vjk)> ,

with (α1, . . . , α5) = (2, 1, 0.5, 0.25, 0.1) and Γ is a scaling factor. The
√
m1m2 factor, guarantees

that E[‖Xj‖∞] does not depend on the sizes of the problem m1 and m2.
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Parameter Size 103 × 103 3 · 103 × 3 · 103 104 × 104

Observations 105 105 107

Execution Time (s.) 4.5 52 730

Table 1: Execution time of the proposed algorithm for the binary case.

We then sampled the entries uniformly and the observations according to a logit distribution given
by Eq. (3). We have then considered and compared the two following estimators both computed
using Algorithm 1:

• the logit version of our method (with the link function given by Eq. (3))

• the Gaussian completion method (denoted by X̂N ), that consists in using the Gaussian
log-likelihood instead of the multinomial in (2), i.e., using a classical squared Frobenius
norm (the implementation being adapted mutatis mutandis). Moreover an estimation of the
standard deviation is obtained by the classical analysis of the residue.

Contrary to the logit version, the Gaussian matrix completion does not directly recover the proba-
bilities of observing a rating. However, we can estimate this probability by the following quantity:

P(X̂Nk,l = j) = FN (0,1)(pj+1)− FN (0,1)(pj) with pj =


0 if j = 1 ,
j−0.5−X̂Nk,l

σ̂ if 0 < j < p

1 if j = p ,

where FN (0,1) is the cdf of a zero-mean standard Gaussian random variable.

As we see on Figure 1, the logistic estimator outperforms the Gaussian for both cases p = 2 and
p = 5 in terms of the Kullback-Leibler divergence. This was expected because the Gaussian model
allows uniquely symmetric distributions with the same variance for all the ratings, which is not the
case for logistic distributions. The choice of the λ parameter has been set for both methods by
performing 5-fold cross-validation on a geometric grid of size 0.8 log(n).

Table 2 and Table 3 summarize the results obtained for a 900× 1350 matrix respectively for p = 2
and p = 5. For both the binomial case p = 2 and the multinomial case p = 5, the logistic model
slightly outperforms the Gaussian model. This is partly due to the fact that in the multinomial case,
some ratings can have a multi-modal distribution. In such a case, the Gaussian model is unable
to predict these ratings, because its distribution is necessarily centered around a single value and
is not flexible enough. For instance consider the case of a rating distribution with high probability
of seeing 1 or 5, low probability of getting 2, 3 and 4, where we observed both 1’s and 5’s. The
estimator based on a Gaussian model will tend to center its distribution around 2.5 and therefore
misses the bimodal shape of the distribution.

Observations 10 · 103 50 · 103 100 · 103 500 · 103

Gaussian prediction error 0.49 0.34 0.29 0.26
Logistic prediction error 0.42 0.30 0.27 0.24

Table 2: Prediction errors for a binomial (2 classes) underlying model, for a 900× 1350 matrix.

Observations 10 · 103 50 · 103 100 · 103 500 · 103

Gaussian prediction error 0.78 0.76 0.73 0.69
Logistic prediction error 0.75 0.54 0.47 0.43

Table 3: Prediction Error for a multinomial (5 classes) distribution against a 900× 1350 matrix.

Real dataset We have also run the same estimators on the MovieLens 100k dataset. In the case
of real data we cannot calculate the Kullback-Leibler divergence since no ground truth is available.
Therefore, to compare the prediction errors, we randomly selected 20% of the entries as a test set,
and the remaining entries were split between a training set (80%) and a validation set (20%).
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Figure 1: Kullback-Leibler divergence between the estimated and the true model for different
matrices sizes and sampling fraction, normalized by number of classes. Right figure: binomial
and Gaussian models ; left figure: multinomial with five classes and Gaussian model. Results are
averaged over five samples.

For this dataset, ratings range from 1 to 5. To consider the benefit of a binomial model, we have
tested each rating against the others (e.g., ratings 5 are set to 0 and all others are set to 1). Interest-
ingly we see that the Gaussian prediction error is significantly better when choosing labels −1, 1
instead of labels 0, 1. This is another motivation for not using the Gaussian version: the sensibility to
the alphabet choice seems to be crucial for the Gaussian version, whereas the binomial/multinomial
ones are insensitive to it. These results are summarized in table 4.

Rating 1 2 3 4 5
Gaussian prediction error (labels −1 and 1) 0.06 0.12 0.28 0.35 0.19
Gaussian prediction error (labels 0 and 1) 0.12 0.20 0.39 0.46 0.30
Logistic prediction error 0.06 0.11 0.27 0.34 0.20

Table 4: Binomial prediction error when performing one versus the others procedure on the Movie-
Lens 100k dataset.

4 Conclusion and future work

We have proposed a new nuclear norm penalized maximum log-likelihood estimator and have pro-
vided strong theoretical guarantees on its estimation accuracy in the binary case. Compared to
previous works on 1-bit matrix completion, our method has some important advantages. First, it
works under quite mild assumptions on the sampling distribution. Second, it requires only an up-
per bound on the maximal absolute value of the unknown matrix. Finally, the rates of convergence
given by Theorem 2 are faster than the rates of convergence obtained in [8] and [6]. In future work,
we could consider the extension to more general data fitting terms, and to possibly generalize the
results to tensor formulations, or to penalize directly the nuclear norm of the matrix probabilities
themselves.
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