
More Results on the Complexity

of Domination Problems in Graphs

Olivier Hudry

Institut Télécom - Télécom ParisTech & CNRS - LTCI UMR 5141

46, rue Barrault, 75634 Paris Cedex 13 - France

hudry@telecom-paristech.fr

Antoine Lobstein

CNRS - LTCI UMR 5141 & Institut Télécom - Télécom ParisTech

46, rue Barrault, 75634 Paris Cedex 13 - France

lobstein@telecom-paristech.fr

April 17, 2015

Abstract

We investigate, and locate in the complexity classes of the polynomial
hierarchy, several problems linked with domination in graphs, such as,
given an integer r ≥ 1 and a graph G = (V, E), the existence of, or
search for, optimal r-dominating codes in G, or optimal r-dominating
codes in G containing a subset of vertices X ⊂ V .

Key Words: Graph Theory, Complexity, Complexity Classes, Polynomial
Hierarchy, NP-Completeness, Hardness, Dominating Codes, Covering Ra-
dius.

1

1 Introduction and Preliminary Results

Following [8], which investigates the complexity of Slater’s problems in tour-
naments, our goal in this paper is to study the algorithmic complexity of
different variants of the domination problem in graphs.

In [9], we do the same work for identifying problems.

1.1 Outline of the Paper

In Subsection 1.2, we present the necessary notation and definitions about
dominating codes; Subsection 1.3 gives preliminary results on dominating
codes. In Section 2, we study the complexity of seven problems related to
domination. We shall provide the necessary notions of complexity as we go
along. The conclusion recapitulates our results.

1.2 Definitions and Notation

We first give the necessary definitions and notation for domination in graphs;
see also [4].

We shall denote by G = (V,E) a finite, simple, undirected graph with
vertex set V and edge set E, where an edge between x ∈ V and y ∈ V is
indifferently denoted by xy or yx. The order of the graph is its number of
vertices, |V |. A path Pk = x1x2 . . . xk is a sequence of k distinct vertices xi,
1 ≤ i ≤ k, such that xixi+1 is an edge for i ∈ {1, 2, . . . , k − 1}. The length
of Pk is its number of edges, k − 1.

A graph G is called connected if for any two vertices x and y, there is
a path between them; it is called disconnected otherwise. In a connected
graph G, we can define the distance between any two vertices x and y,
denoted by dG(x, y), as the length of any shortest path between x and y,
since such a path exists. This definition can be extended to disconnected
graphs, using the convention that dG(x, y) = +∞ if no path exists between
x and y. The subscript G can be dropped when there is no ambiguity.

For any subset of vertices X ⊆ V , the subgraph induced by X is the graph
with vertex set X, and edge set F = {uv ∈ E : u ∈ X, v ∈ X}.

A subset X ⊆ V is called an independent set if F = ∅; it is called a clique
if F contains all the possible edges.

For any vertex v ∈ V , the open neighbourhood N(v) of v consists of the
set of vertices adjacent to v, i.e., N(v) = {u ∈ V : uv ∈ E}; the closed
neighbourhood of v is B1(v) = N(v)∪{v}. This notation can be generalized
to any integer r ≥ 0 by setting Br(v) = {x ∈ V : d(x, v) ≤ r}.

Whenever two vertices x and y are such that x ∈ Br(y) (which is equiv-
alent to y ∈ Br(x)), we say that x and y r-cover or r-dominate each other;
note that every vertex r-dominates itself. A set W is said to r-dominate a
set Z if every vertex in Z is r-dominated by at least one vertex of W .

2

β
32

ββ
1

α

G

(b)(a) AG

AG

Figure 1: (a) Illustration for Lemma 1, with r = 3; (b) illustration for
Corollary 2, with r = 3, k = 3.

A code C is simply a subset of V , and its elements are called codewords.
We say that C is an r-dominating code in G if all the sets Br(v)∩C, v ∈ V ,
are nonempty; in other words, every vertex is r-dominated by C. We denote
by γr(G) the smallest cardinality of an r-dominating code in G, and any r-
dominating code C with |C| = γr(G) is said to be optimal. By convention,
γr(∅) = 0. The parameter γr(G) is called the r-domination number of G.

1.3 Some Useful Facts on Domination

In the sequel, we shall use the following results on domination.

Lemma 1 Let G = (V,E) be a graph, and let r ≥ 1 be an integer. Assume
that Z = {α, β1, . . . , βr} ⊆ V induces the path Pr+1 = αβ1 . . . βr in G, see
Figure 1(a). Then G admits at least one optimal r-dominating code which
contains α and does not contain any of the vertices βi, 1 ≤ i ≤ r.

Proof. Let C be an optimal r-dominating code in G. Then |C ∩ Z| ≤ 1,
because

Br(βr) ⊆ Br(βr−1) ⊆ . . . ⊆ Br(β2) ⊆ Br(β1) ⊆ Br(α),

and |C ∩ Z| ≥ 1, because βr must be r-dominated by some codeword. If
C∩Z = {α}, we are done. If C∩Z = {βi} for some i, then C∗ = (C \ {βi})∪
{α} is also an r-dominating code, and |C∗| = |C| = γr(G). 4

Corollary 2 Let G = (V,E) be a graph, and let r ≥ 1 be an integer. For a
given set of vertices A = {α1, . . . , αk} ⊆ V , we consider the following graph,
which depends on A (see Figure 1(b)): GA = (VA, EA), with

VA = V ∪ {βαj ,i : 1 ≤ j ≤ k, 1 ≤ i ≤ r},

EA = E ∪ {αjβαj ,1 : 1 ≤ j ≤ k} ∪ {βαj ,iβαj ,i+1 : 1 ≤ j ≤ k, 1 ≤ i ≤ r − 1},

where for i ∈ {1, . . . , r} and j ∈ {1, . . . , k}, βαj ,i /∈ V .
Then A ⊆ V is included in at least one optimal r-dominating code in G

if and only if γr(G) = γr(GA).

3

2
ββ

1

XG

2
ββ

1
α

Z

(b)(a)
α

X

Z
G

Figure 2: Illustration of Lemma 3, with r = 2: (a) the graph G; (b) the
graph GX .

Proof. (a) Let A = {α1, . . . , αk} be a set of vertices which is included in
at least one optimal r-dominating code C in G; then C is an r-dominating
code in GA as well, and γr(GA) ≤ |C| = γr(G).

On the other hand, let C∗ be an optimal r-dominating code in GA. By
the previous lemma, we can assume that A ⊆ C∗ and none of the βαj ,i’s
belongs to C∗. Then C∗ ⊆ V , C∗ is an r-dominating code in G, and γr(G) ≤
|C∗| = γr(GA).

Therefore, with this assumption on A, we have: γr(G) = γr(GA).
(b) Conversely, assume that γr(G) = γr(GA) for a set A = {α1, . . . , αk} ⊆

V . Let C∗ be an optimal r-dominating code in GA; again by the previous
lemma, we can assume that A ⊆ C∗, and none of the βαj ,i’s belongs to C∗.
Then C∗ is an r-dominating code in G, it has size γr(GA) = γr(G), and it
contains A. 4

Thus, the characterization of a set of vertices included in at least one op-
timal dominating code is obtained through the equality of two domination
numbers. Another characterization is available in the next lemma, which
will be useful in the proof of Proposition 17.

Lemma 3 Let G = (V,E) be a graph, and let r ≥ 1 be an integer. Assume
that Z = {α, β1, . . . , βr} ⊆ V induces the path Pr+1 = αβ1 . . . βr in G, see
Figure 2(a). For a set of vertices X ⊆ (V \ Z), let GX = (VX , EX) be the
following graph (see Figure 2(b)): VX = V \ X, and EX is constructed by
adding to E the edges αy whenever xy ∈ E, for x ∈ X and y ∈ (V \Z) \X;
note that some of these edges αy may already exist in G.

Then γr(G) = γr(GX) + |X| if and only if X is included in at least one
optimal r-dominating code in G.

Proof. (a) Assume that X is included in at least one optimal r-dominating
code C in G. By Lemma 1, we can assume that C∩Z = {α}. Then C \X is
still an r-dominating code in GX , because every path between two vertices
u and v that was going through a vertex in X in G now goes through α (in
particular, in GX , α r-dominates all the vertices r-dominated by X in G).
So γr(GX) ≤ |C| − |X| = γr(G) − |X|.

4

On the other hand, let C∗ be an optimal r-dominating code in GX .
By Lemma 1, we can assume that C∗ ∩ Z = {α}. Then C∗ ∪ X is an
r-dominating code in G, because the paths going through α in GX can
be replaced when necessary by paths going through a vertex in X, and
γr(G) ≤ |C∗| + |X| = γr(GX) + |X|.

Therefore, the assumption that X is included in at least one optimal
r-dominating code in G implies that γr(G) = γr(GX) + |X|.

(b) Conversely, assume that γr(G) = γr(GX) + |X| and consider an
optimal r-dominating code C∗ in GX . Again, by Lemma 1, we can assume
that α ∈ C∗, and so C∗∪X is an r-dominating code in G, with size γr(GX)+
|X| = γr(G), i.e., C∗ ∪ X is optimal (and contains X). 4

Lemma 4 Let r ≥ 1 be an integer and let G = (V,E) be the graph defined
as follows:

V = {u, v} ∪ {αi : 1 ≤ i ≤ r − 1} ∪ {βi,j : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ 2r},

E = {uα1, α1α2, . . . , αr−1v}∪{αiβi,1, βi,1βi,2, . . . , βi,2r−1βi,2r : 1 ≤ i ≤ r−1},

cf. Figure 3. Then γr(G) = r, and C1 = {u} ∪ {βi,r : 1 ≤ i ≤ r − 1} and
C2 = {v} ∪ {βi,r : 1 ≤ i ≤ r − 1} are optimal r-dominating codes in G.

As a consequence, if D is an r-dominating code in G, optimal or not,
we can replace it when convenient by an r-dominating code C such that
|C| ≤ |D| and {βi,r : 1 ≤ i ≤ r − 1} ⊂ C.

Proof. Because the r− 1 vertices βi,2r must be r-dominated by some code-
word, at least r − 1 codewords are necessary. But no vertex can simultane-
ously r-dominate βi,2r and u or v, so at least one more codeword is required.
On the other hand, it is quite straightforward to check that C1 and C2 are
r-dominating codes, of size r. In particular, the vertices βi,r, 1 ≤ i ≤ r − 1,
r-dominate exactly all the vertices αi and βi,j . 4

2 Complexity Results for Dominating Codes

We present seven problems on dominating codes. The question in the first
problem is justified by the fact that any r-dominating code is also (r + 1)-
dominating; covering radius has been extensively expounded in [1] in the
case of the hypercube; see also the references given in the last sentence of
this article.

1) Problem CR (Covering Radius):
Instance: A graph G = (V,E) and a code C ⊆ V .
Question: What is the smallest nonnegative integer r such that C is an
r-dominating code in G?

The following six problems are stated for a fixed integer r, r ≥ 1; their
names are indexed by r.

5

2) Problem DCr (r-Dominating Code with bounded size):
Instance: A graph G and an integer k.
Question: Does G admit an r-dominating code of size at most k?

3) Problem DNr (r-Domination Number):
Instance: A graph G.
Output: The r-domination number of G, γr(G).

4) Problem ODCSr (Search for an Optimal r-Dominating Code):
Instance: A graph G.
Search: Determine an optimal r-dominating code in G.

5) Problem Sub-ODCEr (Existence of an Optimal r-Dominating Code
containing a given Subset):
Instance: A graph G = (V,E) and a nonempty subset of vertices X ⊆ V .
Question: Does G admit an optimal r-dominating code containing X?

6) Problem Sub-ODCSr (Search for an Optimal r-Dominating Code con-
taining a given Subset):
Instance: A graph G = (V,E) and a nonempty subset of vertices X ⊆ V .
Search: Determine, when it exists, an optimal r-dominating code in G
containing X.

An algorithm solving Sub-ODCSr outputs a suitable code if there is one, or
states that no such code exists.

7) Problem Sub-SmDCSr (Search for a Smallest r-Dominating Code con-
taining a given Subset):
Instance: A graph G = (V,E) and a nonempty subset of vertices X ⊆ V .
Search: Determine an r-dominating code in G containing X, with the
smallest size.

We want to locate these problems inside the polynomial hierarchy of prob-
lems. For the general theory of completeness and hardness in the polynomial
hierarchy, we refer to [3]; see also [6] for a comprehensive survey of the main
complexity classes, [10] and [14]. From a practical viewpoint, we do not
know of polynomial algorithms solving exactly a NP-hard problem (and
such algorithms simply do not exist if P6=NP): the time required can grow
exponentially with the size of the instance (here, the size of the instance is
polynomially linked to n, the order of the graph).

Before we try to locate these problems inside the polynomial hierarchy, we
can already make a few easy remarks about their respective compared com-
plexities; here, the meaning of “at least as difficult as” is the following: a
problem π1 is at least as difficult as a problem π2 if an algorithm solving π1

provides an algorithm for solving π2 with the same qualitative complexity.

Lemma 5 Let r ≥ 1 be an integer.
(0) The problem DNr is at least as difficult as DCr.

6

(1) The problem DNr is at least as difficult as Sub-ODCEr.
(2) The problem ODCSr is at least as difficult as DNr.
(3) The problem Sub-ODCSr is at least as difficult as Sub-ODCEr.
(4) The problem Sub-SmDCSr is at least as difficult as DNr, even in the

case when X is a singleton.

Proof. (0) With only one call to any algorithm providing γr(G), the an-
swer to DNr, we can give the answer to DCr, by comparing γr(G) and the
integer k in the instance of DCr. So DNr is at least as difficult as DCr.

(1) Consider an instance (G,X ⊆ V) of Sub-ODCEr. If GX is defined as
in Corollary 2, then, by this same corollary, it is sufficient to compute and
compare γr(G) and γr(GX): the answer to Sub-ODCEr is “yes” if and only if
equality holds. Now this can be done by using twice an algorithm solving the
problem DNr, together with negligible operations such as constructing GX .

The statements (2) and (3) are obvious.
(4) Consider an algortithm solving Sub-SmDCSr and run it separately

n times, each time with a different singleton X = {x} ⊂ V . The smallest
code thus obtained gives the r-domination number of G.

Therefore, Sub-SmDCSr, with X = {x}, is at least as difficult as DNr.
4

We give the following lemma without proof.

Lemma 6 Given an integer r ≥ 1 and a graph G = (V,E), checking that a
given code C ⊆ V is r-dominating is polynomial in the order of the graph.

Proposition 7 The problem CR is polynomial.

Proof. Here, all we have to do in order to solve CR is to check whether C
is r-dominating, for r = 0, r = 1, . . ., and the number of these checkings
cannot exceed |V |. Even better, a standard dichotomous process on r is
possible. 4

The status of DC1 is already known.

Proposition 8 [3, p. 75 and p. 190] The decision problem DC1 is NP-
complete.

Proof. We give the proof here, because we shall use the polynomial re-
duction also in the proof of Proposition 12. The membership to NP is
straightforward (Lemma 6). We describe a polynomial reduction from the
NP-complete problem Vertex Cover [11], [3, p. 46 and p. 190].

Problem VC (Vertex Cover with bounded size):
Instance: A graph G = (V,E) and an integer k.
Question: Does G admit a vertex cover of size at most k?

A vertex cover is a subset V ∗ ⊆ V such that for each edge uv ∈ E, at
least one of u and v belongs to V ∗. The polynomial reduction from VC to

7

DC1 is the following: if (G = (V,E), k) is an instance of VC, we take as an
instance for DC1 the integer k+ = k and the graph G+ = (V +, E+) defined
by V + = V ∪{xe : e = uv ∈ E}, E+ = E∪{uxe, xev : e = uv ∈ E}. In other
words, for each edge e = uv in G, we create in G+ the triangle uv, uxe, xev.
We prove that an instance in VC is positive if and only if the corresponding
instance in DC1 is.

Assume that VC admits a vertex cover V ∗ of size at most k in G = (V,E):
for each edge e = uv ∈ E, u ∈ V ∗ or v ∈ V ∗. In G+, each of the three vertices
u, v, xe is 1-dominated by u and v, and therefore, V ∗ is a 1-dominating code
in G+, of size at most k = k+.

Conversely, if C is a 1-dominating code of size at most k+ in G+, then,
since xe must be 1-dominated by some codeword, at least one of the three
vertices u, v, xe is a codeword. If only xe is a codeword, then (C \{xe})∪{u}
or (C \ {xe}) ∪ {v} is also a 1-dominating code. This means that there is
a 1-dominating code C∗, of size |C|, which contains u or v for each triangle
uv, uxe, xev in G+, i.e., for each edge e = uv ∈ E. Therefore, C∗ is a vertex
cover in G, of size at most k. 4

Once the membership of DC1 to NP, the class of nondeterministic poly-
nomial problems, is established, the NP-completeness gives a sort of lower
bound on its complexity: the problem DC1 is at least as difficult as well-
known difficult problems, such as “3-Satisfiability”, “3-Dimensional Match-
ing”, “Hamiltonian Circuit” or “Partition”, and more generally, at least as
difficult as any problem in NP. Still, NP-completeness results are conditional
in some sense; if for example P=NP, they would lose their interest.

Next, we generalize Proposition 8 and show that for any integer r ≥ 2,
the problem DCr is NP-complete.

Proposition 9 Let r ≥ 1 be an integer. The decision problem DCr is NP-
complete.

Proof. The case r = 1 has already been studied, so we can assume that
r ≥ 2. Again, Lemma 6 gives the membership to NP. The polynomial
reduction from DC1 to DCr is the following (see Figure 3) : if (G = (V,E), k)
is an instance of DC1, we construct the instance (G∗ = (V ∗, E∗), k∗) of DCr

by setting, for each edge e = uv ∈ E,

V ∗
e = {αe,i : 1 ≤ i ≤ r − 1} ∪ {βe,i,j : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ 2r}, (1)

E∗
e = {uαe,1, αe,1αe,2, . . . , αe,r−2αe,r−1, αe,r−1v} ∪

{αe,iβe,i,1, βe,i,1βe,i,2, . . . , βe,i,2r−1βe,i,2r : 1 ≤ i ≤ r − 1}. (2)

Then we set

V ∗ = (∪e∈EV ∗
e) ∪ V, E∗ = ∪e∈EE∗

e , (3)

8

w

2r vertices

vertices
r − 1

u

v

Figure 3: Construction of V ∗ and E∗, starting from the edges uv ∈ E and
uw ∈ E.

and k∗ = k +(r− 1)|E|. We claim that an instance of DC1 is positive if and
only if the corresponding instance of DCr is.

Assume first that C is a 1-dominating code in G, of size at most k.
Then (cf. Lemma 4) it is straightforward to check that C ∪ {βe,i,r : e ∈
E, 1 ≤ i ≤ r − 1} is an r-dominating code in G∗, and its size is at most
k + |E|(r − 1) = k∗.

Conversely, assume that C∗ is an r-dominating code of size at most k∗

in G∗. Following the idea in Lemma 4, we can assume that, for e ∈ E
and 1 ≤ i ≤ r − 1, all the vertices βe,i,r belong to C∗. This subset of C∗

r-dominates exactly all the vertices of type α and β, i.e., all the vertices in
∪e∈EV ∗

e = V ∗ \ V . Therefore, the purpose of (some of —remember that C∗

is not necessarily optimal) the remaining codewords of C∗ is to r-dominate
all the vertices in V . If e = uv ∈ E, the vertices βe,i,j , r + 1 ≤ j ≤ 2r, do
not r-dominate any vertex in V , and a vertex αe,i or βe,i,j , 1 ≤ j ≤ r − 1,
r-dominates at most two vertices in V , namely u and v, and this task can
be performed by u or v. So if one (or more) αe,i or βe,i,j , j 6= r, belong(s)
to C∗, we can replace it (them) by one of the vertices u or v.

Therefore, we can construct a new r-dominating code, C×, in G∗, which
is included in V ∪ {βe,i,r : e ∈ E, 1 ≤ i ≤ r − 1} and has as many elements
as C∗, or fewer. Now in G∗, the vertices in V are r-dominated by codewords
belonging to C× ∩ V , which proves that in G, C× ∩ V is a 1-dominating
code, the size of which is at most k∗ − (r − 1)|E| = k. 4

To go further, we need the following notation and additional notions of
complexity (see, e.g., [10] or [14]).

The class PNP (also known as ∆2 in the polynomial hierarchy) contains
the decision problems which can be solved by applying, with a number of
calls which is polynomial with respect to the size of the instance, a subpro-
gram able to solve an appropriate problem in NP (usually, an NP-complete
problem). The class LNP (also known as Θ2 and PNP

||) contains the decision
problems which can be solved by applying, with a number of calls which

9

is logarithmic with respect to the size of the instance, a subprogram able
to solve an appropriate problem in NP. For problems which are not deci-
son problems, these classes are generalized, using a “F” (for “function”) in
front of their names; thus, the class FPNP (respectively, FLNP) contains
the optimization problems and the search problems which can be solved by
applying, with a number of calls which is polynomial (respectively, logarith-
mic) with respect to the size of the instance, a subprogram able to solve an
appropriate problem in NP. Membership to NP, LNP , PNP , FLNP or FPNP

gives an upper bound on the complexity of a problem (this problem is not
more difficult than . . .), whereas a hardness result gives a lower bound (this
problem is at least as difficult as . . .).

The next proposition is easy and uses a standard argument, see for in-
stance [8].

Proposition 10 For r ≥ 1, the problem DNr belongs to the class FLNP .

Proof. Let Ar be an algorithm which solves the problem DCr: for any
instance (G, k) of DCr, it says whether there is an r-dominating code of
size k or less in G. This algorithm can be used to solve DNr with a number
of calls bounded from above by a logarithm in the size of the instance. If n
is the order of G, for the instance (G, k = n) of DCr, the answer is “yes”.
Thanks to the standard dichotomous process starting from this initial value,
we may compute the size of an optimal r-dominating code in G with at
most dlog ne calls to Ar. Since DCr is in NP (it is actually NP-complete,
see Proposition 9), we can conclude that DNr ∈FLNP . 4

Proposition 11 For r ≥ 1, the problem Sub-ODCEr belongs to the class
LNP .

Proof. We have seen in the proof of Lemma 5(1) that an instance (G,X ⊆
V) of Sub-ODCEr can be solved by using twice an algorithm solving the
problem DNr, together with negligible operations. In turn, as we have just
seen, solving DNr can be done with a logarithmic number of calls to an
algorithm solving DCr, which is in NP (Proposition 9). 4

We can even show that Sub-ODCEr is among the most difficult problems
in its class LNP , thus establishing a lower bound on the complexity of this
problem, and locating it exactly in the hierarchy; consequently, we have also
a lower bound for the complexity of DNr (Corollary 15).

Proposition 12 For r ≥ 1, the decision problem Sub-ODCEr is LNP -
complete.

Proof. The membership to LNP having just been established, we describe
polynomial reductions from the LNP -complete problem Vertex Cover Mem-
ber [5, Cor. 4.13] to Vertex Cover Subset (see below), then from Vertex

10

Cover Subset to Sub-ODCE1, and finally from Sub-ODCE1 to Sub-ODCEr,
for r ≥ 2.

Problem VCM (Vertex Cover Member):
Instance: A graph G = (V,E) and a vertex x ∈ V .
Question: Does G admit an optimal vertex cover containing x?

Problem VCS (Vertex Cover Subset):
Instance: A graph G = (V,E) and a nonempty subset of vertices X ⊆ V .
Question: Does G admit an optimal vertex cover containing X?

To go from VCM to VCS, it is sufficient to note that VCM is a subproblem
of VCS, with X = {x}.

The polynomial reduction from VCS to Sub-ODCE1 is very similar to
the one in the proof of Proposition 8: if (G = (V,E),X) is an instance of
VCS, we take as an instance for Sub-ODCE1 the set of vertices X+ = X
and the graph G+ = (V +, E+) defined by V + = V ∪ {xe : e = uv ∈ E},
E+ = E ∪ {uxe, xev : e = uv ∈ E}. We prove that an instance in VCS is
positive if and only if the corresponding instance in Sub-ODCE1 is.

Let V ∗ be a (not necessarily optimal) vertex cover V ∗, containing X,
in G (such a set always exists): the argument in the proof of Proposition 8
shows that V ∗ is a 1-dominating code in G+, containing X.

Conversely, if C is a (not necessarily optimal) 1-dominating code in G+,
containing X+, the argument in the proof of Proposition 8 shows that, after
replacing if necessary some vertices of type xe, we can find a 1-dominating
code C∗ which contains u or v for each edge e = uv ∈ E. Since X+ = X
does not contain vertices of type xe, C∗ is a vertex cover in G which still
contains X+, and |C∗| = |C|.

Therefore, a vertex cover in G, containing X, leads to a 1-dominating
code in G+, containing X, and both sets have the same size; a 1-dominating
code in G+, containing X, leads to a vertex cover in G, containing X, and
both sets have the same size. The optimality for one implies the optimality
for the other.

Next, we polynomially reduce Sub-ODCE1 to Sub-ODCEr, for r ≥ 2.
If (G = (V,E),X) is an instance of Sub-ODCE1, we construct the instance
(G∗ = (V ∗, E∗),X∗) of Sub-ODCEr by constructing G∗ exactly as in the
proof of Proposition 9, see (1), (2), (3) and Figure 3, and setting X∗ = X.

We claim that an instance of Sub-ODCE1 is positive if and only if the
corresponding instance of Sub-ODCEr is. We have already seen that we can
choose to have, in an r-dominating code C∗ in G∗, all the vertices βe,i,r,
e ∈ E, 1 ≤ i ≤ r − 1.

First, let C be a 1-dominating code in G (not necessarily optimal), con-
taining X. Then it is straightforward to check that C ∪ {βe,i,r : e ∈ E, 1 ≤
i ≤ r − 1} is an r-dominating code in G∗, containing X∗ = X.

Conversely, let C∗ be a (not necessarily optimal) r-dominating code con-
taining X∗ in G∗. We have seen in the proof of Proposition 9 that we can

11

replace exclusively vertices of type α or β by vertices in V and construct
a code C× ⊆ V ∪ {βe,i,r : e ∈ E, 1 ≤ i ≤ r − 1} which is r-dominating
in G∗; this code still contains X∗. In G∗, the vertices in V are exclusively
r-dominated by codewords of C× belonging to V , which proves that in G,
C× ∩ V is a 1-dominating code.

Assume now that C is optimal in G. Then obviously, C ∪ {βe,i,r : e ∈
E, 1 ≤ i ≤ r − 1} is optimal in G∗. Conversely, if C∗ is optimal in G∗, then
|C×| = |C∗| and C× is also optimal, which implies that C×∩V is an optimal
1-dominating code in G. 4

Remark 13 Note that, using exactly the same ideas, we could have proved
Proposition 12 by going from VCM to Sub-ODCEr with the following chain
of polynomial reductions: from VCM to Sub-ODCE1 with X = {x}, from
Sub-ODCE1 with X = {x} to Sub-ODCEr with X = {x}, and from Sub-
ODCEr with X = {x} to Sub-ODCEr; in doing so, we would have proved
the following result, which strengthens Proposition 12.

Proposition 14 For r ≥ 1, the decision problem Sub-ODCEr remains
LNP -complete when X is a singleton.

Corollary 15 For r ≥ 1, the problem DNr is LNP -hard.

Proof. Use Lemma 5(1) and the fact that Sub-ODCEr is LNP -complete.
4

We now turn to the three search problems ODCSr (determine an optimal
r-dominating code), Sub-ODCSr (given a subset of vertices X, determine an
optimal r-dominating code containing X) and Sub-SmDCSr (given a subset
of vertices X, determine a smallest r-dominating code containing X). The
previous results, together with Lemma 5, immediately imply the following
corollary, which gives a lower bound on the complexity of these problems.

Corollary 16 (a) For r ≥ 1, the problem ODCSr is LNP -hard.
(b) For r ≥ 1, the problem Sub-ODCSr is LNP -hard, even in the case

when X is a singleton.
(c) For r ≥ 1, the problem Sub-SmDCSr is LNP -hard, even in the case

when X is a singleton.

Proof. (a) Use Lemma 5(2) and the fact that DNr is LNP -hard.
(b) Use Lemma 5(3) and the fact that Sub-ODCEr is LNP -complete,

even when X is a singleton.
(c) Use Lemma 5(4) and the fact that DNr is LNP -hard. 4

Then we show that the complexity of these three problems does not go
beyond FPNP .

12

Proposition 17 (i) For r ≥ 1, the problem ODCSr belongs to the class FPNP .
(ii) For r ≥ 1, the problem Sub-ODCSr belongs to the class FPNP .
(iii) For r ≥ 1, the problem Sub-SmDCSr belongs to the class FPNP .

Proof. (i) Let Ar be an algorithm solving Sub-ODCEr. In particular, Ar

can solve instances of Sub-ODCEr for which X is a singleton. In a first
stage, we show how to solve ODCSr by calling Ar a polynomial number of
times, which will prove that Sub-ODCEr is at least as difficult as ODCSr,
polynomials apart.

Let G0 = (V0, E0) be an instance of ODCSr, with n vertices.
In a first step, we run Ar with G0 and different vertices of V0 until we

get a positive answer, i.e., we find a vertex α belonging to at least one
(unknown) optimal r-dominating code in G0. We then construct the graph
G1 = (V1, E1) as follows: V1 = V0 ∪ {β1, . . . , βr}, where βk /∈ V0, and
E1 = E0 ∪ {αβ1, β1β2, . . . , βr−1βr}. Because α belongs to an optimal r-
dominating code in G0, we have, by Corollary 2, γr(G0) = γr(G1).

In a second step, we run Ar and look for a vertex, x1 (with x1 6= α, x1 6=
βk, 1 ≤ k ≤ r), belonging to at least one optimal r-dominating code in G1.
If there is none, we stop. Otherwise, once we have found x1, we construct
the graph G2 = (V2, E2) from G1 in the following way (cf. Figure 2): V2 =
V1 \ {x1} (so that G2 has one vertex less than G1) and to E1 we add the
edges αy whenever x1y ∈ E1, for y ∈ V1 \ {α, x1, βk : 1 ≤ k ≤ r}; note that
some of these edges αy may already exist in G1. By Lemma 3, we have:
γr(G2) = γr(G1) − 1.

At Step i (i ≥ 3), we have the graph Gi−1 = (Vi−1, Ei−1) and we look
for a vertex xi−1 (with xi−1 6= α, xi−1 6= βk), contained in at least one
optimal r-dominating code in Gi−1. If there is none, we stop; if there is
one, then we construct the graph Gi = (Vi, Ei) from Gi−1 as follows: Vi =
Vi−1\{xi−1} and to Ei−1 we add the edges αy whenever xi−1y ∈ Ei−1, for y ∈
Vi−1 \ {α, xi−1, βk}. Again, some of these edges may have been constructed
previously, and again, by Lemma 3, we have: γr(Gi) = γr(Gi−1) − 1 =
γr(G0) − i + 1.

Thus, step after step, we add the neighbours of x1, x2, . . . to N(α). After
at most n steps, we come to a stop, because the graphs thus constructed
have fewer and fewer vertices. If we stop at Step j, we claim that C =
{α, x1, x2, . . . , xj−2} is an optimal r-dominating code in G0.

Indeed, we stop at Step j because none of the vertices in Vj−1 \ {α, βk :
1 ≤ k ≤ r} belongs to any optimal r-dominating code in Gj−1; this shows
that {α} is such a code (cf. Lemma 1), and γr(Gj−1) = 1 = γr(G0)− j + 2,
i.e., γr(G0) = j − 1 = |C|, so that C has the right size.

Finally, assume that there is a vertex z in V0\C which is not r-dominated
by any of the codewords in C. This implies that dG0

(z, α) > r; the construc-
tion of G1 shows that also, dG1

(z, α) > r. Then dG0
(z, x1) > r implies that

dG1
(z, x1) > r, which in turn implies that dG2

(z, α) > r. We can similarly

13

show that dG`
(z, α) > r, 3 ≤ ` ≤ j − 1; in particular, dGj−1

(z, α) > r, which
contradicts the fact that we stopped at Step j.

How many times do we need to call Ar? If n is the order of the graph,
we have at most n steps, in which we call Ar a decreasing number of times,
starting with at most n calls in the first step, so that we have something like
at most n2/2 calls to Ar, plus operations such as the deletion of vertices and
edges. Note however that, since a vertex which has been tried and rejected
because it does not belong to any optimal r-dominating code in the current
graph needs not be tested again in the following steps, the number of calls
can be reduced to n, approximately.

This proves that, by calling the algorithm Ar a polynomial number of
times (polynomial with respect to n), we have designed an algorithm which
outputs an optimal r-dominating code in G0, i.e., solves ODCSr. This ends
our first stage.

In turn, Sub-ODCEr can be solved using a logarithmic number of calls
to an algorithm solving DCr (Proposition 11), which is in NP. So, all in all,
we can solve ODCSr by calling a polynomial number of times an algorithm
solving a problem in NP. This proves that ODCSr belongs to FPNP .

(ii) Now we want to call Ar in order to solve Sub-ODCSr. First, we run
Ar with X. If the answer is negative, we know that no optimal r-dominating
code contains X, and we stop. We assume now that the answer is positive.
Then we proceed as in (i): we choose a first vertex in X which will play
the part of α, we choose a second vertex in X for x1, and so on until we
have used all the vertices in X. Then we look for a vertex belonging to at
least one optimal r-dominating code in the current graph, and we can go on
running the algorithm and conclude exactly as previously.

The only difference with (i) is that the first vertices must belong to
a specific subset, provided that this subset is contained in an optimal r-
dominating code.

(iii) Finally, we want to call Ar in order to solve Sub-SmDCSr. We
proceed exactly as in (ii), except that we do not need to check whether X
is included in an optimal r-dominating code. 4

Remark 18 In the item (i) of the proof of Proposition 17, we prove that
(a) Sub-ODCEr is at least as difficult as ODCSr, polynomials apart.

Proposition 11 states that
(b) the problem Sub-ODCEr belongs to the class LNP .

These two facts, (a) and (b), do not imply however that ODCSr would belong
to LNP , because of the polynomial number of calls necessary to solve ODCSr

using an algorithm solving Sub-ODCEr.

14

P
N

P

LN
P

NP
−hardL

−hardNP

NP
−hardP

co−NP NP

co−NP−C

P

NP−C

DNr

ODCSr

rSub

?

DC

CR

r

Sub−ODCE

−SmDCSrSub

r

−ODCS

Figure 4: The locations of our problems in the classes of complexity.

3 Conclusion

We recapitulate our results, and present one conjecture. For any fixed inte-
ger r, r ≥ 1,

• CR is polynomial (Proposition 7).
• DCr is NP-complete (Propositions 8 [3] and 9).
• DNr belongs to FLNP (Proposition 10) and is LNP -hard (Corollary 15).
• Sub-ODCEr is LNP -complete (Proposition 12), even if |X| = 1 (Propo-

sition 14).
• ODCSr is LNP -hard (Corollary 16(a)) and belongs to the class FPNP

(Proposition 17(i)).
• Sub-ODCSr is LNP -hard, even if |X| = 1 (Corollary 16(b)), and be-

longs to the class FPNP (Proposition 17(ii)).
• Sub-SmDCSr is LNP -hard, even if |X| = 1 (Corollary 16(c)), and

belongs to the class FPNP (Proposition 17(iii)).

These results are represented in Figure 4, though in a simplified and thus
improper way: we make no difference between decision problems and non-
decision problems, between PNP and FPNP , . . . The four problems CR,
DCr, DNr, and Sub-ODCEr are located exactly. About the three search
problems ODCSr, Sub-ODCSr, and Sub-SmDCSr, we only know that all
are “between” LNP -hard and FPNP ; so each may be in one of three areas:
(a) inside FLNP and above the line LNP -hard, or (b) outside FLNP and
below the line PNP -hard, as is the case in Figure 4 for lack of a better
knowledge, or (c) inside FPNP and above the line PNP -hard, which is our
conjecture, represented by an arrow and a question mark in the Figure:

Conjecture 19 For r ≥ 1, the problems ODCSr, Sub-ODCSr and Sub-
SmDCSr are PNP -hard, even when X is a singleton.

Having seen in the proofs of Propositions 8 and 12 how close the domination
and vertex cover problems are, it would be easy to extend our results to the
corresponding vertex cover problems, when these results were not previously

15

established —we have seen that VCM, the equivalent of Sub-ODCEr (with
X = {x}) for vertex covers, was LNP -complete [5] and we have proved in
passing, in the proof of Proposition 12, that VCS is also LNP -complete. The
same is true for two problems closely related to Vertex Cover, namely Clique
(about the size of the largest clique in a graph, see [3, p. 47 and p. 194]) and
Independent Set (about the size of the largest independent set in a graph,
see [3, p. 53–54 and p. 194–195]).

See also [2], [7], [12] and [13] for a study of the complexity of some problems
related to domination in the binary hypercube.

16

References

[1] G. D. COHEN, I. S. HONKALA, S. LITSYN and A. C. LOBSTEIN:
Covering Codes, Amsterdam: Elsevier, 1997.

[2] M. FRANCES and A. LITMAN: On covering problems of codes, Theory
of Computing Systems, vol. 30, No. 2, pp. 113–119, 1997.

[3] M. R. GAREY and D. S. JOHNSON: Computers and Intractability, a
Guide to the Theory of NP-Completeness, New York: Freeman, 1979.

[4] T. W. HAYNES, S. T. HEDETNIEMI and P. J. SLATER: Fundamen-
tals of Domination in Graphs, New York: Marcel Dekker, 1998.

[5] E. HEMASPAANDRA, H. SPAKOWSKI and J. VOGEL: The com-
plexity of Kemeny elections, Theoretical Computer Science, Vol. 349,
pp. 382–391, 2005.

[6] L. HEMASPAANDRA: Complexity classes, in: K. H. Rosen (ed.)
Handbook of Discrete and Combinatorial Mathematics, pp. 1085–1090,
Boca Raton: CRC Press, 2000.

[7] I. S. HONKALA and A. C. LOBSTEIN: On the complexity of calcu-
lating the minimum norm of a binary code, Proc. Workshop on Coding
and Cryptography ’99, pp. 21–27, Paris, 1999.

[8] O. HUDRY: On the complexity of Slater’s problems, European Journal
of Operational Research, Vol. 203, pp. 216–221, 2010.

[9] O. HUDRY and A. LOBSTEIN: More results on the complexity of
identifying problems in graphs, submitted.

[10] D. S. JOHNSON: A catalog of complexity classes, in: J. van Leeuwen
(ed.) Handbook of Theoretical Computer Science, Vol. A: Algorithms
and Complexity, pp. 67–161, Amsterdam: Elsevier, 1990.

[11] R. M. KARP: Reducibility among combinatorial problems, in: R. E.
Miller and J. W. Thatcher (eds.) Complexity of Computer Computa-
tions, pp. 85–103, New York: Plenum Press, 1972.

[12] A. MCLOUGHLIN: The complexity of computing the covering radius
of a code, IEEE Trans. Inform. Th., vol. 30, pp. 800–804, 1984.

[13] A. MERTZ: On the complexity of multicovering radii, IEEE Trans.
Inform. Th., vol. 50, pp. 1804–1808, 2004.

[14] C. H. PAPADIMITRIOU: Computational Complexity, Reading:
Addison-Wesley, 1994.

17

