In-Browser XML Document Streaming

Cyril Concolato
Institut Mines-Télécom; Telecom ParisTech; CNRS LTCI
<cyril.concolato@telecom-paristech.fr>

Emmanouil Potetsianakis
Institut Mines-Télécom; Telecom ParisTech; CNRS LTCI
<emmanouil.potetsianakis@telecom-paristech.fr>

Abstract

Through the past few years, in-browser streaming of audiovisual content has
become a commodity. Due to the diverse nature of possible audiovisual applic-
ations, there is often a need for accompanying descriptors and other metadata,
such as semantic annotations, captions, etc. The metadata need to be sent in
a timely fashion along with the multimedia content. The use of XML in such
cases is common, and the usual approach for in-browser transmission of such
data is via AJAX. Even though AJAX can be sufficient for many services,
there is consideration for few offline or live scenarios. With MP4Box and
MP4Box.js we are able to synchronously stream and consume XML and
multimedia data, packaged in MIP4 containers, with a standard browser. Ac-
companying XML documents can be transmitted as a whole, or progressively
(in fragments). In this paper, we define the use-cases for this technology,
analyze the requirements and present the mechanisms of MP4Box and
MP4Box.js for XML end-to-end transmission inside the browser.

Keywords: XML, Streaming, Multimedia

1. Introduction

With the bloom of HTMLS5 and its <video> and <audio> tags, audiovisual (A/V) content
transmission and presentation has become an essential functionality of the modern
browser. In 2013, IP video traffic accounted for the 66% of the total internet traffic,
and this number is expected to reach 79% by 2018, according to CISCO [1]. This
growth affects XML technologies, since an important use of XML is for storing media
information, subtitles, lyrics and other audiovisual content enhancements. The
aforementioned complementary XML documents have to be transmitted and pro-
cessed in-browser - synchronously with the main A/V content. However, such a
technology, with support for both online (live and on-demand) and offline content,
is yet to be widely spread.

197

In-Browser XML Document Streaming

Using the <video> element allows easy integration of A/V content, with common
web technologies such as HTML, CSS and Javascript. Specifically in the case of
Javascript, HTML5 defines an API consisting of Methods, Properties and Events,
aiming at A/V content control. However, there are several ways to deliver the actual
media to the client. As a result, the transmission of the accompanying XML docu-
ments and their proper handling on the receiving end becomes challenging.

In this paper we propose an end-to-end approach for streaming XML documents
in the browser. The multimedia content along with the accompanying XML docu-
ment(s) are packaged in a MP4 container. Then, they are transmitted synchronously,
and the received content is made available by the browser to the web application,
either live, or for offline consumption.

Synchronized In-Browser XML streaming can be applied to a plethora of use
cases. From common scenarios such as subtitling and vector graphic enhancements,
to more exotic, such as distributed Kinect-based applications for multimedia control
[2] or digital puppetry [3].

In Section 2, we present some past and current trends in XML streaming. Fol-
lowed in Section 3 by a description of our proposal for packaging XML in MP4 files.
Then in Section 4 and Section 5, we detail the implementation of the packaging
process with MP4Box, and the extraction mechanism in MP4Box.js, respectively.
Finally in Section 6, we conclude this paper and reveal our current work on the
topic.

2. Related Work

The Remote Events for XML [4] W3C Draft was produced with the purpose of DOM
events transmission. The syntax defined could have been used for document
streaming, besides the fact that it was focused on DOM tree enhancements. However,
it did not include any notions of media synchronization or packaging. In the end,
the draft was dropped due to legal implications.

Niedermeier et. al. developed a technique for compression and streaming of
XML Data [6]. This schema-aware method is part of the MPEG-7 standard. XML
documents are run through a binary encoding algorithm and the resulting fragments
are transmitted. It also includes a text-encoding method. MPEG-7 streams can be
stored in MP4 containers. But neither of the stream formats is deployed in browsers
yet.

Apple HTTP Live Streaming (HLS) uses MPEG-2 Transport Streams (TS) for
media packaging and ID3 Tags for metadata [5]. However, the metadata is not in
an XML format, nor easily extractable within a browser. The WebVTT format also
used by HLS for subtitles could facilitate timed XML data delivery, but WebVTT
cannot be packaged in a single MPEG-2 TS file with the A/V content, making offline
processing and content distribution difficult.

198

In-Browser XML Document Streaming

A web development paradigm that can be used for in-browser metadata is
Asynchronous JavaScript and XML (AJAX). More specifically, in the Comet model
of AJAX, a persistent connection is established between the server and the client.
By using the open request made for the connection, it is up to the server to set the
event to commence the data transfer (Long-Polling technique). When the server has
available data, the client receives a Push Notification. Even though AJAX has some
advantages comparing to the other alternatives, it can only be used for online services
(not for offline). Our implementation on the other hand, is suitable for any consump-
tion mode - even offline.

3. The Mechanism

Asmentioned in Section 1, the XML documents are packaged with the accompanying
media file(s) in an MP4 container (the process is detailed in Section 4). Then, the
client browser is responsible for requesting the MP4 file from the server. The play-
back can be achieved via Simple Streaming, in which we have a Progressive Download
of the file, and it is the use-case of plain <video> tag. Alternatively, we can have Ad-
aptive Streaming by utilizing the extra functionalities provided by the use of Media
Source Extensions (MSE).

In respect to these media delivery methods, there are two ways XML data can
be streamed:

* One XML document per time (or time range). In this scenario, an entire XML docu-
ment is timely delivered, for consumption within a time range of the audiovisual
content. This method can introduce some latency with sizable files, since it re-
quires the browser to fetch the whole XML document in order to use it, or it may
cause some overhead if the XML documents are repetitive. However, it is simple
and applicable to many use cases. An example usage is the carriage of [9] subtitles
in MP4 files.

* One XML Section (of a document) per time (or time range). In this scenario, fragments
of an XML document are coupled with a time range of the audiovisual content.
Fragments are delivered progressively, removing the latency of the previous
approach, but requiring a progressive consumption of the XML data. In partic-
ular, since the reception of the XML document is continuous and in fragments,
we cannot have a balanced XML at a given time. To remove the overhead of the
previous approach, common data is delivered upfront in a document header.
Finally, seeking into the document stream can be more complex than with the
previous scenario. It is only possible at positions in the document that require
only the header information and nothing between the header and the current
position. Such position is called a Random Access Point (RAP). The storage in
MP4 permits indications on where the RAPs are located in the stream, thus -in
conjunction with the header stored specifically- allowing seeking.

199

In-Browser XML Document Streaming

Both of the aforementioned delivery methods can be realized with our platform,
which is composed of two parts, and detailed below:

* aserver side packaging solution (MP4Box)
* aclient side browser tool (MP4Box.js)

3.1. MP4Box

In order to provide a complete end-to-end XML streaming solution, MP4Box can
be used for the packaging of the A/V and XML content in MP4 containers (on the
server side). MP4Box is part of the GPAC multimedia framework [8].

An example of XML document streaming would be Timed Text Markup Lan-
guage (TTML) subtitling [9]. In live scenarios, with real-time subtitle editing, several
XML documents can be packed in the A/V stream. For such cases, Timed Text sup-
port was added to the ISO Base Media File Format (ISOBMFF) MPEG-4 Part 30.

MP4Box achieves any XML stream integration, in a similar with TTML manner,
by using NHML descriptor files as follows:

MP4Box -add test file.nhml:lang=en media file.mp4

The NHML file details the integration of the XML documents in the MP4 track.
For the command mentioned before, we can use a file as the one shown in Figure 1.

<?xml version="1.0" encoding="UTF-8" ?>
<NHNTStream version="1.0" timeScale="1000" trackID="1"
mediaType="meta" mediaSubType="metx"
xml namespace="http://example.namespace.org">
<NHNTSample DTS="0" isRAP="yes" mediaFile="first.xml"/>
<NHNTSample DTS="10000" isRAP="yes" mediaFile="second.xml"/>
<NHNTSample DTS="20000" isRAP="yes" mediaFile="last.xml" duration="10000"/>
</NHNTStream>

Figure 1. Sample NHML file for packaging of multiple documents

With the above specifics, the metadata is inserted in an MP4 track with ID "1". This
track will contain media of type 'meta’ (i.e. metadata) and subtype 'metx' (i.e. in
XML format). With this 'metx' configuration, we have one XML document per
sample, as indicated in Figure 2, with here 3 samples made of 3 different documents.
Other supported mediaTypes for XML packaging are shown in Table 1. The
'xml_namespace’, is the namespace of the packaged XML document. The start time
(measured in timeScale units) of each sample is is given by the DTS attribute, set to
0 for the first one. If multiple samples are used, for each sample, the DTS difference
between two consecutive samples is used to compute its duration, but the last sample
should have the duration attribute set. All samples are marked as RAP since they
contain a self-contained XML document.

200

In-Browser XML Document Streaming

Server Client
(Browser)
<?xml version="1.0"?> ANV content
e eontent Lst__ . HTTP
bt L, — XML —
|t MP4Box —— Mp4 MP4Box.js Web App
- | AV content >
.. NHML
Figure 2. Streaming of multiple XML documents
Table 1. XML-suitable mediaTypes and mediaSubTypes
media- | mediaSub- Definition Usage
Type Type
metx XML Metadata One XML document per
sample
meta . .
mett Text (including XML) | XML documents and frag-
Metadata ments
stpp XML Subtitle One XML document per
sample
subt . .
sbtt Text (including XML) Sub-| XML documents and frag-
title ments
text stxt Text (including XML) | XML documents and frag-
Stream ments

NHML also considers the fragmented packaging of a XML document, for progressive
consumption (Figure 3). The desired fragments are defined either in terms of docu-
ment element tags (referenced by their "id" or "xml:id" attributes), or sample position
and size. For the tag approach, the 'xmlFrom' field indicates the location of the first
tag to copy from the document, while 'xmlTo' the last one. Alternatively, if we want
to define the fragment in position and size, 'dataLength' defines its size, and 'me-
diaOffset' the position of the first byte. The 'isRAP' field is used to specify if a frag-
ment is suitable for RAP. In order to achieve seeking with RAPs, the header of the
document must be declared. Figure 4, shows an example use of NHML for progress-
ive XML streaming, using XML elements (tags) selection.

201

In-Browser XML Document Streaming

Server Client
(Browser)
A/V content
? Prreiledecdscccncnnnnas
:&:Zi>versr : header l
SR HTTP
—_— :
</test> i T, —— XML ——
— . Web A
1, i MP4Box : MP4 ‘MP4Box.js: eb App

H A/V content >

NHML

Figure 3. Progressive streaming of single XML document

<?xml version="1.0" encoding="UTF-8" ?>
<NHNTStream version="1.0" timeScale="1000" trackID="1"
mediaType="meta" mediaSubType="mett"
mediaFile="document.xml" headerEnd="eltl.start"/>
<NHNTSample DTS="0" isRAP="yes" xmlFrom="eltl.start" xmlTo="eltl.end"/>
<NHNTSample DTS="1000" isRAP="no" xmlFrom="eltl.end" xmlTo="elt3.end"/>
<NHNTSample DTS="2000" isRAP="yes" xmlFrom="elt3.end" =xmlTo="eltl(0.end"/>
</NHNTStream>

Figure 4. Sample NHML file for fragmented packaging

3.2. MP4Box.js

In order to achieve the proposed XML document transmission method, on the client
side, we developed a tool that is able to extract the accompanying data from the
MP4 container. Since the XML fetching happens inside the browser, MP4Box.js was
developed in javascript. This way, it can be integrated in any web application.

MP4Box.js decouples the accompanying XML documents from the A/V stream
and utilizes the <track> HTML element to synchronize (and possibly render) the
data. The <track> element is used inside the <video> or <audio> tag, as a child element,
and holds timed text data. The pre-defined data types that <track> can host are set
in the "kind" attribute, which can take values of: subtitles, captions, descriptions,
chapters or metadata. Metadata is a special case, since there is no predefined ren-
dering and accompanying scripts can utilize the data as desired, by using cue events
for synchronization.

An example usage of MP4Box.js setup in order to parse XML samples is shown
in Figure 5. An MP4Box instance is created and with setExtractionOptions, its
parameters are the track "id" and the "user" parameter for the onSample callback -
typically a TextTrack object. The "options" parameter is used to define if the sample

202

In-Browser XML Document Streaming

array should start with a RAP sample and the total number of samples to receive
for the callback. In turn, onSample returns an Array of samples, for track with "id",
when called by "user".

mp4box = new MP4Box();
mpdbox.setExtractionOptions (id, aTextTrack, options);
mp4box.onSamples = function (id, user, samples) {
var sample;
var parser;
for(var 1 in samples) {
sample = samples[i];
if (samples.description.type === "metx") {
parser = new XMLSubtitleindParser();
var sampleDocument = parser.parseSample (sample).document;
user.addCue (transformDocToCue (sample, sampleDocument));
}
else if(sample. description.type == "mett") {
parser = new TextindParser();
var sampleText = parser.parseString(sample);
user.addCue (transformTextToCue (sample, sampleText));

Figure 5. MP4Box.js code extract

Each sample that is extracted from the stream contains the XML data and the
packaging information (timestamps, isRAP, etc) - set with MP4Box via the NHML
descriptors. The actual XML data is stored in the field "data" of the sample, as an
ArrayBuffer. Figure 6 shows the extracted first sample (XML document), as defined
in Figure 1.

{
"track id":1,
"description”: [Box],
"is rap":true,
"timescale":1000,
"dts":0,
"cts":0,
"duration":1000,
"size":41,
"data": [ArrayBuffer]

Figure 6. JSON representation of a sample

203

In-Browser XML Document Streaming

A screenshot of a webpage containing information on the available tracks of a mp4
file is in Figure 7. MP4Box js is used to extract the details of one video track and
five tracks with XML data - one for each mediaSubType. More information on the
usage and features of MP4Box.js can be found at the github repository of GPAC'.

Movie Info
File Size
Brands
Creation Date
Hodified Date
Timescale
Duration
Bitrate
Progressive
Fragmented false
MPEG-4 10D
Video track(s) info
Track Track Alternate Number of Bitrate Track Track Track Source Buffer
(Creation Dats Modified Date Timescale Media Duration Codec Language Width Height
m References Group Samples (kbps) Widch Height Layer
Tue Feb 14 2012 00:07:31 GMT=0100 (Paris, Wed Jan 21 2015 16:58:35 GMT+0100 (Paris,
& none 0 25000 15000 47 avel.42c00d und 20 180 0 20 180
Madrid) Madnd)
Subtitle track(s) info
Track Alernate Humber of Bitrate Track Track
|Track ID Creation Date Modified Date Timescale Media Duration Codec Language Track Layer Source Buffer Status
References Group Samples (kbps) Width Height
Tue Jan 20 2015 10:54:23 GMT+D10D (Paris, Wied Jan 21 2015 16:58:35 GMT+0100 (Pari,
3 100 3
Mad
Tue 2015 10:54:24 GMT+0100 (Paris, 21 2015 16:58:35 GMT+D100 (Paris,
|4 none 0 1000 3 sbtt
Madrid) Madrid)
Tue Jan 20 2015 10:54:24 GHT+0100 (Paris, Vied Jan 21 2015 16:58:35 GMT+0100 (Paris, TextTras
g none 0 1000 1200 (0:00:01.200) 30 07 sbt und 0 240
Madrid) Madrid)
Metadata track(s) info
Track Alternate Humber of Bitrate Track Track
|Track ID Creation Date Modified Date Timescale Media Duration Codec Language Track Layer Source Buffer Status
References Group Samples (kbps) Widtch Height
Tue Jan 20 2015 10:54:22 GMT-+0100 (Pars, Vied Jan 21 2015 16:58:35 GMT+0100 (Paris, TextTra
1 none 0 . 1000 3 0 menx und
Madnd) Madrd)
Tue Jan 20 2015 10:54:23 GMT+0100 (Paris, Vigd Jan 21 2015 16:58:35 GMT+0100 (Pari, TextTra
2 nane] . 1000 3 0 mert und
Madrid) Madrid)

Figure 7. Stream info output of MP4Box.js

4, Conclusion and Future Work

In this paper we have presented the mechanisms of MP4Box and MP4Box.js. An
end-to-end solution for XML document streaming inside the browser. We have ex-
plained the process of packaging in mp4 containers on the distribution side, as well
as the XML data extraction mechanism for the client.

In the future we plan on adding support for specific XML senarios, such as SVG.
SVG files can be currently transmitted as a whole inside an MP4 file. However,
there is consideration for progressive streaming of SVG files [10]. In that case, a
fragmented file can be progressively transported and rendered.

! https://github.com/gpac/mp4box.js/

204

In-Browser XML Document Streaming

Bibliography

[1] Cisco Visual Networking Index: Cisco Visual Networking Index: Global Mobile
Data Traffic Forecast Update, 2013-2018. 2014. http://www.cisco.com/c/en/us/
solutions/service-provider/visual-networking-index-vni/index.html

[2] Potetsianakis, E.; Ksylakis, E.; Triantafyllidis, G.: A Kinect-based framework for
better user experience in real-time audiovisual content manipulation.
Telecommunications and Multimedia (TEMU), 2014 International Conference
on, vol,, no., pp.238,242, 28-30 July 2014. http://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=6917767&isnumber=6917722

[3] Alberto Pacheco: Digital Puppet Ver. 0.4. 2014. http://podcast.itch.edu.mx/
marioneta/index.v4.waves.html

[4] Berjon, Robin: Remote Events for XML (REX) 1.0. Working Draft, 2006, W3C.
http://www.w3.org/TR/rex/

[5] R. Pantos: HTTP Live Streaming. Internet Draft, 2014, IETFE. http://tools.ietf.org/
html/draft-pantos-http-live-streaming-14/

[6] Niedermeier, U., Heuer, J., Hutter, A., Stechele, W., Kaup, A.: An MPEG-7 tool
for compression and streaming of XML data. In Multimedia and Expo, 2002.
ICME'02. Proceedings. 2002 IEEE International Conference on (Vol. 1, pp.
521-524). IEEE.

[7] Colwell Aaron, et. al.: Media Source Extensions. Candidate Recommendation,
17 July 2014, W3C http://www.w3.0rg/TR/2014/CR-media-source-20140717

[8] Le Feuvre, Jean and Concolato, Cyril and Moissinac, Jean-Claude: GPAC: Open
Source Multimedia Framework. Proceedings of the 15th International Conference
on Multimedia. MULTIMEDIA “07. New York, NY, USA: ACM, 2007, pp.
1009-1012 http://doi.acm.org/10.1145/1291233.1291452

[9] Adams, Glenn: Timed Text Markup Language 1. Recommendation, 24 September
2013, W3C. http://www.w3.org/TR/ttaf1-dfxp/

[10] Concolato, Cyril: SVG Streaming. Editor's Draft, 04 June 2013, W3C. http://
www.w3.0rg/SVG/modules/streaming/

205

