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ABSTRACT

Binary local descriptors are widely used in computer vision thanks
to their compactness and robustness to many image transformations
such as rotations or scale changes. However, more complex trans-
formations, like changes in camera viewpoint, are difficult to deal
with using conventional features due to the lack of geometric infor-
mation about the scene. In this paper, we propose a local binary
descriptor which assumes that geometric information is available as
a depth map. It employs a local parametrization of the scene sur-
face, obtained through depth information, which is used to build a
BRISK-like sampling pattern intrinsic to the scene surface. Although
we illustrate the proposed method using the BRISK architecture, the
obtained parametrization is rather general and could be embedded
into other binary descriptors. Our simulations on a set of synthetically
generated scenes show that the proposed descriptor is significantly
more stable and distinctive than popular BRISK descriptors under a
wide range of viewpoint angle changes.

Index Terms— binary descriptor; BRISK; texture+depth; match-
ing score; distinctiveness.

1. INTRODUCTION

Increasing availability of texture+depth content allows for new ap-
proaches to classic computer vision problems. This kind of visual
content consists of a 2D intensity image (texture) and a depth image,
representing the distance of each pixel from the camera plane (depth
map). The depth map opens large possibilities for geometrical scene
reasoning, to the same extent as the binocular human vision gives
a perception of geometry to the cognitive level of the human visual
system. Thus, a number of problems, such as object recognition, ob-
ject tracking, visual odometry, content-based image retrieval, may be
treated more efficiently in case when such a geometrical information
is available.

In this work, we address the image matching problem, consisting
in deciding whether two given images represent a similar content,
and establishing correspondences between objects represented in the
images. Local visual features (local image descriptors) form the most
used family of approaches to image matching. They may be split into
two groups following the nature of resulting signatures: conventional
descriptors, such as SIFT [1], SURF [2], GLOH [3]; and binary
descriptors BRISK [4], ORB [5], BRIEF [6]. The first group offers
the descriptors represented by high dimensional numeric vectors. The
matching is performed by computing Euclidean distances between
descriptors: when the images are similar, a large number of pairs
of “close” descriptors must be found in corresponding feature sets.
The second group of methods arises as a computationally efficient
alternative to the first one. The efficiency raises not only on the
descriptor computation stage, but on the matching stage as well, as
the descriptors in this case are binary strings and may be compared via
Hamming distance which is very fast to compute. At the same time,

the descriptive power of such binary sequences is highly competitive
to the non-binary descriptors, which is confirmed in different works
([4], [7]).

The contribution of this paper is a binary descriptor for tex-
ture+depth content, designed to be robust under rigid scene trans-
formations (camera position changes, out-of-plane object rotations).
Our descriptor uses the same sampling pattern as BRISK, but it is
transformed in a specific way to meet the scene geometry, which
allows for improved stability under rigid transformations. The core
of our method consists in parametrizing the scene surface defined
by the depth map locally at each keypoint using a geodesic polar
parametrization. The intensity image (texture map) is then sampled
accordingly to compute the descriptor.

The rest of the paper is organized as follows. The related work on
local features is presented in Section 2. In Section 3, we introduce the
descriptor computation process. In Section 4 we present evaluation
results of the designed descriptor. Finally, Section 5 concludes the
paper.

2. RELATED WORK

All the feature extractors widely used in practice, such as SIFT-
like approaches or BRISK, are invariant to in-plane translations,
in-plane rotations and scale changes. However, in most realistic use
cases the reciprocal camera-objects movements in the scene are not
restricted by these transformations. As an arbitrary object movement
in 3D space may be modeled through an in-plane translation, an in-
plane rotation, an out-of-plane rotation and a scale change, advanced
methods are often involved into descriptor computation process to
deal mainly with out-of-plane rotations.

Similarly to the invariance to in-plane rotations, one general idea
consists in a local normalization before the descriptor computation,
i.e., each local descriptor patch is properly warped. Classic affine-
invariant detectors [8] estimate an elliptical frame per keypoint that
matches a visual detail (only the intensity image is used), and the
patch then undergoes an affine transformation in such a way that the
ellipse is transformed into a circle. Their performance is limited for
moderate out-of-plane rotations (up to 40°) [1], and the resulting de-
scriptors may be less distinctive due to the large class of normalizing
transformations [9]. A local patch normalization for texture+depth
content based on planar approximation is proposed in our previous
work [9]. However, that method is not suitable when a corner detector
is used for keypoint detection, since non-planar keypoints are rejected
before descriptor computation. Several other methods, e.g., [10] and
[11], use similar normalization procedures, but they operate with
range images only (generated features describe the scene geometry
only, no texture data is used).

An alternative to normalization consists in simulation of affine
transformations, i.e., generating descriptors for a set of warped ver-
sions of the input image. This idea is employed in ASIFT [12].
Demonstrating a very promising performance, this approach is lim-



ited to applications where both images are provided explicitly, as it
does not produce a compact set of relevant descriptors for a given
image.

In our method, we use a local geodesic polar surface parametriza-
tion. A similar representation has been previously used in [13] for
the case of mesh-based face detection. Our parametrization differs
from that one in the computation of the angular component.

3. PROPOSED METHOD

We propose to get an approximate description of the object surface
texture leveraging the scene geometry learned from the depth map.
Up to sampling effects and illumination variations, the object texture
does not depend on the reciprocal camera-object orientation, so that
the content description based on this becomes much more stable to
arbitrary rotations and translations.

A conventional non-binary descriptor, such as SIFT or SURF, is
hardly applicable for this kind of description, because it assumes a
planar image patch per keypoint. If the keypoint area on the surface
is not locally planar (e.g. an object corner), there is no transformation
that maps isometrically the texture of such an area to a planar image.
For this reason, normalization-based approaches may fail in this
case. However, if the descriptor requires to sample the image only
in a few points (no “continuous” image patch is assumed), which is
the case of the binary descriptors, these points may be distributed
over the surface like they are attached to it. This is illustrated in
Fig. 1. This technique allows to make the description intrinsic to
the surface texture. Then, after the image is evaluated in properly
distributed sampling points, exactly the same technique may be used
to compute the descriptor, i.e., a binary string is formed through
pairwise comparisons of obtained samples.

Up to comparison of different binary descriptors in [7], BRISK
features [4] demonstrate better overall results. For this reason we take
BRISK as the base to implement the proposed idea. As any other
conventional feature extraction algorithm, BRISK consists of two
separated stages: keypoint detection and descriptor computation. The
first stage is based on FAST detector [14] applied to the Gaussian
scale space in order to achieve scale invariance. The descriptor
computation consists in a set of pairwise comparisons of values
obtained by sampling the image according to the pattern in Fig. 1a.
As in our method we proceed similarly, we present necessary details
in the following.

In this work, we use the original keypoint detection algorithm.
After the keypoints are detected, we first compute the local polar
parametrization at each keypoint, i.e. we look for radial and angular
coordinate of each pixel, that are intrinsic to the scene surface.

3.1. Local parametrization: radial component

Let 𝐼(𝑢, 𝑣) denote the intensity image, 𝐷(𝑢, 𝑣) the depth map, 𝐻
and 𝑊 their heights and widths in pixels, and 𝜔 the horizontal angle
of view of the camera and the depth sensor. Using the pinhole camera
model we set up the following global parametrization of the scene:

𝑟(𝑢, 𝑣) =

(︃ 2𝑢 tan 𝜔
2

2𝑣 𝐻
𝑊

tan 𝜔
2

1

)︃
𝐷(𝑢, 𝑣). (1)

This global parametrization will be used to compute the desired local
polar parametrization at each keypoint.

For a given keypoint centered at (𝑢0, 𝑣0), we first compute the dis-
tances 𝜌(𝑢, 𝑣) from (𝑢0, 𝑣0) to other pixels applying the fast march-
ing algorithm [15], allowing to compute efficiently a map of geodesic

distances from a given point of a surface to other points. Fast march-
ing is a family of numerical methods solving the Eikonal equation
‖∇𝑢‖ = 𝐹 in one sweep, i.e., by simulating a front propagation
through the image starting from a given source point. This technique
is perfectly adapted to our needs, as we do not have to process the
whole image but the keypoint neighborhood only.

The fast marching is started at the keypoint center and stopped
when a certain limiting distance, corresponding to the keypoint
scale, is reached (this distance is further referred to as geodesic
keypoint scale 𝜎𝑔). The ”keypoint area” may thereby be defined as
𝑀 = {(𝑢, 𝑣) : 𝜌(𝑢, 𝑣) < 𝜎𝑔}. The resulting geodesic distances
to the keypoint center are intrinsic to the scene and do not depend
on the viewpoint position. Thus, the image resulting from the fast
marching application gives us directly the radial component of the
parametrization we are looking for.

Geodesic keypoint scale 𝜎𝑔 , that limits the fast marching process,
may be seen as the characteristic keypoint area size expressed in
scene spatial units. It is related to the sphere radius that surrounds the
keypoint area, expressed in these units. For a keypoint of scale 𝜎, the
corresponding radius is given by the following formula derived from
the pinhole camera model:

𝑅 = 𝜎𝐷(𝑢0, 𝑣0)
2 tan 𝜔

2
𝑊

(2)

In our tests we set 𝜎𝑔 equal to 6𝑅. This determines the scaling of the
sampling pattern in function of the keypoint scale. This value is set
experimentally and is reasonable in comparison to the patch extents
of other descriptors; larger extent will require more time to compute
the descriptor, where smaller values cause distinctiveness losses.

3.2. Local parametrization: angular component

The estimation of the angular component is more difficult. Differently
to the polar geodesic parametrization in [13], we limit ourselves to
an approximation, that is reasonable due to the locality and using the
depth map but not an arbitrary mesh.

In a nutshell, we approximate the angular coordinate of a given
point in 𝑀 using precomputed values from a set of points forming a
closed curve around the keypoint center. So, we first extract a level
curve on the geodesic distance map 𝜌(𝑢, 𝑣), i.e. an oriented closed
contour 𝐶 = {(𝑢, 𝑣) : 𝜌(𝑢, 𝑣) ≈ 𝑎𝜎𝑔} = {𝐶𝑖}𝑛

𝑖=1, where 𝑎 < 1
is a constant. At the same time, we compute the spatial length of
𝐶 by summing up the spatial distances between neighboring points.
During this summation, we keep the array of cumulated lengths

𝐿𝑘 =
𝑘∑︁

𝑖=1

‖𝑟(𝐶𝑖) − 𝑟(𝐶𝑖+1)‖, 𝑘 = 1, .., 𝑛. (3)

By normalizing 𝐿𝑘 to the interval [0, 2𝜋) we get the “angles” 𝜑𝑘 of
points of the curve 𝐶. The angular coordinate of any other point of
𝑀 is then estimated by selecting that of the point in 𝐶 minimizing

the angle 𝛼(�⃗�, �⃗�) = arccos
(︂

(�⃗�, �⃗�)
‖�⃗�‖‖�⃗�‖

)︂
between corresponding two

vectors from keypoint center:

𝑖* = arg min
𝑖

𝛼 (𝑟(𝑢, 𝑣) − 𝑟(𝑢0, 𝑣0), 𝑟(𝐶𝑖) − 𝑟(𝑢0, 𝑣0)) (4)

𝜑(𝑢, 𝑣) = 𝜑𝑖* (5)
In our tests, we used 𝑎 = 0.8, so that the reference curve 𝐶 cuts the
keypoint area 𝑀 in two roughly equal parts in terms of number of
points.

The two computed components 𝜌(𝑢, 𝑣) and 𝜑(𝑢, 𝑣), that form
the local surface parametrization, are illustrated in Fig. 1c and Fig. 1d.



(a) BRISK sampling pattern (b) Exemple of distribution of the sampling points (c) Radial component 𝜌(𝑢, 𝑣) (d) Angular component 𝜑(𝑢, 𝑣)

Fig. 1: Original BRISK sampling pattern for a keypoint of a unit scale [4], and an example of its distribution over the scene surface for a
keypoint centered at the corner. The corresponding local parametrization is shown on images (c) and (d).

3.3. Descriptor computation

Following the BRISK architecture, we now need to smooth the image
locally at each sampling point. Working in polar coordinates, we
propose a ”polar Gaussian kernel”, a naive extension of the classic bi-
dimensional Gaussian kernel to the polar coordinates, i.e. a function
providing square-exponential decreasing, but in radial and angular
sense. To give its analytic formulation, let us study the sampling
pattern in Fig. 1a in more details.

This pattern may be splitted radially into 5 layers. The first layer
consists of the center point only, each following layer contains a set
of points with a constant radius and equally spaced angles. Let take
a layer 𝑙 having 𝑛𝑙 points, and a point number 𝑘. Let 𝑟𝑙 be the layer
radius and 𝑠𝑙 the associated layer scale (i.e. scale of sampling points
on that layer). We define the smoothing kernel corresponding to the
selected point of the layer as follows.

𝐾𝑙,𝑘(𝜌, 𝜑) = exp

⎛⎜⎝− (𝜌 − 𝑟𝑙)2

2𝑠2
𝑙

−

(︁
mod(𝜑 − 𝑘−1

𝑛𝑙
) 𝑛𝑙𝑟𝑙

4𝜋

)︁2

2𝑠2
𝑙

⎞⎟⎠
(6)

We denote by mod a function that wraps the angle in radians (i.e.
modulo 2𝜋).

The kernels for different (𝑙, 𝑘) values are illustrated in Fig. 1b.
The response at the selected sample point is then given by

𝑆𝑙,𝑘 =
∑︀

𝑀
𝐾𝑙,𝑘(𝜌(𝑢, 𝑣), 𝜑(𝑢, 𝑣))𝐼(𝑢, 𝑣)∑︀

𝑀
𝐾𝑙,𝑘(𝜌(𝑢, 𝑣), 𝜑(𝑢, 𝑣))

. (7)

𝑆𝑙,𝑘 for all 𝑙 and 𝑘 gives us the required sample values. To end up
with a binary descriptor, we then proceed in a very similar way to
BRISK. In a nutshell,

• we estimate the characteristic pattern direction using the long-
distance sample pairs exactly as it is done in BRISK,

• we shift the angular component 𝜑(𝑢, 𝑣) in such a way that the
characteristic direction becomes zero,

• we sample the image again with shifted 𝜑(𝑢, 𝑣), and (d) we
compute the descriptor using the short-distance sample pairs
(comparing the intensity values).

Long and short-distance pairs (sample indexes in the sampling
pattern) do not depend on the content and are precomputed as in the
original BRISK algorithm.

4. EXPERIMENTS AND DISCUSSION

We test our approach on a synthetic texture+depth dataset, contain-
ing significant viewpoint position changes (3 scenes, 70 images of
960*540 pixels, see [9] for image examples). We used a classic evalu-
ation procedure from [3, 16], based on pairwise matching of different
images of a given scene is performed. Specifically,

• we extract the features of each image from a given pair,

• for each descriptor in the first set, we look for the closest
descriptor in the second set (in case of binary features this is
the one that minimizes the Hamming distance),

• for each feature we compute a sphere in 3D space (its center
position in global 3D coordinates and its radius using formula
(2)), that ”contain” the keypoint; the necessary ground-truth
data is provided within the dataset,

• similarly to [16] we use overlap error to determine whether
the two features of a given pair describe the same area of 3D
scene or not, i.e. a pair of keypoints 𝑖 and 𝑗 is labeled as a true
match if corresponding spheres 𝑆𝑖 and 𝑆𝑗 satisfy

|𝑆𝑖 ∩ 𝑆𝑗 | ≥ (1 − 𝜖)|𝑆𝑖 ∪ 𝑆𝑗 |. (8)

Otherwise a false match is got.

We set the error threshold 𝜖 equal to 0.5. In our tests we compute
the volumetric overlap, but not planar, as proposed in [3, 16] (i.e.
intersection of spheres instead ellipses), because the scenes we use
are not entirely planar.

The proposed method is compared to the original BRISK (au-
thors implementation is used). For completeness we also add to the
comparison SIFT descriptor (implemented in VLFeat library [17]).
However, for the consistency of experiments, all the descriptors are
tested with the original BRISK detector, even if in practice SIFT
typically uses its own detector.

We first compute the matching score, i.e., a portion of correctly
matched features to the maximum possible number of matches, as
proposed in [16]. In this case, a match is simply a pair containing
a descriptor from the first image and its nearest descriptor from the
second image. But in practice, such a set may contain a lot of false
matches. To reduce their amount, a certain score is typically assigned
to each pair, and then a threshold is applied. The ability of descrip-
tor to preserve true matches (so, to keep the matching score) and
to reject false matches when increasing the threshold, represents its
distinctiveness. The distinctiveness is typically evaluated through re-
ceiver operating characteristics (ROC) that shows the portions of true



and false matches kept for different thresholds. We computed ROC
curves similarly to [7]: a statistically significant number of closest de-
scriptors pairs was selected, cumulated histograms for true and false
matches in function of pair scores were computed to plot ROC curves.
The curves are parametrized by the threshold applied to pair scores.
The pair score for binary descriptors is simply the Hamming distance.
For the SIFT descriptor we used the originally proposed distances
ratio to the first closest and second closest descriptor (see [1] for de-
tails), as it gives better results than a simple inter-descriptor distance.
Finally we compute areas under ROC curves (AUC), splitting the
matches in three groups for limited (up to 30°), moderate (30°–60°)
and large (more than 60°) viewpoint angle changes to evaluate the
descriptors stability for different ranges of out-of-plane rotations.

The geometrical correction performed in our descriptor allows to
match the image patches viewed under a large spectrum of angles of
view, that nor BRISK neither SIFT descriptor could achieve. This is
confirmed by higher matching scores, as shown in Fig. 3, especially
for high-detailed texture (Graffiti). Moreover, our descriptor outper-
forms the other methods in terms of ROC and AUC as presented
in Fig. 2 and Fig. 4. The limited performance of SIFT descriptor
is mainly explained by using the inadapted corner BRISK detector
instead of the original blob detector.

5. CONCLUSION

In this paper we designed a local descriptor for texture+depth vi-
sual content aimed at better stability under rigid scene transforma-
tions, such as out-of-plane rotations or significant viewpoint position
changes. The descriptor is based on BRISK sampling pattern, which
is projected on the scene surface using the depth map, so that the pro-
duced binary signature describes the object texture from the observed
intensity image intrinsically to the scene geometry. The proposed
descriptor is evaluated on an artificial dataset, and demonstrated a
significant improvement in terms of ROC, AUC and matching score
compared to the standard BRISK features.

The result may be further improved by using a detector that
computes salient visual points taking into account the scene geom-
etry. The design of such a detector makes part of our future work.
Moreover, with this local content description approach, some more
complex transformations may be addressed, such as isometric non-
rigid surface deformations. In the future, we will address the problem
of designing a complete local feature extraction pipeline from tex-
ture+depth images with the ambitious goal of stability under such
complex scene deformations.
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Fig. 2: Areas under ROC curves obtained on test sequences for
different ranges of out-of-plane rotations, and on the entire dataset
(corresponding curves are presented in Fig. 4).
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Fig. 3: Matching scores obtained on different sequences. Black
curves represents detector limitations, i.e. numbers of repeated key-
points (repeatability).
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Fig. 4: Receiver operating characteristics obtained on the entire
dataset.



6. REFERENCES

[1] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International journal of computer vision, vol. 60,
no. 2, pp. 91–110, 2004.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up
robust features (SURF),” Computer vision and image under-
standing, vol. 110, no. 3, pp. 346–359, 2008.

[3] K. Mikolajczyk and C. Schmid, “A performance evaluation of
local descriptors,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 27, no. 10, pp. 1615–1630, 2005.

[4] S. Leutenegger, M. Chli, and R. Y. Siegwart, “BRISK: Binary
robust invariant scalable keypoints,” in IEEE International Con-
ference on Computer Vision (ICCV), 2011. IEEE, 2011, pp.
2548–2555.

[5] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: an
efficient alternative to SIFT or SURF,” in IEEE International
Conference on Computer Vision, 2011. IEEE, 2011, pp. 2564–
2571.

[6] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary
robust independent elementary features,” in Computer Vision–
ECCV 2010. Springer, 2010, pp. 778–792.

[7] A. Canclini, M. Cesana, A. Redondi, M. Tagliasacchi, J. As-
censo, and R. Cilla, “Evaluation of low-complexity visual fea-
ture detectors and descriptors,” in 2013 18th International Con-
ference on Digital Signal Processing (DSP). IEEE, 2013, pp.
1–7.

[8] K. Mikolajczyk and C. Schmid, “Scale & affine invariant inter-
est point detectors,” International journal of computer vision,
vol. 60, no. 1, pp. 63–86, 2004.

[9] M. Karpushin, G. Valenzise, and F. Dufaux, “Local visual fea-
tures extraction from texture+depth content based on depth im-
age analysis,” in 2014 20th International Conference on Image
Processing (ICIP). IEEE, 2014.

[10] T.-W. R. Lo and J. P. Siebert, “Local feature extraction and
matching on range images: 2.5D SIFT,” Computer Vision and
Image Understanding, vol. 113, no. 12, pp. 1235–1250, 2009.

[11] B. Steder, R. B. Rusu, K. Konolige, and W. Burgard, “Point
feature extraction on 3d range scans taking into account ob-
ject boundaries,” in 2011 IEEE International Conference on
Robotics and automation (ICRA). IEEE, 2011, pp. 2601–2608.

[12] J.-M. Morel and G. Yu, “ASIFT: A new framework for fully
affine invariant image comparison,” SIAM Journal on Imaging
Sciences, vol. 2, no. 2, pp. 438–469, 2009.

[13] I. Mpiperis, S. Malassiotis, and M. G. Strintzis, “3-D face recog-
nition with the geodesic polar representation,” IEEE Transac-
tions on Information Forensics and Security, vol. 2, no. 3, pp.
537–547, 2007.

[14] E. Mair, G. D. Hager, D. Burschka, M. Suppa, and G. Hirzinger,
“Adaptive and generic corner detection based on the accelerated
segment test,” in Computer Vision–ECCV 2010. Springer,
2010, pp. 183–196.

[15] A. Spira and R. Kimmel, “An efficient solution to the eikonal
equation on parametric manifolds,” Interfaces and Free Bound-
aries, vol. 6, no. 3, pp. 315–328, 2004.

[16] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,
J. Matas, F. Schaffalitzky, T. Kadir, and L. Van Gool, “A com-
parison of affine region detectors,” International journal of
computer vision, vol. 65, no. 1-2, pp. 43–72, 2005.

[17] A. Vedaldi and B. Fulkerson, “Vlfeat: An open and portable
library of computer vision algorithms (2008),” 2012.


