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ABSTRACT

In this paper we design a smoothing filter for texture+depth im-
ages based on anisotropic diffusion. Our proposed filter is linear and
allows to generate a scale space of the texture image which preserves
internal image structure (i.e. it does not smooth through object bound-
aries). Moreover, we show experimentally that our filter demonstrates
better stability under camera position changes in such a way that its
response is rather intrinsic to the content and less dependent on the
observer position in the scene. To illustrate the practical utility of
the scale space with such properties, we integrate our filter into SIFT
salient visual point detector, getting a substantial improvement of
the repeatability of detected keypoints under significant viewpoint
position changes.

Index Terms— image smoothing; texture+depth; anisotropic dif-
fusion; keypoint repeatability.

1. INTRODUCTION

Scale-space theory is a fundamental tool in image processing and
computer vision, as it provides a framework to problems as image
and shape description, denoising, enhancement, etc. For a given
input image, the scale space is generally understood as a family of
its low-pass filtered versions, obtained by a filter satisfying certain
axioms [1]. Among the large variety of image smoothing filters,
only a limited number actually yields scale spaces. Historically, the
first and most employed scale space has been that engendered by
the bidimensional Gaussian filter [2, 1]. The practical effectiveness
of Gaussian multi-scale representation on conventional 2D images
has been widely proved in a number of different computer vision
applications, including image description and retrieval. Several local
image descriptors, such as SIFT [3] or BRISK [4], exploit Gaussian
scale space for interest points detection. Such applications typically
assume a causality axiom, i.e. no new features should be generated
when passing from a finer to a coarser scale [5]. An example of a filter
violating scale space axioms (notably the causality), but yet being
used as a computationally efficient scale space approximation, is 2D
rectangular filter. It is involved in Fast-Hessian keypoint detector, a
part of SURF visual features extraction algorithm [6]. Filters with a
more complex behavior, like edge preserving smoothing, may also
satisfy the necessary axioms to engender scale space (e.g., the classic
Perona and Malik’s anisotropic diffusion [5]).

The motivation of this work comes from the availability, nowa-
days, of newer visual formats that go beyond the traditional 2D visual
representation and enrich it with additional information, such as scene
geometry. An important example is the texture+depth video format,
which has gained momentum in the past few years thanks to applica-
tions as immersive communication and free viewpoint television [7].
In the texture+depth format, the conventional 2D scene intensity con-
tent (texture) is complemented with a per pixel depth map, which
stores the distance of each pixel from the camera plane.

The knowledge of scene geometry affects the filter behavior
with respect to the traditional imaging, e.g., the filtering process

should not necessarily be spatially invariant, and could rather take
advantage from the local geometrical structure of the scene. Thus, it
is reasonable to question about whether one can design a new filter
which uses depth information and still engenders a scale space.

In this paper we address this question and offer two contributions:
i) we propose an anisotropic diffusion process based on the scene
depth map that generates a scale space; ii) we show experimentally
that keypoints detected in the proposed scale space are more robust
to viewpoint changes than those obtained through the Gaussian scale
space. Our proposed filter inherits the adaptivity properties of Perona
and Malik’s approach [5], but provides similar stability and linearity
properties as the Gaussian filter. More precisely, it is numerically
stable and linear as a function of the texture map, it satisfies the
causality and semigroup axioms and enables a sort of edge-preserving
filtering, i.e., it smooths out texture regions belonging to the same
surface, while it prevents smoothing over boundaries of objects with
different depth.

The rest of the paper is organized as follows. We introduce the
necessary background on scale spaces and present related work in
Section 2. In Section 3 we select a scene surface parametrization
and define a discrete Laplacian operator to set up the diffusion pro-
cess. We show that the resulting process generates a scale space,
propose a numerical scheme for the diffusion simulation and ensure
its numerical stability. At the end of that section we also discuss the
relation with the Laplace-Beltrami operator that generalizes diffusion
processes on manifolds. In Section 4 we illustrate the theoretical
results with examples of filtered images and show that the proposed
filter can increase the robustness to viewpoint changes in a keypoint
detection scenario. Finally, Section 5 concludes the paper.

2. BACKGROUND AND RELATED WORK

One of the most common linear image smoothing operators is the
convolutional filter with uniform Gaussian kernel:

𝐾𝜎(𝑥, 𝑦) = 1√
2𝜋𝜎2

exp
(︂

−𝑥2 + 𝑦2

2𝜎2

)︂
. (1)

The kernel separability allows for a faster filter response computation:
the 2D convolution may be replaced by a set of 1D convolutions over
image lines and columns. The importance of Gaussian filter, as well
as its principal advantage to other common low-pass filters, raises
from diffusion equation framework [1]. It is well-known that PDE
problem: ⎧⎨⎩𝜕𝑓

𝜕𝑡
= 𝜕2𝑓

𝜕2𝑥
+ 𝜕2𝑓

𝜕2𝑦
≡ Δ𝑓

𝑓 |𝑡=0 = 𝑓0

(2)

where Δ𝑓 is the Laplacian operator, possesses a unique solution
𝑓(𝑡, 𝑥, 𝑦) =

(︀
𝐾√

2𝑡 * 𝑓0
)︀

(𝑥, 𝑦), with * denoting the convolution
product. With this setup, a set of properties may be established for
the Gaussian smoothing, proving that a sequence of progressively
smoothed images forms a scale space. According to the definition



Fig. 1: Image surface parametrization in local camera coordinates.

proposed by Koenderink in [2], to be a scale space such a set of
images of different scales must satisfy two hypotheses:

• causality (non creation of local extrema), i.e. any feature
at a coarse level of resolution1 is required to possess a (not
necessarily unique) “cause” at a finer level of resolution;

• homogeneity and isotropy, i.e. the smoothing is spatially
invariant.

Alternative definitions reject the second hypothesis in order to
perform a “semantically consistent” smoothing to smooth inside the
objects but not across boundaries. Examples of spatially adaptive
smoothing filters that preserve image structure abound in the literature,
from the classic bilateral filter [8] to the recent work in [9] on guided
filter that preserves edges using an arbitrary guidance image, just to
mention a few. However, no scale space properties have been proved
for them so far. The first model of anisotropic scale space was first
proposed by Perona and Malik [5], who formulated a non-linear PDE
problem in such a way that the diffusion process is controlled by
image gradient norm (no other sources of geometrical information are
involved). A disadvantage of that approach is that the problem seems
ill-posed, and the diffusion process simulation may be unstable [1].
Similarly to [5], our diffusion process is not isotropic; however, it
is linear in the texture signal and numerically stable. Further scale
space generalizations, notably theanisotropic diffusion filtering where
the diffusivity becomes non-scalar, are discussed in [1, 10].

Recently, a scale space formulation has been proposed in [11] for
lightfield content. The authors prove that their scaling is a semigroup,
but they do not prove that it satisfies the causality axiom, which is the
crucial property that relates scale spaces to smoothing [12].

3. PROPOSED SCALE SPACE FILTER DESIGN

3.1. PDE problem formulation

Let Ω =
[︀
− 𝑊

2 , 𝑊
2

]︀
×
[︀
− 𝐻

2 , 𝐻
2

]︀
be the image support. We denote

by 𝐷 : Ω → R+ the depth map associated to the image 𝐼 being
processed. We suppose known the horizontal angle of view 𝜔 of the
camera. It can be easily shown that the function �⃗� : Ω → R3 defined
below parametrizes the image surface in local camera coordinates as
illustrated in Figure 1):

�⃗�(𝑢, 𝑣) =

(︃ 2𝑢 tan 𝜔
2

2𝑣 𝐻
𝑊

tan 𝜔
2

1

)︃
𝐷(𝑢, 𝑣). (3)

Let us now proceed to a discrete image support Ω𝑑 obtained by
sampling Ω with step ℎ in both dimensions. For the same function 𝑓

1Here resolution means scale and not the image size.

still defined on the continuous support Ω, we introduce the following
differential quantities:

𝜕𝑢𝑓 = 𝑓(𝑢 + ℎ, 𝑣) − 𝑓(𝑢 − ℎ, 𝑣)
‖�⃗�(𝑢 + ℎ, 𝑣) − �⃗�(𝑢 − ℎ, 𝑣)‖ = 𝑓(𝑢 + ℎ, 𝑣) − 𝑓(𝑢 − ℎ, 𝑣)

𝑟+−
𝑢

(4)

𝜕𝑣𝑓 = 𝑓(𝑢, 𝑣 + ℎ) − 𝑓(𝑢, 𝑣 − ℎ)
‖�⃗�(𝑢, 𝑣 + ℎ) − �⃗�(𝑢, 𝑣 − ℎ)‖ = 𝑓(𝑢, 𝑣 + ℎ) − 𝑓(𝑢, 𝑣 − ℎ)

𝑟+−
𝑣

(5)

where 𝑟+−
𝑢 and 𝑟+−

𝑣 are introduced in order to simplify notations.
Recurrent applications of this operators give second order differential
quantities, e.g. 𝜕𝑢𝑢𝑓 = 𝜕𝑢 (𝜕𝑢𝑓). For a better operator kernel local-
ity, we also introduce a definition through one-sided finite differences
as follows:

𝜕𝑢+𝑓 = 𝑓(𝑢 + ℎ, 𝑣) − 𝑓(𝑢, 𝑣)
‖�⃗�(𝑢 + ℎ, 𝑣) − �⃗�(𝑢, 𝑣)‖ = 𝑓(𝑢 + ℎ, 𝑣) − 𝑓(𝑢, 𝑣)

𝑟+
𝑢

(6)

𝜕𝑢−𝑓 = 𝑓(𝑢, 𝑣) − 𝑓(𝑢 − ℎ, 𝑣)
‖�⃗�(𝑢 − ℎ, 𝑣) − �⃗�(𝑢, 𝑣)‖ = 𝑓(𝑢, 𝑣) − 𝑓(𝑢 − ℎ, 𝑣)

𝑟−
𝑢

(7)

𝜕𝑢𝑢𝑓 = 𝜕𝑢+𝑓 − 𝜕𝑢−𝑓

𝑟+−
𝑢

(8)

= 𝑓(𝑢 + ℎ, 𝑣)
𝑟+

𝑢 𝑟+−
𝑢

− 𝑓(𝑢, 𝑣)
𝑟+

𝑢 𝑟+−
𝑢

− 𝑓(𝑢, 𝑣)
𝑟−

𝑢 𝑟+−
𝑢

+ 𝑓(𝑢 − ℎ, 𝑣)
𝑟−

𝑢 𝑟+−
𝑢

(9)

and 𝜕𝑣𝑣𝑓 is then defined in a similar way. Thus, we may introduce
a Laplacian-like second order differential operator 𝐿 ≡ 𝜕𝑢𝑢 + 𝜕𝑣𝑣

and then formulate the following PDE problem, linear in 𝑓0:{︃
𝜕𝑓

𝜕𝑡
= 𝐿𝑓

𝑓 |𝑡=0 = 𝑓0

(10)

This problem is very similar to the classic diffusion problem (2).
To study this similarity and set up some useful properties, let us return
back to the continuous definition domain. We obtain continuous
generalizations of our differential quantities by tending ℎ to zero:

𝒟𝑢𝑓 = 𝑓𝑢‖�⃗�𝑢‖−1

𝒟𝑢𝑢𝑓 = 𝑓𝑢𝑢‖�⃗�𝑢‖−2 − 𝑓𝑢‖�⃗�𝑢‖−4 (�⃗�𝑢, �⃗�𝑢𝑢) (11)

Thus we get the continuous version of the problem (10).{︃
𝜕𝑓

𝜕𝑡
= 𝒟𝑢𝑢𝑓 + 𝒟𝑣𝑣𝑓

𝑓 |𝑡=0 = 𝑓0

(12)

We notice that if 𝐷 is constant (i.e., we have a non-informative
depth map), this problem is purely equivalent to the classic linear
diffusion filtering (2), as the differential operator on the right side of
the equation becomes the classic Laplacian up to a constant multiplier
due to �⃗�𝑢 = �⃗�𝑣 ≡ 𝑐𝑜𝑛𝑠𝑡 and �⃗�𝑢𝑢 = �⃗�𝑣𝑣 ≡ 0. This allows for a
“backward compatibility” of the proposed scale space to the classic
Gaussian scale space in cases when the depth map is not provided.
Moreover, this property is satisfied locally, i.e., at points where 𝐷 is
continuous and the surface normal is parallel to the camera optical
axis.

3.2. Well-posedness, scale space properties and numerical solu-
tion

To establish the well-posedness of problem (10) as well as the proper-
ties of its solution, we use some of the results of [1]. We rewrite (10)



in a vector form, i.e., 𝑓(𝑡) ∈ R𝑊 ×𝐻 and the application of 𝐿 to 𝑓 is
represented by a matrix multiplication 𝒜𝑓 . The coefficients of matrix
𝒜 depend only on �⃗� and are explicitly deduced from definition (9).

First we apply theorem 4 of [1]. It is straightforward to show
that the operator matrix satisfies all the conditions except the symme-
try, i.e., it has vanishing row sums (S3), nonnegative off-diagonals
(S4) and is irreducible (S5). Lipschitz-continuity (S1) is satisfied
unconditionally as 𝒜 does not depend on 𝑓 . The violated condition
of the matrix symmetry (S2) is not required for well-posedness and
maximum-minimum (causality) principle, as it is noticed afterwards
[1, p. 76]. Thus, we prove that not only is the problem well-posed
(i.e., has unique solution that depends continuously on the initial data),
but that the solution 𝑓 respects the extremum principle allowing to
set up the causality.

Furthermore, theorem 8 of [1] proves a sufficient criterion of
stability for the following explicit numerical scheme that allows to
simulate the diffusion process:

𝑓 (𝑛+1) = 𝑓 (𝑛) + 𝜏𝐴𝑓 (𝑛)

𝑓 (0) = 𝑓0 (13)

The condition of stability consists in limiting the temporal step of
simulation 𝜏 . We reinterpret theorem 8 of [1] to obtain the analytic
expression:

𝜏 ≤ 𝜏* =
[︂

2 max
Ω𝑑

{︂
1

𝑟+
𝑢 𝑟+−

𝑢

+ 1
𝑟−

𝑢 𝑟+−
𝑢

+ 1
𝑟+

𝑣 𝑟+−
𝑣

+ 1
𝑟−

𝑣 𝑟+−
𝑣

}︂]︂−1

(14)
Now we are able to perform the computation of the filter response for
a given image 𝐼 = 𝑓0 and depth map 𝐷. The quantity of resulting
smoothing is determined by 𝑡(𝑛) = 𝑛𝜏 .

Thus, we designed a linear smoothing filter that engenders a scale
space. More complex filter behavior, such as edge preserving, mainly
comes from the definition of the first order differential operators (5),
where we adjust a common approximation of derivative computed
on two neighboring samples by the real distance between the corre-
sponding sample points, known from the depth map. This allows to
respect the object contours by limiting the contribution of neighbor-
ing samples belonging to the background rather than to the object.
For surface discontinuities in real images the denominator value of
(5) is generally large enough to reduce the background contribution
to zero.

3.3. Relation to the Laplace-Beltrami operator

The gradient-like quantities defined in (5) enable to smooth the image
intrinsically to the surface, using the geometric properties conveyed
by depth. Even if the proposed Laplacian 𝒟𝑢𝑢 + 𝒟𝑣𝑣 is not strictly
invariant to orthogonal coordinate changes, in case of smooth sur-
faces and limited high frequency variations of texture its response
remains stable. Moreover, the operator vanishes on locally planar
surfaces when the texture is a linear function, whereas classic 2D
Laplacian, applied to the texture image only, does not. This allows for
a viewpoint-coherent filter behavior, as observed in filtered images
(see Section 4).

Filtering intrinsic to a surface is naturally formalized as a diffu-
sion process on manifolds. These processes are classically described
through the Laplace-Beltrami operator [13, 10]. The scene surface
parametrization �⃗� may be regarded as a mesh with boundaries having
a regular local topology but very irregular vertex spatial density. Thus,
it is possible in theory to establish a diffusion process over such a
mesh by using the Laplace-Beltrami operator. An important property

Bricks Arnold House

Fig. 2: Examples of filtered images. The proposed diffusion process
preserves the discontinuities across different objects, while it smooths
out progressively pixels that belong to the same surface.

of the surface-intrinsic characteristics of the Laplace-Beltrami opera-
tor is that the diffusion process is, in principle, “viewpoint-covariant”,
i.e., its action in a given point of the scene surface is completely
independent of the camera position and orientation. Nevertheless,
as we aim at designing a scale space, such an approach exhibits two
important difficulties.

First, such a filter might not necessarily engender a scale space.
One may easily verify that the proposed Laplacian 𝒟𝑢𝑢 + 𝒟𝑣𝑣 acts
exactly as the Laplace-Beltrami operator at points where the tan-
gent plane to �⃗� is parallel to the camera plane. However, in general
our Laplacian is different from Laplace-Beltrami operator. This is
partially a consequence of the absence of a term containing mixed
derivative 𝑓𝑢𝑣 in the analytic expression defining the operator (11).
A Laplacian could be defined differently, but some coefficients of
the operator matrix 𝒜 (especially corresponding to the absent mixed
derivative term) would become negative, and neither the scale space
properties nor the numerical stability would be ensured by referring
to [1].

Second, the Laplace-Beltrami operator is known to be hardly
discretizable. Specifically, numerous discrete Laplacian operators do
not converge to the Laplace-Beltrami operator, but satisfy some other
desired properties and are largely used in practice [13, 14]. As for
our Laplacian, it is easy to verify that, referring to the results in [14],
it satisfies locality, linear precision, and positive weights properties.

4. EXPERIMENTS AND DISCUSSION

4.1. Qualitative assessment

We tested our filtering process on some synthesized images, for which
we know exactly the corresponding depth maps. Some examples of
filtered images are presented in Fig. 2. As it can be seen from the
pictures, smoothing preserves surface discontinuities in each example:
rounded wall boundary in Bricks, nose contour in Arnold, roof top
border in House.

As we noticed before, our filter response is intrinsic to the surface
and less dependent on the camera position with respect to the scene
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Fig. 3: Setup for simulating filter coherence to viewpoint position
changes.

content. We illustrate this showing the similarity between filtered
images corresponding to different viewpoints. The simulation follows
the scheme in Fig. 3. A given scene is captured from two different
positions obtaining two views (𝐼1, 𝐷1) and (𝐼2, 𝐷2). As the camera
positions and orientations are known, we may reproject the first view
texture image on the second camera plane, i.e., reconstruct partially
the second view from the first one. The corresponding image is
referred to as 𝐼1→2. When no filter is applied, 𝐼1→2 is close to 𝐼2 at
pixels whose 3D origins are present in both images. The coherent
filter behavior to viewpoint changes will manifest itself by a limited
dynamics of 𝐼1→2.

We compare our filter with Gaussian and Perona and Malik’s
filters. The amount of smoothness, as well as all the other filter pa-
rameters, are set up experimentally in such a way that the filtered
images are visually similar. To reduce sampling and depth quanti-
zation effects, instead of pixel-by-pixel difference, we take a set of
neighboring points in 𝐼1→2 and compute the minimal difference with
the corresponding pixel value in 𝐼2. More precisely, we take 8 points
on a circle of 1 pixel radius and its center. As 𝐼1→2 is sampled from
a scattered point set obtained by the reprojection, we may interpolate
it in the desired way. An example of the filtering process is reported
in Fig. 4 for the Bricks content, where one can see that filtered images
from different viewpoints match better with each other than those
obtained through conventional scaling processes. This illustrates
pictorially why the proposed scale space yields a certain viewpoint
change robustness. In the following we discuss more quantitatively
this property for a keypoint detection scenario.

4.2. Application to keypoint detection

In our second experiment we show how the proposed scale space
can increase the repeatibility in keypoint detection under substantial
viewpoint changes. It is known that the classic SIFT keypoint detector
[3] based on Gaussian scale space exhibits limited repeatability under
significant viewpoint position changes [3, 17]. This kind of keypoint
stability may be improved by using a scale space that changes in a
covariant way with camera displacements. Moreover, anisotropic
diffusion may have a positive influence on the keypoint stability as
well [15]. To check this out, we compute scale space pyramid as
described in [3] using our filter instead of the Gaussian, and inject the
computed images in SIFT detector implemented in the VLFeat library
[16]. We use this approach to detect keypoints in several different
views of a given scene and then match the computed keypoint sets (the
first view is matched to the other). The scenes we use are provided
with ground-truth data allowing to compute exact position of 3D
spherical area of each keypoint in camera-independent coordinates.
Similarly to [17], the detector performance is evaluated in function
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Fig. 5: Matching score for Bricks and Graffiti sequences. Graffiti
texture+depth sequence is re-synthesized from the frontal view of the
original Graffiti sequence used in [17].

of the matching score representing the portion of matched keypoints
to the maximum possible number of matches. Specifically, two
keypoints 𝑖 and 𝑗 are matched if the volume of intersection of the
spheres 𝑆𝑖 and 𝑆𝑗 is large enough, i.e., |𝑆𝑖 ∩ 𝑆𝑗 | ≥ (1 − 𝜖)|𝑆𝑖 ∪
𝑆𝑗 | for 𝜖 ∈ (0, 1). This is an important difference to [17], where
the intersection of flat ellipses (and not spheres) is computed, as
entirely planar scenes are used for tests. To keep the comparison
with SIFT fair, in our test we set the initial amount of smoothing 𝜎0
for each scene (for all the views) in such a way that the numbers of
detected keypoints in all the images remain comparable to those of
the standard SIFT detector (all the other processing parameters for
the both detectors are strictly the same).

The matching score in function of view angle difference between
the views is presented in Fig. 5, which clearly shows a larger robust-
ness of the proposed scale space over the Gaussian one used in SIFT.
We also show in Fig. 6 an example of images with matched keypoints.
The number of keypoints in both images is approximately the same,
but with the proposed scale space the number of matches is much
higher.

4.3. Discussion

The proposed diffusion scheme assumes the knowledge of geometric
information under the form of depth map. In this work, we assume
that the depth information is noiseless, i.e., we use synthesized scenes
from 3D models where the geometric information (including the
camera parameters) are perfectly known. When a real data is used,
an issue may be to pre-process the depth map in such a way that
our proposed scale space be robust to imperfect knowledge of the
geometry.

From the computational point of view, our approach has a cost
equivalent to the anisotropic filtering of [5], given that it requires



(a) First view image (b) Second view image (c) No filter

(d) Gaussian filter (e) Perona and Malik’s filter (f) Our filter

Fig. 4: The first (𝐼1) and the last (𝐼2) view of the test scene and 𝐼𝑜𝑢𝑡 = |𝐼2 − 𝐼1→2| computed without filter, with Gaussian, Perona and Malik,
and our filter for an image from Bricks sequence. The difference images are thresholded by value of 3% of overall intensity scale for better
visibility.

(a) Gaussian scale space

(b) Proposed scale space

Fig. 6: Matching of SIFT keypoints detected using different filters in
a pair of images from Graffiti sequence (angle of view difference is
70°, 𝜖 = 0.5). Green keypoints are the matched ones, i.e. occupying
close spherical areas of the scene (the matching pairs are connected
by blue lines). Red keypoints have no matches.

a diffusion simulation and may not be computed through a convo-
lution. However, the scheme in (13) is trivially parallelizable, thus
its complexity can be scaled linearly if implemented on a multicore
architecture . Moreover, the operator matrix 𝒜 is very sparse (up to
border effects, for an image of 𝑁 × 𝑀 pixels it contains only 5𝑁𝑀
nonzero elements) and does not change with iterations. This means
that the simulation may be further accelerated by precomputing the
operator matrix power 𝒜𝑚 and applying it to the image instead of
𝒜, i.e. 𝑓 (𝑛+𝑚) = 𝒜𝑚𝑓 (𝑛) – 𝒜𝑚 storage cost is reasonable and its
application to 𝑓 (𝑛) is fast thanks to the sparsity. The latter property
is not valid for classical anisotropic filtering, where the matrix 𝒜 is
changing during simulation.

5. CONCLUSION

In this paper we designed an image smoothing filter for texture+depth
content that makes use of the depth image in order to smooth the
texture image. Our filter is linear, preserves internal scene structure
avoiding the smoothing through object boundaries, and engenders
a scale-space. We provided a stable numerical scheme for the filter
response computation. Finally, we illustrated the viewpoint-coherent
filter behavior and showed that SIFT detector with our scale space re-
placing the Gaussian one has better repeatability in case of significant
differences between viewpoint positions.

In future work we will address the local visual features stability
to significant viewpoint position changes and out-of-plane rotation
with such a scale space, not only on the detector but on the descriptor
side as well.
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