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ABSTRACT
In the recent years, many studies have focused on the single-
sensor separation of independent waveforms using so-called soft-
masking strategies, where the short term Fourier transform of
the mixture is multiplied element-wise by a ratio of spectrogram
models. When the signals are wide-sense stationary, this strategy
is theoretically justified as an optimal Wiener filtering: the power
spectrograms of the sources are supposed to add up to yield the
power spectrogram of the mixture. However, experience shows that
using fractional spectrograms instead, such as the amplitude, yields
good performance in practice, because they experimentally better
fit the additivity assumption. To the best of our knowledge, no
probabilistic interpretation of this filtering procedure was available
to date. In this paper, we show that assuming the additivity of frac-
tional spectrograms for the purpose of building soft-masks can be
understood as separating locally stationary α-stable harmonizable
processes, α-harmonizable in short, thus justifying the procedure
theoretically.

Index Terms—audio source separation, probability theory,
harmonizable processes, α-stable random variables, soft-masks

I. INTRODUCTION
In the past ten years, much research has focused on the demixing

of musical signals. The objective of such research is to process a
musical track so as to recover the original individual sounds that
were used for its making. For instance, such a process would permit
to automatically recover the voice signal from a song and thus
automatically generate a karaoke version as well as solo vocals
that could be used for resampling. In the scientific community,
each constitutive component —or stem— from the mixture is
called a source, and the problem of demixing is commonly called
audio source separation [6], [32], [25], [19]. In the literature, both
single-channel and multichannel audio source separation have been
considered, depending on the number of channels of the mixture
signal. For the sake of simplicity, we will only consider the single
channel case in this study and leave the multichannel case for future
developments.

For achieving single channel audio source separation, an efficient
approach is focused on a filtering paradigm: each source estimate
is obtained by applying a time-varying filter to the mixture. In
practice, a time-frequency (TF) representation of the mixture is
computed, such as its short-term Fourier transform (STFT), and
each source is recovered by multiplying each element in this
representation by a gain between 1 and 0, according to whether
this point is identified as rather belonging to this source or not,
respectively [4], [34], [8], [3]. For one given source, those gains
form a time-frequency mask, and several ways of designing such
masks have been considered in the past.

In the audio source separation literature, an important path of
research is to consider the devising of TF masks as a classification
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problem. In that setting, the entries of the mask are either 0 or 1:
it is typically assumed that only one source is active for any
TF bin, so that the problem becomes to determine the source
to which each entry of the mixture STFT is associated to. The
separation algorithm hence inputs the mixture and performs a
multi-class classification task, where each class corresponds to one
source. Among those techniques, we can mention the celebrated
DUET [34] and ADRESS [2] algorithms, that classify TF bins
according to panning positions in the stereo plane. In the single-
sensor case, other works attempt to separate sources with binary
masks by using harmonicity assumptions: a melody line is first
extracted, and then a binary comb-filter is generated to extract the
corresponding source [27]. Other recent research considers deep
neural network structures to generate the binary mask used to
separate target sources [33].

Even if reducing the separation problem to a classification task is
convenient, it comes with the drawback of bringing a characteristic
and annoying musical noise, due to abrupt phase and amplitude
transitions in the estimates. To address this issue, many researchers
have focused on a soft masking strategy, where the TF mask is no
longer binary, but rather lies in the continuous [0 1] interval. It has
long been acknowledged that such strategies have the noticeable
advantage of strongly reducing musical noise. Many different
approaches were undertaken in the past for the purpose of building
a soft TF mask. Among them, we can mention some studies where
this mask is based on a divergence measure between the mixture
and some model for the source: the further the observation is from
the model, the smaller the weight, as in [21], [10], [26]. This
approach has the advantage of requiring a model only for the target
source to separate, but has the inconvenient to be unpractical if
more than one source is to be extracted from the mixture.

The most popular approach to soft-masking for source separation
today is based on estimating a nonnegative time-frequency energy
distribution for each source, which is most commonly called a
“spectrogram” in a loose acceptation. Then, the soft mask is
computed for each source as the ratio of its estimated spectrogram
over the sum of them all. This strategy guarantees that the sum of all
soft masks equals 1 for each TF bin, so that the sum of all estimated
sources is identical to the mixture, which is a desirable property.
For the purpose of estimating those spectrograms, it is typically as-
sumed that they simply add up to yield the observable spectrogram
of the mixture, notwithstanding destructive interferences. Given
some assumptions on how those spectrograms should look like,
such as a specific parametric form [25] or local regularities [20],
[22], estimation is performed as a latent variable decomposition of
the spectrogram of the mixture.

It has long been acknowledged [4], [3], [5], [18] that when
the spectrogram is understood as an estimate of the time-varying
Power Spectral Density (PSD) of the source, this weighting strategy
is theoretically justified as an optimal Wiener filtering performed
independently in each frame. Furthermore, theory does suggest that
the PSDs of uncorrelated wide-sense stationary processes do add up
to yield the PSD of their sum [18]. For all this framework to hold,
the spectrograms to be used must hence be estimates of PSDs, i.e.
squared modulus of STFTs. We should emphasize here that this



acceptation is actually the original and only rigorous one.
However, much research undertaken in the recent years has com-

monly understood the term “spectrogram” with a different meaning.
Instead of seeing it as an estimate of the PSD, many researchers
have used the word “spectrogram” to denote the modulus of the
STFT raised to some arbitrary exponent α ∈ ]0 2] (see [29], [11],
[14], [30]). Choosing α = 1 is common. In the sequel, the term α-
spectrogram will be used for clarity to denote this wider acceptation
of the word. Just like in the Gaussian α = 2 case, it is then typically
assumed that the α-spectrograms of the sources add up to form the
α-spectrogram of the mixture, and soft masks are derived in the
same way as in the Gaussian case. Experience shows that such
a procedure does often lead to improved performance. However,
no probabilistic modeling was available to date for which this
approach would appear as grounded theoretically: to the best of our
knowledge, both additivity of the α-spectrograms and soft-masking
filtering are only justified theoretically in the Gaussian case α = 2.

In this paper, we show that using general α-spectrograms for
sources modeling and separation is the optimal procedure if the
sources are not understood as locally stationary Gaussian processes,
but rather as locally stationary stable harmonizable processes [28],
α-harmonizable processes in short, which generalize the Gaussian
case. They fall under the umbrella of α-stable distributions [24],
[28]. Several studies demonstrated that those distributions are often
better models for audio signals than the Gaussian distribution, due
to their ability to handle very large deviations from the mean, which
is important for such impulsive phenomena as music or sound
signals in general that exhibit a large dynamic range [16], [12].
Whereas some papers focused on the separation of independent
and identically distributed (i.i.d.) α-stable random variables [16],
no study so far considered the separation of locally stationary
and harmonizable stable processes. As we show, they provide
the exact probabilistic framework needed to assume additivity of
α-spectrograms as well as a justification for the design of the
corresponding soft-masks.

This paper is structured as follows. In section II, we study the
empirical validity of the additivity assumption for α-spectrograms.
In section III, we quickly introduce α-harmonizable processes and
show how they can be separated using soft masking strategies. In
section IV, we compare the music separation performance of this
stable harmonizable model as a function of the exponent α. Finally,
we draw some tracks for future research as a conclusion.

II. ADDITIVITY OF α-SPECTROGRAMS
II-A. Notations and background

Let x̃ (t) be the audio signal to be separated, which is assumed
regularly sampled. In typical audio applications, it is the waveform
of the single channel song to be unmixed and for this reason, x̃ is
called the mixture in the following. The mixture is assumed to be
the simple sum of J underlying signals s̃j (t) called sources, that
correspond to the individual waveforms of the different instruments
playing in the mixture, such as voice, bass, guitar, percussions, etc.

In typical source separation procedures, the mixture is processed
so as to compute its STFT denoted x (f, n), where f is a frequency
index and n is a frame index. x is thus a Nf×Nn matrix, where Nf
is the total number of frequency bands1 and Nn the total number of
time frames. (f, n) is called a TF bin. For music source separation,
experience shows that having frames approximately 80ms long
with 80% overlap yields good results. Since the STFT is a linear
transform, the simple mixing model we choose leads to:

∀ (f, n) , x (f, n) =
J∑
j=1

sj (f, n) ,

1Since x̃ is a real signal in audio, its spectrum is Hermitian. We assume
that the redundant information in the Fourier transform of each frame has
been discarded.
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Fig. 1. Average Lα, Itakura-Saito and Kullback-Leibler divergences
between the sum of the α-spectrograms of the sources and the α-
spectrogram of the mixture, as a function of α. Minimal values are
marked with a circle.

where sj is the STFT of source j. For convenience, the modulus
of the STFT is denoted p in the following2:

p (f, n) , |x (f, n)| .

Throughout this paper, the α-spectrogram pα is defined as
pα (f, n) , p (f, n)α. Similarly, pαj corresponds to the α-
spectrogram of source j. As we see, the 2-spectrogram is the power
spectrogram, which is the estimate of the PSD.

Most audio source separation methods can be understood as
assuming that we basically have:

∀ (f, n) , pα (f, n) ≈
J∑
j=1

pαj (f, n) . (1)

As seen above, this assumption is justified theoretically when α = 2
if we assume that the sources are locally stationary Gaussian
processes [18]. For any other α ∈ ]0 2], no such probabilistic
framework is available even though (1) is often assumed [29], [11],
[14], [30].

II-B. Experimental study
The objective of this section is to study the validity of the

additivity assumption (1) for α-spectrograms, as a function of α. To
this purpose, we consider the 8 complete songs of different musical
genres found in the QUASI database3, for which the constitutive
sources are available. For a set of 50 α values ranging from 0.2 to 2,
we computed the α-dispersion between the mixture α-spectrogram
and the sum of the α-spectrograms of the sources:

Lα (f, n) =

∣∣∣∣∣pα (f, n)−
J∑
j=1

pαj (f, n)

∣∣∣∣∣
1/α

, (2)

as well as the popular Itakura-Saito (IS) and Kullback-Leibler (KL)
divergences, commonly used in audio source separation [9], [7].
Then, the average of each divergence over all songs and all TF
bins was computed, as a function of α. The results are displayed
in Fig. 1.

II-C. Discussion
As can be noticed in Fig. 1, the additivity assumption (1) is not

equally valid for all α. On the contrary, we clearly see that a value
α ≈ 1 is much more empirically appropriate than the value α = 2,
for all divergences considered.

2, denotes a definition.
3www.tsi.telecom-paristech.fr/aao/en/2012/03/12/quasi/
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This result has already been noticed, e.g. in [13], [17], and
demonstrates that assuming additivity of the power spectrograms,
even if justified theoretically under Gaussian assumptions, is not
mostly appropriate. On the contrary, assuming additivity of the
moduli pj of the STFT of the sources for audio processing, as
in most Probabilistic Latent Component Analysis studies (PLCA,
see [30] and references therein), is indeed a good idea4.

However, this empirical fact does raise an important question.
When estimates of the α-spectrograms pαj of the sources have been
obtained by any appropriate method, the estimation of the STFT
of source j is then typically achieved through:

ŝj (f, n) =
pαj (f, n)∑
j′ p

α
j′ (f, n)

x (f, n) , (3)

which we call an α-Wiener filter in the following. Is this procedure
any good and does it come with any flavor of optimality? If so, in
which sense? The current lack of a probabilistic model justifying (1)
for α 6= 2 also prevented answering these questions so far. As we
now show, assuming that each source is a locally stationary and
α-stable harmonizable process naturally leads to (1) and, for 0 <
α ≤ 2, establishes (3) as the conditional expectation of sj (f, n)
given x (f, n), thus providing a theoretical understanding for the
validity of the procedure.

III. α-HARMONIZABLE PROCESSES
We define an α-harmonizable process as a process that can

locally be approximated as a stationary harmonizable α-stable
process. In practice, the audio is split into overlapping frames,
which are then assumed independent and each one of them is
assumed stationary α-stable harmonizable.

In this section, we briefly present stationary α-stable harmoniz-
able processes, which have been the topic of much research since
the 70s and are particular cases of α-stable processes [23], [28],
[24], [31], [12]. Due to space constraints, only some important
facts which are of interest in our study are recalled here and the
interested reader is referred to the very thorough overview of α-
stable processes given in [28] and references therein for a more
comprehensive treatment.

III-A. Symmetric α-stable distributions and processes
Let v be a random vector of dimension T × 1. We say that v

is strictly stable if for any positive numbers A and B, there is a
positive number C such that

Av(1) +Bv(2)
d
= Cv, (4)

where v(1) and v(2) are independent copies of v and d
= denotes

equality in distribution. It can be shown [28, p. 58] that for any
random vector v satisfying (4), there is one constant α ∈ ]0 2]
called the characteristic exponent such that C in (4) is given by:

C = (Aα +Bα)1/α .

We then say that v is α-stable. If v and −v furthermore have the
same distribution, v is called symmetric α-stable, abbreviated as
SαS. An important result is that the simple property (4) of an α-
stable random vector permits to derive its characteristic function.
No expression for the α-stable probability density functions is
available in general, but only for α = 2 and α = 1, that respectively
coincide with the Gaussian and Cauchy distributions.
α-stable distributions have an important number of desirable

properties. One of the most famous is their ability to model data
with very large deviations, making them a practical model for
impulsive data in the field of robust signal processing [24]. In

4Remarkably, Fig. 1 also suggests to use KL rather than IS for α = 1,
and IS rather than KL for α = 2, as done in the literature.

practice, the closest α is to 0, the heavier are the tails of an α-stable
distribution. In a source separation context, the stability property (4)
is fundamental. It basically means that provided the sources are
modeled as α-stable, so will be their mixture.

We say that a collection {z̃ (t)}t of random variables is an α-
stable random process if the vector z̃T , [z̃ (t1) , . . . , z̃ (tT )]

>

(where > denotes transposition) is α-stable for any choice and any
number of sample positions t1, . . . , tT .

III-B. Isotropic complex SαS random variables
Because it will be useful in the sequel, we mention here that

a complex random variable (r.v.) z = v1 + iv2 is called SαS if
the random vector

[
v>1 v

>
2

]>
is SαS. A particular case of interest

in our context is the special case where a complex SαS r.v. z is
isotropic, or circular, abbreviated SαSc, meaning that:

∀θ ∈ [0 2π[ , exp (iθ) z
d
= z.

It can be shown that in the Gaussian case α = 2 this is equivalent
to v1 and v2 being independent and identically distributed (i.i.d.)
Gaussian r.v., whereas for the case α < 2, isotropy leads to the
particular characteristic function [28, p. 85]:

z = v1 + iv2 ∼ SαSc
⇔ E [exp (i (θ1v1 + θ2v2))] = exp (−σα |θ|α) , (5)

where |θ| is the Euclidean norm of the vector [θ1 θ2], and σ > 0
is a scale parameter5. The real and imaginary parts of an isotropic
complex SαS r.v. are not independent in general. As can be seen,
the isotropic complex SαS distribution is only parameterized by
the scale parameter σ. For convenience, we denote it SαSc (σα).
We trivially have:

z1 ∼ SαSc (σα1 ) and z2 ∼ SαSc (σα2 ) , z1 and z2 independent
⇒ z1 + z2 ∼ SαSc (σα1 + σα2 ) . (6)

III-C. Stationary harmonizable α-stable processes
An harmonizable process z̃ (t) is defined as the inverse Fourier

transform of a complex random measure z (ω) with independent
increments:

z̃ (t) =

ˆ ∞
−∞

exp (iωt) z (ω) dω. (7)

In expression (7), the r.v. z (ω) may be understood as the
spectrum of z̃, taken at angular frequency ω. Stating that z has
independent increments basically means that all frequencies of
the spectrum of z̃ are asymptotically independent, if the frame
is long enough. It is a classical result that when z (ω) is an
isotropic complex Gaussian random measure, z̃ (t) is furthermore
stationary. Since audio signals can be considered stationary for the
whole duration of each frame, assuming z (ω) to be an isotropic
complex Gaussian is a popular assumption in the audio processing
literature (see e.g. [18]).

However, assuming an isotropic complex Gaussian spectral
measure is not the only way of guaranteeing that an harmonizable
process z̃ is stationary. In particular, a very important result in our
context [28, p. 292] is that taking z as an isotropic complex SαS
random measure is equivalent to having z̃ being both a stationary
and an SαS random process, which is the natural extension of the
Gaussian case to α < 2. We then model z (ω) ∼ SαSc (σ

α
z (ω)),

where σαz is called the fractional power spectral density of z̃ [31],
abbreviated α-PSD in the following.

5Since we only consider isotropic complex SαS r.v., we do not linger
here on the topic of the so-called “spectral measure” of

[
v>1 v>2

]>, which
is important for general SαS multivariate distributions [28, p. 65].



The main interest of the α-harmonizable model is to account for
signals that both include large deviations and are stationary. It is
thus interesting for audio signals, because they are stationary on
short time-frames and often feature large dynamic ranges.

III-D. Separation
Let the J source waveforms s̃1, . . . , s̃J defined in section II

be modeled as independent α-harmonizable processes. Due to the
stability property (4), their mixture x̃ is also α-harmonizable and
using (6), we have:

x (f, n) ∼ SαSc

(
J∑
j=1

σαj (f, n)

)
,

where σαj is the α-PSD of source j. Since the α-spectrogram pαj
defined in section II-A is an estimate of the α-PSD 6, we see that the
α-harmonizable model indeed leads to the additivity assumption (1)
over the α-spectrograms of the sources.

Now, given x (f, n) and assuming the α-PSD σαj of the sources
are known, is there a way to estimate sj (f, n) in order to proceed
to source separation? Interestingly, the answer is yes. If 0 < α ≤ 2,
and considering that (i) x (f, n) is the sum of J independent SαSc
r.v. sj (f, n) and that (ii) x (f, n) and sj (f, n) are jointly SαS, we
have7:

E
[
sj (f, n) | x (f, n) ,

{
σαj
}
j

]
=

σαj (f, n)∑
j′ σ

α
j′ (f, n)

x (f, n) . (8)

Equation (3) can thus be interpreted as a practical estimate ŝj(f, n)
of sj(f, n) given x(f, n), where the α-PSD σαj in equation (8) has
been replaced by its estimate pαj . We can conclude that for 0 < α ≤
2, the α-Wiener filter (3) corresponds to estimating the separated
sources as their conditional expectation given the mixture x under
an α-harmonizable model.

IV. EVALUATION
IV-A. Data and metrics

For evaluating the performance of the proposed α-Wiener filter
for source separation, we processed the 8 songs of the QUASI
database in the following way:

First, the α-spectrograms pαj of the true sources were computed.
Then, separation was performed through (3) to obtain the best
possible estimates ŝj under an α-harmonizable model. After this,
the resulting waveforms were obtained through an inverse STFT.

For evaluation, all separated sources were split into 30s excerpts,
yielding a total of 182 separated source excerpts. The Perceptual
Similarity Measure (PSM, from PEMO-Q [15]) was finally used
to compare the estimated sources with the true ones, on all the
excerpts and for 19 values of α between 0.2 and 2. The PSM lies
between 0 (mediocre) to 1 (identical) and is frequently used in
assessing audio quality. Results are displayed in Fig. 2.

IV-B. Discussion
As can be noticed in Fig. 2, the α-Wiener filter yields approx-

imately the same performance for α ∈ [1, 2]. This justifies both
common practice in the source separation community and the α-
harmonizable model that establishes it on solid theoretical grounds
for 0 < α ≤ 2. That said, two further remarks may be done here.

6Actually, pαj as defined in section II should be multiplied by a constant
depending only on α, in order to get an asymptotically unbiased estimate
of σαj . Even so, it is important to note that this constant would vanish in
equation (3). In [31], an asymptotically unbiased and consistent estimator of
σαj is proposed, which additionally involves a stage of spectral smoothing.

7The proof of this result is available in [1]. It is the natural extension
of [28, th. 4.1.2 p. 175] to the isotropic complex SαSc case, and to the
whole range α ∈]0, 2].
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Fig. 2. Distribution of the Perceptual Similarity Measure between
the true sources and those obtained by the α-Wiener filter (3), as
a function of α. α = 2 corresponds to classical Wiener filtering.
The best performance is marked with a circle.

First, we see that choosing an α-harmonizable model with α < 2
does improve the separation performance. In particular, the classical
2-Wiener filter is outperformed in our experiments by an α-Wiener
filter with α ≈ 1.2, even if the improvement is only of a few
percents.

Second, these scores correspond to the oracle performance of
the method, i.e. when the true α-spectrograms of the sources are
known. In real applications, they need to be estimated from the
mixture and the additivity assumption (1) is critical for this purpose.
Since we saw in section II that (1) is much better verified when α ≈
1 than in the Gaussian case, we see that the α-harmonizable model
may be advantageous in practice, because it is the only one we
know of that justifies both this popular assumption and the resulting
filtering procedure (3).

V. CONCLUSION
In a single channel audio source separation context, it is of-

ten convenient to assume some linear relationship between the
spectrogram of the mixture and the spectrograms of the sources.
Identifying the spectrograms of the sources is indeed important to
devise soft TF masks used for separation.

When we model the sources as independent and locally station-
ary Gaussian processes, we have recalled that this assumption is
valid for power spectrograms. In that case, a natural TF mask is
the classical Wiener filter.

However and as we empirically showed here, assuming the
power spectrograms of the sources to add up to form the power
spectrogram of the mixture is generally a rough assumption for
real audio signals. After introducing the α-spectrogram as the
magnitude of the STFT raised to the power α ∈ ]0 2], we
demonstrated that the additivity assumption rather holds for α-
spectrograms for some α < 2. This fact has already been pointed
out by some studies in the dedicated literature.

In this paper, we have modeled the sources as locally stationary
α-stable harmonizable processes, abbreviated α-harmonizable, and
showed that this naturally leads to the additivity of their α-
spectrograms. Furthermore, that probabilistic framework does yield
a natural way of separating such signals through a soft TF mask
which is analogous to the Wiener filter in the Gaussian case.

This study could be extended in two main and important direc-
tions. First, the case of multichannel mixtures is important for audio
processing, because audio signals often come in several channels,
as in stereophonic music. Second, this paper was only concerned
with the oracle performance of the separation of stationary α-
harmonizable processes, i.e. assuming that the true α-spectrograms
were known. An interesting question concerns the implications
of this model with respect to the blind estimation of the α-
spectrograms of the sources when only the mixture is available.
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