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Let G be a simple, undirected graph with vertex set V . For every v ∈ V , we denote by 
N(v) the set of neighbours of v , and let N[v] = N(v) ∪ {v}. A set C ⊆ V is said to be a 
dominating code in G if the sets N[v] ∩ C , v ∈ V , are all nonempty. A set C ⊆ V is said to be 
a locating-dominating code in G if the sets N[v] ∩C , v ∈ V \C , are all nonempty and distinct. 
The smallest size of a dominating (resp., locating-dominating) code in G is denoted by d(G)

(resp., �(G)).
We study the ensemble of all the different optimal dominating (resp., locating-dominating) 
codes C , i.e., such that |C | = d(G) (resp., |C | = �(G)) in a graph G , and strongly link this 
problem to that of induced subgraphs of Johnson graphs.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

We introduce basic definitions and notation for graphs 
(for which we refer to, e.g., [2] and [4]), and for codes. 
Dominating codes constitute an old, large, classical topic 
(see, e.g., [5] or [6]); in the particular case when the 
graph is the hypercube, they are known as covering codes 
and have received a lot of attention in Coding Theory: 
see [3] and the on-line bibliography at [9], with 1000 refer-
ences. Locating-dominating codes [12] are part of a larger 
class of codes which aim at distinguishing, in some ways, 
between vertices: watching systems, identifying, locating-
dominating and discriminating codes, resolving sets, . . .; 
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they may have many applications and are a fast growing 
field, as show the 300 references in the on-line bibliogra-
phy at [10], most of them published in the 21st century.

We denote by G = (V , E) a simple, undirected graph 
with vertex set V and edge set E , where an edge between 
x ∈ V and y ∈ V is denoted by xy or yx. Two vertices 
linked by an edge are said to be neighbours. We denote 
by N(v) the set of neighbours of the vertex v , and N[v] =
N(v) ∪{v}. An induced subgraph of G is a graph with vertex 
set X ⊆ V and edge set {uv ∈ E : u ∈ X, v ∈ X}. We say that 
two graphs G1 = (V 1, E1) and G2 = (V 2, E2) are isomor-
phic, and write G1 ∼= G2, if there is a bijection φ : V 1 → V 2

such that xy ∈ E1 if, and only if, φ(x)φ(y) ∈ E2 for all 
x, y ∈ V .

Whenever three vertices x, y, z are such that x ∈ N[z]
and y /∈ N[z], we say that z separates x and y in G (note 
that z = x is possible). A set is said to separate x and y
in G if it contains at least one vertex which does.

A code C is simply a subset of V , and its elements are 
called codewords. For each vertex v ∈ V , the identifying set
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of v , with respect to C , is denoted by IG,C (v) and is de-
fined by

IG,C (v) = N[v] ∩ C .

We say that C is a dominating code in G if all the sets 
IG,C (v), v ∈ V , are nonempty.

We say that C is a locating-dominating code [12] if all 
the sets IG,C (v), v ∈ V \ C , are nonempty and distinct. In 
particular, any two non-codewords are separated by C . In 
the sequel, we shall use LD for locating-dominating.

We denote by d(G) (respectively, �(G)) the smallest 
cardinality of a dominating (respectively, LD) code. Any 
dominating (respectively, LD) code C such that |C | = d(G)

(respectively, |C | = �(G)) is said to be optimal.
One application of LD codes is, for instance, fault di-

agnosis in multiprocessor systems: such a system can be 
modeled by a graph G = (V , E) where V is the set of pro-
cessors and E the set of links between processors. Assume 
that at most one processor is malfunctioning and we wish 
to test the system and locate the faulty processor. For this 
purpose, some processors (constituting the code) will be 
chosen and assigned the task of testing their neighbours. 
Whenever a selected processor (or codeword) detects a 
fault, it sends an alarm signal. We require that we can 
uniquely tell the location of the malfunctioning processor 
based on the information which ones of the codewords 
gave the alarm; under the assumption that the codewords 
work without failure, or that their only task is to test 
their neighbours (i.e., they are not considered as processors 
anymore) and that they perform this simple task with-
out failure, then an LD code is what we need, because 
no two non-codewords have the same (nonempty) set of 
neighbours-codewords.

In this paper, we study the structure of the ensem-
ble of all the optimal dominating codes and the ensemble 
of all the optimal LD codes of a graph. These ensembles 
are trivially collections of k-element subsets, or k-subsets, 
of V , for k = d(G) or k = �(G); we denote these ensembles 
by �(G) and �(G), respectively. Conversely, assume that 
A is a nonempty collection of some s different k-subsets 
A1, A2, . . . , As of V 1 = {1, 2, . . . , n}. The question is: is 
there a graph G with vertex set V 1 such that A is equal to 
�(G) or �(G)? When 3 ≤ k ≤ n − 3, the answer for almost
all collections A is NO; indeed, there are 2

(n
k

)
such collec-

tions but only 2
(n

2

)
different graphs. However, we can ask 

the same question for a graph G with n +m vertices, m ≥ 0. 
And now the answer is YES: Theorem 2 below states that

given any collection A of k-subsets of V 1, there is a 
positive integer m and a graph G = (V , E) with V =
V 1 ∪ V 2, where V 2 = {n + 1, . . . , n + m}, such that C ⊆
V is an optimal dominating code in G if, and only if, 
C = A for some A ∈A.

So the ensemble of the optimal dominating codes of the 
graph G can be described by which k-set of vertices from 
V 1 we put in the code; now these k-sets are precisely the 
k-sets which belong to our target A, and therefore the set 
�(G) is equivalent to A. If, for any two k-subsets Ai and 
A j in A we set
δ(Ai, A j) = |Ai�A j|,
where � stands for the symmetric difference, then, setting 
Ci = Ai ∪ S and C j = A j ∪ S , we can see that δ(Ci, C j) =
δ(Ai, A j), i.e., G is such that �(G) has exactly the same 
symmetric difference distribution as the arbitrary collec-
tion A we started from.

Theorem 3 gives a similar result for LD codes, with sim-
ilar consequences for �(G); also, the same kind of result is 
proved for identifying codes, which we do not define here, 
in [7].

Now, this establishes a sufficiently strong link, between 
the ensembles of the optimal dominating or LD codes of 
all graphs and the sets of k-subsets of n-sets, to connect 
our investigation to the following definition from [11] and 
the results related to it; see also [1].

Definition 1. Given positive integers k and n with 1 ≤ k ≤ n, 
the Johnson graph J (k, n) is the graph whose vertex set 
consists of all the k-subsets of {1, 2, . . . , n}, with edges be-
tween two vertices sharing exactly k − 1 elements.

A graph H is isomorphic to an induced subgraph of a 
Johnson graph if, and only if, it is possible to assign, for 
some k and n, a k-subset S v ⊆ {1, 2, . . . , n} to each vertex 
v of H in such a way that distinct vertices have distinct 
corresponding k-sets, and vertices v and w are neighbours 
if, and only if, S v and S w share exactly k − 1 elements. 
In this case, we say that H is an induced subgraph of a 
Johnson graph, or that H is a JIS for short.

We denote by J the set of all induced subgraphs of all 
Johnson graphs.

If we link two elements Ci and C j in �(G) (respec-
tively, �(G)) if, and only if, δ(Ci, C j) = 2, then we obtain 
a graph which we denote by N (G) (respectively, M(G)), 
and the set of all the graphs N (G) (respectively, M(G)) is 
denoted by N (respectively, M). Now, what Theorems 2
and 3 show as an immediate consequence is that

every JIS belongs to N , or: J =N ;
every JIS belongs to M, or: J =M.

For examples of graphs which are JIS or not, we refer 
to [11], with a short overview in Section 3, but to our 
knowledge no classification is known.

2. Main results

Theorem 2. Let 1 ≤ k ≤ n be an arbitrary integer, and as-
sume that A is any nonempty collection of k-subsets of V 1 =
{1, 2, . . . , n}. Then there is a positive integer m and a graph G
with vertex set V = V 1 ∪ V 2 , where V 2 = {n + 1, n + 2, . . . ,
n + m}, such that C ⊆ V is an optimal dominating code in G if, 
and only if, C = A for some A ∈A.

Proof. Denote by B the set of all (k − 1)-subsets of V 1
together with all the k-subsets of V 1 that do not belong 
to A; this set has size 

( n
k−1

) + (n
k

) − |A|.
We begin the construction of G by taking n vertices 

a1, a2, . . . , an , which we link together in all possible ways, 
so as to form the clique Kn (these vertices play the role of 
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the vertices labelled by 1, 2, . . . , n in the statement of the 
theorem).

Let B ∈ B be arbitrary. Corresponding to B , we take 
k + 1 new vertices b1(B), b2(B), . . . , bk+1(B), and link all of 
them to all the vertices ai whose index i is not in B . When 
k = 1, we disregard the corresponding 0-element set.

The graph G thus constructed has n + m vertices, with 
m = (k + 1)|B|.

First, it is easy to check that every code of the form 
C(A) = {ai : i ∈ A} is a dominating code in G when A ∈ A. 
In particular, we have: d(G) ≤ k.

Conversely, assume that C is an optimal dominating 
code in G .

If for some B ∈ B, each of the k + 1 vertices b j(B) is a 
codeword, then |C | ≥ k + 1 and C is not optimal.

Therefore, for every B , there is at least one index j
such that b j(B) /∈ C , so b j(B) must have a neighbour 
in C , and this neighbour is in {a1, . . . , an}. This shows that 
C ∩ {a1, . . . , an} cannot be the set {ai : i ∈ B}, nor any of its 
subsets. Since this is true for every B ∈ B, this proves that 
|C | ≥ k and so d(G) = k; moreover, if |C | = k, then C is of 
the form C(A) = {ai : i ∈ A} for some A ∈A.

This shows that the only optimal dominating codes in G
are the codes C(A) = {ai : i ∈ A}, A ∈A. �
Theorem 3. Let 1 ≤ k ≤ n be an arbitrary integer, and as-
sume that A is any nonempty collection of k-subsets of V 1 =
{1, 2, . . . , n}. Then there is a positive integer m, a graph G with 
vertex set V = V 1 ∪ V 2 , where V 2 = {n + 1, n + 2, . . . , n + m}, 
and a set S ⊆ V 2 such that C ⊆ V is an optimal locating-
dominating code in G if, and only if, C = A ∪ S for some A ∈A.

Proof. Denote by B the set of all (k − 1)-subsets of V 1
together with all the k-subsets of V 1 that do not belong 
to A; this set has size 

( n
k−1

) + (n
k

) − |A|.
We begin the construction of G by taking n vertices 

a1, a2, . . . , an; these vertices play the role of the vertices 
labelled by 1, 2, . . . , n in the statement of the theorem.

Let B ∈ B be arbitrary. Corresponding to B , we form 
k + 1 pairs (b j(B), c j(B)) of new vertices, j = 1, 2, . . . ,
k +1. Then, each ai for which i ∈ B is connected by an edge 
to the vertices b j(B) and c j(B) for all j = 1, 2, . . . , k + 1; 
each ai for which i /∈ B is connected by an edge to the ver-
tices b j(B) for all j = 1, 2, . . . , k + 1.

Now we choose a large enough integer K (in particular, 
K ≥ 6), and take K new vertices e1, . . . , eK . Then we take 
t = (K

4

)+ (K
3

)
new vertices f1, . . . , ft . No more vertices will 

be created, so the graph G will have n + m vertices, with 
m = 2(k + 1)|B| + K + t .

For any vertex v , we say that its e-signature is the set 
of those ei ’s that are within distance one from v . We now 
choose the edges between the ei ’s and f j ’s in such a way 
that every f j has an e-signature of size three or four, and 
that all these signatures are different. Clearly, in the sub-
graph induced by the ei ’s and f j ’s (in the graph we have 
constructed so far), any LD code has size at least K , and 
the only LD code of size K consists of all the vertices ei . 
Indeed, if even a single one of the ei ’s, ei0 , were missing, 
then we would have 

(K−1
3

)
> K disjoint pairs of f j ’s (each 

containing one vertex with an e-signature s of size three 
and one vertex with signature s ∪ {ei0 } of size four) which 
could not be separated by the other K − 1 vertices ei , and 
so at least one element in each pair would have to belong 
to the LD code. On the other hand, the set {e1, . . . , eK } is 
clearly an LD code.

Denote

Vabc =
⋃

B∈B
{b j(B), c j(B) : j = 1,2, . . . ,k + 1}

∪ {a1,a2, . . . ,an}
and

V ef = {e1, e2, . . . , eK } ∪ { f1, f2, . . . , ft}.
Finally, we add some edges between the vertices in Vabc
and the vertices ei . This is done in such a way that for 
each pair ( j, B), where j = 1, 2, . . . , k + 1 and B ∈ B, the 
pair (b j(B), c j(B)) is assigned a unique e-signature, i.e., the 
two vertices b j(B), c j(B) both get the same signature, but 
the signatures are different for different pairs. Moreover, 
we assign each ai , for i = 1, 2, . . . , n, an e-signature which 
is unique to that ai . As K could be chosen to be arbitrarily 
large, this can be done in such a way that the e-signatures 
of all the vertices f i also remain unique to them.

This completes the construction of our graph G .
Assume now that C is an optimal LD code in G . We 

have already seen that |C ∩ V ef | ≥ K , and that equality im-
plies that C ∩ V ef = {e1, e2, . . . , eK }.

First, we suppose that for every B ∈ B, there is at least 
one index j such that neither b j(B) nor c j(B) belong to C . 
Therefore b j(B) and c j(B) need to be separated by a code-
word, and by the construction the only candidates are in 
{a1, . . . , an}. This shows that C ∩ {a1, a2, . . . , an} cannot be 
the set {ai : i ∈ B}, nor any of its subsets. As this is true for 
all B ∈ B, we see that |C ∩ Vabc| ≥ k, and, moreover that if 
equality holds, then C ∩ Vabc = {ai : i ∈ A} for some A ∈A.

Therefore |C | ≥ K +k, and if equality holds, then C must 
be one of the codes

C(A) = {e1, e2, . . . , eK } ∪ {ai : i ∈ A}
for some A ∈A.

The alternative is that for some B , each of the k + 1
pairs (b j(B), c j(B)) contains at least one codeword; then 
|C ∩ Vabc | ≥ k + 1 and C is not optimal.

Now it suffices to prove that every C(A) is an LD code 
when A ∈ A. This is clear: as the vertices ai and f j have 
unique signatures, it suffices to only consider the vertices 
in the pairs (b j(B), c j(B)). However, the signature assigned 
to that pair identifies the pair, and within a pair the ver-
tices are separated by the vertices in C ∩ {a1, a2, . . . , an} as 
we saw above.

This shows that the only optimal LD codes in G are the 
codes C(A) = {e1, e2, . . . , eK } ∪ {ai : i ∈ A}, A ∈A. �

The ensemble of the optimal LD codes of the graph G
can be described by which k-set of vertices from V 1 we 
put in the code, since the other codewords (those in S) 
are common to all optimal LD codes; now these k-sets 
are precisely the k-sets which belong to our target A, and 
therefore the set �(G) is equivalent to A.
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3. Some results on Johnson induced subgraphs

Some families of graphs are known to be JIS, some are 
known which are not JIS, but no characterization is avail-
able. Below, we summarize some of the results from [11]; 
for Cartesian products (see (d) below), we refer to [8].

Theorem 4.

(a) [Prop. 4] All complete graphs and all cycles are JIS;
(b) All trees are JIS;
(c) [Prop. 6] A graph is a JIS if, and only if, all its connected 

components are JIS;
(d) [Prop. 7] The Cartesian product of two JIS is a JIS;
(e) [Prop. 12] Any graph obtained by removing one edge from 

the complete graph Kn, n ≥ 5, is not a JIS;
(f) [Prop. 8] The complete bipartite graph K2,3 is not a JIS. �

The graph K2,3 can be seen as two cycles of length four 
sharing three vertices; if we define the graph θn as the 
graph consisting of two cycles of length n sharing n − 1
vertices, we have the following result from [11].

Theorem 5. The graphs θ4 and θ5 are not JIS; all the graphs θn, 
n ≥ 6, are JIS. �

The q-ary n-dimensional hypercube is another graph 
which is JIS, for all q ≥ 2 and n ≥ 1; indeed,
the q-ary words of length n in Zn
q can be transformed 

into binary sequences of length qn, containing exactly n
ones, applying the mapping φ : Zq → Zq

2, with φ(0) = e1
and φ(i) = ei+1 for i ∈ {1, 2, . . . , q − 1}, where ei has ex-
actly one “1” in position i, so that Zn

q can be seen as a 
collection of n-subsets of {1, 2, . . . , qn}.
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