
Theoretical Computer Science 626 (2016) 1–12
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

More results on the complexity of identifying problems in 

graphs

Olivier Hudry a,∗, Antoine Lobstein b

a Institut Télécom, Télécom ParisTech & CNRS, LTCI UMR 5141, 46, rue Barrault, 75634 Paris Cedex 13, France
b CNRS, LTCI UMR 5141 & Institut Télécom, Télécom ParisTech, 46, rue Barrault, 75634 Paris Cedex 13, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 June 2015
Received in revised form 16 November 2015
Accepted 16 January 2016
Available online 27 January 2016
Communicated by C. Kaklamanis

Keywords:
Graph theory
Complexity
Complexity classes
Polynomial hierarchy
NP-completeness
Hardness
Identifying codes
Twin-free graphs

We investigate the complexity of several problems linked with identification in graphs; for 
instance, given an integer r ≥ 1 and a graph G = (V , E), the existence of, or search for, 
optimal r-identifying codes in G , or optimal r-identifying codes in G containing a subset 
of vertices X ⊂ V . We locate these problems in the complexity classes of the polynomial 
hierarchy.

© 2016 Published by Elsevier B.V.

1. Introduction and preliminary results

Following [17], which investigates the complexity of Slater’s problems in tournaments, our goal in this paper is to study 
the algorithmic complexity of different variants of the identifying problem in graphs.

In [18], we do the same work for domination problems.

1.1. Outline of the paper

In Subsection 1.2, we present the necessary notation and definitions about identifying codes; Subsection 1.3 gives pre-
liminary results on identifying codes. In Section 2, we present seven problems, decision, optimization or search problems, 
related to identification, we give some known results, before we motivate our research and give our own development. We 
shall provide the necessary notions of complexity as we go along. The conclusion recapitulates our results.

1.2. Definitions and notation

We first give the necessary definitions and notation for identification in graphs; see the seminal paper [20], and also [21]
for a large bibliography.

* Corresponding author.
E-mail addresses: hudry@telecom-paristech.fr (O. Hudry), lobstein@telecom-paristech.fr (A. Lobstein).
http://dx.doi.org/10.1016/j.tcs.2016.01.021
0304-3975/© 2016 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.tcs.2016.01.021
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:hudry@telecom-paristech.fr
mailto:lobstein@telecom-paristech.fr
http://dx.doi.org/10.1016/j.tcs.2016.01.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2016.01.021&domain=pdf


2 O. Hudry, A. Lobstein / Theoretical Computer Science 626 (2016) 1–12
We shall denote by G = (V , E) a finite, simple, undirected graph with vertex set V and edge set E , where an edge
between x ∈ V and y ∈ V is indifferently denoted by xy or yx. The order of the graph is its number of vertices, |V |. A path
Pk = x1x2 . . . xk is a sequence of k distinct vertices xi , 1 ≤ i ≤ k, such that xi xi+1 is an edge for i ∈ {1, 2, . . . , k −1}. The length
of Pk is its number of edges, k − 1.

A graph G is called connected if for any two vertices x and y, there is a path between them; it is called disconnected
otherwise. In a connected graph G , we can define the distance between any two vertices x and y, denoted by dG (x, y), as 
the length of any shortest path between x and y, since at least one such path exists. This definition can be extended to 
disconnected graphs, using the convention that dG (x, y) = +∞ if no path exists between x and y. The subscript G can be 
dropped when there is no ambiguity.

For an integer k ≥ 2, the k-th transitive closure, or k-th power of G = (V , E) is the graph Gk = (V , Ek) defined by Ek =
{uv : u ∈ V , v ∈ V , dG(u, v) ≤ k}.

For any vertex v ∈ V , the open neighbourhood N(v) of v consists of the set of vertices adjacent to v , i.e., N(v) = {u ∈
V : uv ∈ E}; the closed neighbourhood of v is B1(v) = N(v) ∪ {v}. This notation can be generalized to any integer r ≥ 0 by 
setting

Br(v) = {x ∈ V : d(x, v) ≤ r}.
For X ⊆ V , we denote by Br(X) the set of vertices within distance r from X :

Br(X) = ∪x∈X Br(x).

Two vertices x and y such that Br(x) = Br(y), x 
= y, are called r-twins. If G has no r-twins, we say that G is r-twin-free. 
Whenever two vertices x and y are such that x ∈ Br(y) (which is equivalent to y ∈ Br(x)), we say that x and y r-cover
or r-dominate each other; note that every vertex r-covers itself. A set W is said to r-cover a set Z if every vertex in Z
is r-covered by at least one vertex of W . When three vertices x, y, z are such that z ∈ Br(x) and z /∈ Br(y), we say that z
r-separates x and y in G (note that z = x is possible). A set of vertices is said to r-separate x and y if it contains at least 
one vertex which does.

A code C is simply a subset of V , and its elements are called codewords. For each vertex v ∈ V , we denote the set of 
codewords r-covering v by IG,C,r(v), or, when there is no ambiguity on G , by IC,r(v):

IG,C,r(v) = IC,r(v) = Br(v) ∩ C .

We say that C is an r-dominating code in G if all the sets IC,r(v), v ∈ V , are nonempty; in other words, every vertex 
is r-dominated by C . We say that C is an r-identifying code if all the sets IC,r(v), v ∈ V , are nonempty and distinct: in 
other words, every vertex is r-covered by C , and every pair of vertices is r-separated by C . It is quite easy to observe 
that a graph G admits an r-identifying code if and only if G is r-twin-free; this is why r-twin-free graphs are also called 
r-identifiable. When G is r-twin-free, we denote by ir(G) the smallest cardinality of an r-identifying code in G , and call it 
the r-identification number of G . Any r-identifying code C such that |C | = ir(G) is said to be optimal.

1.3. Some useful facts on identification

In the sequel, we shall need the following results on identification.

Lemma 1. Let r ≥ 1 be an integer and G be a graph. If C is an r-identifying code in G, then any code S ⊇ C also is.

Proof. When we add the elements of S \ C to the adequate sets IC,r(v), these new sets I S,r(v) are still nonempty and 
distinct, and distinct from the sets with no addition (those such that I S,r (v) = IC,r(v)). �
Lemma 2. Let r ≥ 2 be an integer and G = (V , E) be a graph. A code C is 1-identifying in Gr , the r-th power of G, if and only if it is 
r-identifying in G.

Proof. For every vertex v ∈ V , we have:

IG,C,r(v) = {c ∈ C : dG(v, c) ≤ r} = {c ∈ C : dGr (v, c) ≤ 1} = IGr ,C,1(v). �
Lemma 3. Let G = (V , E) be a 1-twin-free graph. For a given set of vertices A = {α1, . . . , αk} ⊆ V , we construct the following graph 
G A = (V A, E A), which depends on A (see Fig. 1):

V A = V ∪ V ∗
A, with V ∗

A = ∪1≤ j≤k V ∗
j and V ∗

j = {β j,1, β j,2, δ j, λ j},
E A = E ∪ {α jβ j,1, β j,1β j,2, β j,1δ j, β j,1λ j, β j,2δ j, β j,2λ j : 1 ≤ j ≤ k},

where for j ∈ {1, . . . , k}, none of the vertices β j,1, β j,2, δ j, λ j belongs to V .
Then A ⊆ V is included in at least one optimal 1-identifying code in G if and only if i1(G) = i1(G A) − 2|A|.



O. Hudry, A. Lobstein / Theoretical Computer Science 626 (2016) 1–12 3
Fig. 1. The graph G A ; black vertices must belong to any 1-identifying code in G A .

Proof. In the sequel, we denote the set {1, . . . , k} by Jk .
The graph G A , which is represented in Fig. 1, is constructed in such a way that if C A is a 1-identifying code in G A , then, 

for j ∈ Jk , {α j, δ j, λ j} ⊆ C A , because α j (respectively, δ j, λ j) is the only vertex 1-separating β j,1 and β j,2 (respectively, β j,2
and λ j , β j,2 and δ j ).

In particular, A ⊂ (C A ∩ V ), and |C A ∩ V ∗
A | ≥ 2k, which implies that |C A ∩ V | ≤ |C A | − 2k.

(a) Assume that A is included in at least one optimal 1-identifying code C in G . Then C A = C ∪ {δ j, λ j : j ∈ Jk} is a 
1-identifying code in G A , and

i1(G A) ≤ |C A | = |C | + 2k = i1(G) + 2k. (1)

On the other hand, among all the optimal 1-identifying codes in G A , consider one, say C A , which minimizes |C A ∩ V ∗|. We 
have already observed that A ⊂ (C A ∩ V ) and |C A ∩ V | ≤ |C A | − 2k = i1(G A) − 2k. We are going to prove that C A ∩ V is a 
1-identifying code in G , which will imply that

i1(G) ≤ |C A ∩ V | ≤ i1(G A) − 2k,

and will give, together with (1), the desired equality i1(G A) = i1(G) + 2k.
Assume first that β j,1 ∈ C A for some j ∈ Jk .
This vertex is useless as far as covering is concerned, since we know that necessarily α j , δ j and λ j are codewords, and 

these three vertices 1-cover all the vertices 1-covered by β j,1.
Next, what is the separating effect of β j,1 in G A ? It can only 1-separate α j from some vertices in V \{α j}, say y1, . . . , ym . 

If α j is 1-separated from all the yi ’s by C A \ {β j,1}, then β j,1 is useless, and C A is not optimal. So we assume that there are 
� vertices, say y1, . . . , y� , in V \ {α j}, m ≥ � > 0, which are 1-separated from α j only by β j,1:

IG A ,C A ,1(y1) = IG A ,C A ,1(y2) = . . . = IG A ,C A ,1(y�) = IG A ,C A ,1(α j) \ {β j,1}.
The first equalities immediately show that there can be at most one such vertex, say y1 = y (i.e., � = 1), and so we have a 
vertex set S such that:

∅ 
= S ⊂ (C A \ {β j,1}), IG A ,C A ,1(α j) = S ∪ {β j,1} and IG A ,C A ,1(y) = S

(actually, S ⊂ (C A ∩ V )). Then, since G is 1-twin-free, there is a vertex z ∈ V which 1-separates α j and y. If in C A we 
replace β j,1 by z, and with C A ∩ V ∗

j = {δ j, λ j}, we obtain a code which is still 1-identifying and optimal in G A , and does 
not contain β j,1. This however contradicts the fact that C A minimizes |C A ∩ V ∗|.

So we have proved that β j,1 /∈ C A , for all j ∈ Jk . Then no codeword in V ∗
A interferes with G , and C A ∩ V is a 1-identifying 

code in G .
(b) Conversely, assume that i1(G) = i1(G A) −2k. Let C A be an optimal 1-identifying code in G A ; then again, A ⊂ (C A ∩ V ), 

|C A ∩ V | ≤ |C A | − 2k = i1(G A) − 2k = i1(G), and we can assume that β j,1 /∈ C A for j ∈ Jk . All this implies that

– C A ∩ V is a 1-identifying code in G ,
– C A ∩ V has size at most i1(G), i.e., C A ∩ V is optimal in G ,
– C A ∩ V contains A. �

Corollary 4. Let r ≥ 1 be an integer, G be an r-twin-free graph containing a subset of vertices A of size k, and Gr be the r-th power 
of G. We construct the graph (Gr)A in the same way as in the previous lemma for G.

Then A is included in at least one optimal r-identifying code in G if and only if i1(Gr) = i1((Gr)A) − 2k.

Proof. Follows immediately from Lemmas 2 and 3. �
Thus, the characterization of a subset of vertices included in at least one optimal r-identifying code is obtained through 

the comparison of two 1-identification numbers. This will be used in the proof of Lemma 8(2), which in turn will help 
to prove Corollary 21(c). Still, this result is insufficient for our purpose. Unfortunately, it seems difficult to improve it and 



4 O. Hudry, A. Lobstein / Theoretical Computer Science 626 (2016) 1–12
obtain a similar characterization implicating ir(G), for r ≥ 2, because in a construction of the type used for Lemma 3, there 
are, for r ≥ 2, greater interferences between the vertices of the graph G we start from, and the vertices we add to get the 
new graph G A . See Corollary 21 and the paragraph preceding it.

This is why we are going to give now some more notation and results about identifying codes, which will partially help 
us to overcome this difficulty in Section 2; the most important tool will be Lemma 6, used for Propositions 16, 17 and 23.

Let G = (V , E) be an r-twin-free graph with n vertices, let W = {{u, v} : u ∈ V , v ∈ V , u 
= v}, let L ⊆ W be a list of pairs
and M ⊆ V be a list of vertices. For any code C ⊆ V , we denote by �r(C, L) the number of pairs in L which are not r-separated 
by C , and by mr(C, M) the number of vertices in M which are not r-covered by C . We say that C is (r, L, M)-identifying
in G if �r(C, L) = mr(C, M) = 0, and we define the function ωr(L, M) as follows:

ωr(L, M) = min{|C | : C ⊆ V , C is an (r, L, M)-identifying code in G}.
Note that, because G is r-twin-free, whatever the sets L ⊆ W and M ⊆ V are, an (r, L, M)-identifying code exists in G
(C = V will always do). A code C which is (r, L, M)-identifying in G is said to be optimal if ωr(L, M) = |C |. Of course, if 
L = W and M = V , we have the usual definition of an (optimal) r-identifying code, and ωr (W , V ) = ir(G). If L = M = ∅, 
then ωr(L, M) = 0, and conversely.

Let X ⊆ V . For any set of pairs L ⊆ W and any set of vertices M ⊆ V , we let L(X) be the set of pairs in L which are 
not r-separated by X , and M(X) be the set of vertices in M not r-covered by X ; note that M(X) = M \ (Br(X) ∩ M). The 
important particular case when L = W and M = V yields the notation W (X) and V (X).

Lemma 5. With the above notation,
(a) if C is an (r, L, M)-identifying code in G containing X, then C \ X is (r, L(X), M(X))-identifying in G;
(b) if C∗ is an (r, L(X), M(X))-identifying code containing X, then C∗ is also (r, L, M)-identifying; if C∗ is an (r, L(X), M(X))-iden-

tifying code not containing X, then C∗ ∪ X is (r, L, M)-identifying.

Proof. (a) All the pairs in L are r-separated by C , and all the vertices in M are r-covered by C . In particular, all the pairs in 
L(X) are r-separated by C , all the vertices in M(X) are r-covered by C , but these tasks are not performed by X , so C \ X
must do it.

(b) The code C∗ r-separates all the pairs in L(X) and r-covers all the vertices in M(X). The set X r-separates all the pairs 
in L \ L(X) and r-covers all the vertices in M \ M(X). This is sufficient to prove the last two assertions of the lemma. �
Lemma 6. With the above notation, a set X is included in at least one optimal (r, L, M)-identifying code in G if and only if

ωr(L, M) = ωr(L(X), M(X)) + |X |.
In particular, X is included in at least one optimal r-identifying code in G if and only if ir(G) = ωr(W (X), V (X)) + |X |.

Proof. (a) Assume that X is included in an optimal (r, L, M)-identifying code C in G: we have |C | = ωr(L, M). By the 
previous lemma, C X = C \ X is (r, L(X), M(X))-identifying, and so ωr(L(X), M(X)) ≤ |C X | = ωr(L, M) − |X |.

On the other hand, let C∗ be an optimal (r, L(X), M(X))-identifying code, and assume that |C∗| ≤ ωr(L, M) − |X | − 1. By 
the previous lemma, if X ⊆ C∗ , then C∗ is also (r, L, M)-identifying, and if X is not a subset of C∗ , then it is C∗ ∪ X which 
is (r, L, M)-identifying. In both cases, we obtain an (r, L, M)-identifying code with cardinality less than ωr(L, M), which is 
impossible. So ωr(L(X), M(X)) > ωr(L, M) − |X | − 1, and finally ωr(L(X), M(X)) = ωr(L, M) − |X |.

(b) Assume that X is a set of vertices such that ωr(L(X), M(X)) = ωr(L, M) − |X |, and consider an optimal 
(r, L(X), M(X))-identifying code, C∗ . If X ⊆ C∗ , then C∗ is also (r, L, M)-identifying by Lemma 5, which contradicts the 
previous equality. So X is not included in C∗ , and C = C∗ ∪ X is (r, L, M)-identifying, contains X and its size is at most 
(actually, is equal to)

ωr(L(X), M(X)) + |X | = ωr(L, M),

i.e., C is optimal. �
So we are now able to characterize the inclusion of a set of vertices in an optimal (r, L, M)-identifying code, by handling 

lists of pairs and of vertices, and by comparing two values of a function which is very similar to the identification number 
of the graph (see Proposition 12 and its Corollary 13, Propositions 14 and 15, Propositions 18, 19 and their Corollary 20).

2. Complexity results for identifying codes

2.1. Presentation of the problems

We present seven problems dealing with identifying codes.



O. Hudry, A. Lobstein / Theoretical Computer Science 626 (2016) 1–12 5
1) Problem IdR (Identifying Radius):
Instance: A graph G = (V , E) and a code C ⊆ V .
Question: What are the nonnegative integers r, if any, such that C is an r-identifying code in G?

Note that, unlike for dominating codes, an r-identifying code is not necessarily (r + 1)-identifying. An immediate example is 
P3 = x1x2x3, for which {x1, x3} is 1-identifying and not 2-identifying (and P3 is not even 2-identifiable). See also, e.g., [14]
for a code which is 1-identifying and not 2-identifying in F 5

2 , the binary vector space of dimension five, and [4] for more 
examples in F n

2 . This is why it would be less interesting to state the previous problem with the question: “What is the 
smallest nonnegative integer r, if any, such that . . .” The following six problems are stated for a fixed integer r, r ≥ 1; their 
names are indexed by r.

2) Problem IdCr (r-Identifying Code with bounded size):
Instance: An r-twin-free graph G and an integer k.
Question: Does G admit an r-identifying code of size at most k?

3) Problem IdNr (r-Identification Number):
Instance: An r-twin-free graph G .
Output: The r-identification number of G , ir(G).

4) Problem OIdCSr (Search for an Optimal r-Identifying Code):
Instance: An r-twin-free graph G .
Search: Determine an optimal r-identifying code in G .

5) Problem Sub-OIdCEr (Existence of an Optimal r-Identifying Code containing a given Subset):
Instance: An r-twin-free graph G = (V , E) and a nonempty subset of vertices X ⊆ V .
Question: Does G admit an optimal r-identifying code containing X?

6) Problem Sub-OIdCSr (Search for an Optimal r-Identifying Code containing a given Subset):
Instance: An r-twin-free graph G = (V , E) and a nonempty subset of vertices X ⊆ V .
Search: Determine, when it exists, an optimal r-identifying code in G containing X .

An algorithm solving Sub-OIdCSr outputs a suitable code if there is one, or states that no such code exists.

7) Problem Sub-SmIdCSr (Search for a Smallest r-Identifying Code containing a given Subset):
Instance: An r-twin-free graph G = (V , E) and a nonempty subset of vertices X ⊆ V .
Search: Determine an r-identifying code in G containing X , with the smallest size.

Note that, since G is r-twin-free, such codes do exist.

To these problems, we add three subsidiary problems, originating from Subsection 1.3. We recall that, for a graph G = (V , E), 
we have set W = {{u, v} : u ∈ V , v ∈ V , u 
= v}.

A) Problem List-IdCr ((r, L, M)-Identifying Code with bounded size):
Instance: An r-twin-free graph G = (V , E), a list L ⊆ W of pairs of vertices, a list M ⊆ V of vertices, and an integer k.
Question: Does G admit an (r, L, M)-identifying code of size at most k?

B) Problem List-IdNr ((r, L, M)-Identification Number):
Instance: An r-twin-free graph G = (V , E), a list L ⊆ W of pairs of vertices, and a list M ⊆ V of vertices.
Output: The minimum size of an (r, L, M)-identifying code in G .

C) Problem List-Sub-OIdCEr (Existence of an Optimal (r, L, M)-Identifying Code containing a given Subset):
Instance: An r-twin-free graph G = (V , E), a list L ⊆ W of pairs of vertices, a list M ⊆ V of vertices, and a nonempty subset 
of vertices X ⊆ V .
Question: Does G admit an optimal (r, L, M)-identifying code containing X?

We shall give complexity results on these problems mostly insofar as they are useful for the first seven problems.

Remark 7. We can see immediately that List-IdCr , List-IdNr and List-Sub-OIdCEr are at least as difficult as IdCr , IdNr and 
Sub-OIdCEr , respectively, as the latter problems are subproblems of the former ones, with L = W and M = V .

2.2. Known results and motivations

So far, most papers devoted to complexity issues for identifying codes have considered the decision problem IdCr .
It is easy to see that the problem IdR is polynomial, cf. Corollary 10 below.
The problem IdCr , as for it, is NP-complete for all r ≥ 1: the case r = 1 comes from [6] (see also [8] for a simpler proof) 

and is stated in Proposition 11, and the case r > 1 is from [5], see Proposition 12. In, e.g., [1–3,7–10,23], one can find, in 



6 O. Hudry, A. Lobstein / Theoretical Computer Science 626 (2016) 1–12
particular, polynomiality or NP-completeness results for this problem when restricted to some subclasses of graphs, such as 
trees, planar graphs, bipartite graphs, interval graphs, permutation graphs or line graphs.

See also [15,16] for the complexity of identification in the binary hypercube.
When dealing with complexity issues, one quite naturally considers the optimization problem, which is here: how to 

find an optimal r-identifying code? (OIdCSr ). Then one goes to the associated decision problem, IdCr ; once it is proved to 
be NP-complete, we can deduce that OIdCSr is NP-hard. This however does not give an upper bound on the complexity 
of OIdCSr , but merely a lower bound. We try to get a better location of OIdCSr : see Proposition 23(i) which states that 
OIdCSr belongs to FPNP . We also feel that results about the respective difficulties of related problems, such as determining 
the identification number of a graph or finding an optimal identifying code containing a given subset, can be of interest and 
help to gain a better insight into these issues. Moreover, most of the works cited above deal with the case r = 1, whereas 
we try here, as much as possible, to obtain results that are valid for all r ≥ 1.

2.3. The results

We want to locate the problems stated in Subsection 2.1 inside the polynomial hierarchy of problems. For the general 
theory of completeness and hardness in the polynomial hierarchy, we refer to [11]; see also [13] for a comprehensive 
survey of the main complexity classes, as well as [19] and [22]. From a practical viewpoint, we do not know of polynomial 
algorithms solving exactly a problem known to be NP-hard (and such algorithms simply do not exist if P 
= NP): the time 
required can grow exponentially with the size of the instance (here, the size of the instance is polynomially linked to n, the 
order of the graph).

Before we try to locate these problems inside the polynomial hierarchy, we can already state a few more results about 
their respective compared complexities; here, the meaning of “at least as difficult as” is the following: a problem π1 is at 
least as difficult as a problem π2 if an algorithm solving π1 provides an algorithm for solving π2 with the same qualitative 
complexity.

Lemma 8. Let r ≥ 1 be an integer.
(1) The problem IdNr is at least as difficult as IdCr .
(2) The problem IdN1 is at least as difficult as Sub-OIdCEr .
(3) The problem OIdCSr is at least as difficult as IdNr .
(4) The problem Sub-OIdCSr is at least as difficult as Sub-OIdCEr .
(5) The problem Sub-SmIdCSr is at least as difficult as IdNr , even in the case when X is a singleton.

Proof. (1) With only one call to any algorithm providing ir(G), the answer to IdNr , we can give the answer to IdCr , by 
comparing ir(G) and the integer k in the instance of IdCr . So IdNr is at least as difficult as IdCr .

(2) Consider an instance (G, X ⊆ V ) of Sub-OIdCEr . By Corollary 4, and using the notation of Lemma 3, it is sufficient to 
compute and compare i1(Gr) and i1((Gr)X ) − 2|X |: the answer to Sub-OIdCEr is “yes” if and only if equality holds. Now this 
can be done by using twice an algorithm solving the problem IdN1, together with negligible operations such as constructing 
the auxiliary graphs.

The statements (3) and (4) are obvious.
(5) Consider an algorithm solving Sub-SmIdCSr and run it separately n times, each time with a different singleton X =

{x} ⊂ V . The smallest code thus obtained gives the r-identification number of G .
Therefore, Sub-SmIdCSr , with X = {x}, is at least as difficult as IdNr . �
We start with easy or already known results. In particular, we give the following lemma without proof.

Lemma 9. Given an integer r ≥ 1 and a graph G = (V , E), checking that a given code C ⊆ V is r-identifying is polynomial in the order 
of the graph.

Corollary 10. The problem IdR is polynomial.

Proof. Here, all we have to do in order to solve IdR is to check whether C is r-identifying, for r = 0, r = 1, . . . , and the 
number of these checkings is equal to |V |. �
Proposition 11. (See [6,8].) The decision problem IdC1 is NP-complete.

The earliest proof is in [6], but the simplest is in [8]. Once the membership of IdC1 to NP, the class of nondeterministic 
polynomial problems, is established, the NP-completeness gives a sort of lower bound on its complexity: the problem IdC1
is at least as difficult as well-known difficult problems, such as “3-Satisfiability”, “3-Dimensional Matching”, “Hamiltonian 
Circuit” or “Partition”, and more generally, at least as difficult as any problem in NP. Still, NP-completeness results are 
conditional in some sense; if for example P = NP, they would lose their interest.



O. Hudry, A. Lobstein / Theoretical Computer Science 626 (2016) 1–12 7
Proposition 12. (See [5].) Let r ≥ 2 be an integer. The decision problem IdCr is NP-complete.

Corollary 13. Let r ≥ 1 be an integer. The decision problem List-IdCr is NP-complete.

Proof. First, this problem is in NP, since checking a guessed solution can be done in polynomial time (cf. also Lemma 9). 
Second, it has, as a subproblem, the NP-complete problem IdCr , cf. Remark 7. �

To go further, we need the following notation and additional notions of complexity (see, e.g., [19] or [22]).
The class P NP (also known as 	2 in the polynomial hierarchy) contains the decision problems which can be solved by 

applying, with a number of calls which is polynomial with respect to the size of the instance, a subprogram able to solve 
an appropriate problem in NP (usually, an NP-complete problem). The class LNP (also known as 
2 and P NP|| ) contains the 
decision problems which can be solved by applying, with a number of calls which is logarithmic with respect to the size of 
the instance, a subprogram able to solve an appropriate problem in NP. For problems which are not decision problems, these 
classes are generalized, using “F ” (for “function”) in front of their names; thus, the class FPNP (respectively, FLNP) contains 
the problems which can be solved by applying, with a number of calls which is polynomial (respectively, logarithmic) with 
respect to the size of the instance, a subprogram able to solve an appropriate problem in NP. Membership to NP, LNP , P NP , 
FLNP or FPNP gives an upper bound on the complexity of a problem (this problem is not more difficult than . . .), whereas a 
hardness result gives a lower bound (this problem is at least as difficult as . . .).

The next proposition is easy and uses a very standard argument, see for instance [17].

Proposition 14. For r ≥ 1, the problem IdNr belongs to the class FLNP.

Proof. Let Ar be an algorithm which solves the decision problem IdCr : for any instance (G, k) of IdCr , it says whether there 
is an r-identifying code of size k or less in G . This algorithm can be used to solve IdNr with a number of calls bounded 
from above by a logarithm in the size of the instance. If n is the order of G , for the instance (G, k = n) of IdCr , the answer is 
“yes”. Thanks to the standard dichotomous process starting from this initial value, we may compute the size of an optimal 
r-identifying code in G with at most �log n� calls to Ar . Since IdCr is in NP (it is actually NP-complete, see Proposition 12), 
we can conclude that IdNr belongs to FLNP . �
Proposition 15. For r ≥ 1, the problem List-IdNr belongs to the class FLNP.

Proof. Same argument as in the previous proof, with the problem List-IdCr , which is in NP and is even NP-complete (Corol-
lary 13). �

We can locate precisely Sub-OIdCEr in the hierarchy: we shall prove its membership to LNP , then its LNP-completeness.

Proposition 16. For r ≥ 1, the problem Sub-OIdCEr belongs to the class LNP.

Proof. Consider an instance (G, X ⊆ V ) of Sub-OIdCEr . By Lemma 6, it is sufficient to compute ir(G) = ωr(W , V ) and 
ωr(W (X), V (X)) + |X |, and see if ωr(W , V ) = ωr(W (X), V (X)) + |X |: the answer to Sub-OIdCEr is positive if and only if 
this equality holds. Now this can be done by using twice an algorithm solving List-IdNr , together with negligible operations. 
In turn, as we have just seen, solving List-IdNr can be done with a logarithmic number of calls to an algorithm solving 
List-IdCr , which is in NP (Corollary 13).

Alternatively, one can use Lemma 8(2), together with solving IdN1 by calling a logarithmic number of times an algorithm 
solving IdC1. �
Proposition 17. For r ≥ 1, the problem List-Sub-OIdCEr belongs to the class LNP.

Proof. Same argument as in the previous proof: by Lemma 6, it is sufficient to see if ωr(L, M) = ωr(L(X), M(X)) + |X | or 
not. �
Proposition 18. For r ≥ 1, the problem Sub-OIdCEr is LNP-complete.

Proof. The membership to LNP having just been established, we use the following polynomial reductions:
(i) from the LNP-complete problem Vertex Cover Member [12, Cor. 4.13] to Sub-OIdCE1 with X = {x},
(ii) from Vertex Cover Member to Sub-OIdCEr with X = {x} (for r ≥ 2), and finally
(iii) from Sub-OIdCEr with X = {x} to Sub-OIdCEr .

Problem VCM (Vertex Cover Member):
Instance: A graph G = (V , E) and a vertex x ∈ V .
Question: Does G admit an optimal vertex cover containing x?



8 O. Hudry, A. Lobstein / Theoretical Computer Science 626 (2016) 1–12
Fig. 2. For r = 1, construction of V + and E+ , starting from the edges e = uv ∈ E and f = v w ∈ E . Large black circles must belong to any 1-identifying 
code in G+ . Smaller black circles belong to the 1-identifying code C defined in (3). The vertex u is represented by a black square, because, in the proof of 
Proposition 18, we assume that it belongs to V ∗ , hence to C .

A vertex cover is a subset V ∗ ⊆ V such that for each edge uv ∈ E , at least one of u and v belongs to V ∗ . We shall explain 
in detail the first reduction, then give a sketch of the proof for the second reduction, and the third one is straightforward.

(i) The polynomial reduction from VCM to Sub-OIdCE1 with X = {x} is the following: if (G = (V , E), x) is an instance of 
VCM, we take as an instance for Sub-OIdCE1 the vertex x+ = x and the graph G+ = (V +, E+) constructed as follows, see 
Fig. 2: for each vertex v ∈ V , we construct

V +
v = {v, βv,i : 1 ≤ i ≤ 5}, E+

v = {vβv,1, βv,1βv,2, βv,2βv,3, βv,1βv,4, βv,4βv,5};
for each edge e = uv ∈ E , we construct

V +
e = {αe,u,1,αe,v,1, λe,i : 1 ≤ i ≤ 5}, E+

e = {uαe,u,1,αe,u,1αe,v,1,αe,v,1 v,

αe,u,1λe,1,αe,v,1λe,1, λe,1λe,2, λe,2λe,3, λe,1λe,4, λe,4λe,5}.
The third subscript for some of the vertices in V +

e is not necessary but foreshadows the generalization of the construction 
to any r ≥ 2. Then G+ consists of the union of these vertex sets and edge sets. We can see immediately that if C is a 
1-identifying code in G+ , then

(a) for every vertex v ∈ V , βv,1 ∈ C , because βv,1 is the only vertex that 1-separates βv,2 and βv,3, and, for a similar 
reason, for every edge e ∈ E , λe,1 ∈ C ;

(b) for every vertex v ∈ V , at least one of the two vertices βv,2, βv,3 belongs to C , because βv,3 must be 1-covered by 
some codeword. The same is true for βv,4 and βv,5, and, similarly, for every edge e ∈ E , for λe,2 and λe,3, and for λe,4 and 
λe,5. As a consequence,

|C | ≥ |C ∩ V | + 3(|E| + |V |); (2)

(c) for every edge e = uv ∈ E , at least one of the two vertices u and v belongs to C , because the only two vertices that 
1-separate αe,u,1 and αe,v,1 are u and v .

Now we assume that VCM admits a (not necessarily optimal) vertex cover V ∗ , containing x, in G . Then

C = V ∗ ∪ {βv,1, βv,2, βv,4 : v ∈ V } ∪ {λe,1, λe,2, λe,4 : e ∈ E} (3)

contains x and is 1-identifying in G+ . To prove this, we give below the sets IG+,C,1(y) of the vertices y associated to the 
edge e = uv , assuming first that u ∈ V ∗ and v /∈ V ∗:

u : {u, βu,1}, βu,1 : {u, βu,1, βu,2, βu,4}, βu,2 : {βu,1, βu,2}, βu,3 : {βu,2},
βu,4 : {βu,1, βu,4}, βu,5 : {βu,4}, αe,u,1 : {u, λe,1}, αe,v,1 : {λe,1},
λe,1 : {λe,1, λe,2, λe,3}, v : {βv,1}, βv,1 : {βv,1, βv,2, βv,4};

for i ∈ {2, 3, 4, 5}, the vertices λe,i and βv,i behave exactly like the vertices βu,i .
Now all these sets are nonempty and distinct, and distinct from the sets IG+ ,C,1(z) of vertices z associated to other edges 

of G . If u /∈ V ∗ and v ∈ V ∗ , the situation is the same, by symmetry. Finally, if u ∈ V ∗ and v ∈ V ∗ , the conclusion comes from 
Lemma 1.

Conversely, if C is a (not necessarily optimal) 1-identifying code in G+ , containing x+ = x, then, by our preliminary 
remark (c), C ∩ V is a vertex cover in G , which contains x.

If V ∗ is an optimal vertex cover in G , then the code C defined by (3) is an optimal 1-identifying code in G+; if not, 
there would be a 1-identifying code in G+ , say C+ , with |C+| < |C |. But then C+ ∩ V would be a vertex cover in G , and 
inequality (2) would lead to |C+ ∩ V | ≤ |C+| − 3(|E| + |V |) < |C | − 3(|E| + |V |) = |V ∗|, a contradiction.

If C is an optimal 1-identifying code in G+ , then V ∗ = C ∩ V is a vertex cover in G; by (2), it has size |V ∗| ≤ |C | −3(|E| +
|V |), and it is optimal: if not, there would be a vertex cover V + with |V +| < |C | − 3(|E| + |V |) and the code constructed 
with V + in (3) would be 1-identifying and have fewer elements than C , again a contradiction.

This closes the case r = 1.



O. Hudry, A. Lobstein / Theoretical Computer Science 626 (2016) 1–12 9
Fig. 3. For r = 3, construction of V + and E+ . Large black circles must belong to any 3-identifying code in G+ . Smaller black circles belong to the 
3-identifying code C defined in (4). We assume that u ∈ C .

(ii) For r ≥ 2, the graph G+ constructed for Sub-OIdCEr with X = {x} is a generalization of the previous construction, see 
Fig. 3 for r = 3, where we have more vertices between u and v , and we lengthen the branches growing from the vertices 
βv,1 and λe,1. More specifically, for each vertex v ∈ V , we construct

V +
v = {v, βv,i : 1 ≤ i ≤ 4r + 1},

E+
v = {vβv,1, βv,1βv,2, . . . , βv,2rβv,2r+1, βv,1βv,2r+2, . . . , βv,4rβv,4r+1};

for each edge e = uv ∈ E , we construct

V +
e = {αe,u,i,αe,v,i : 1 ≤ i ≤ r} ∪ {λe,i : 1 ≤ i ≤ 4r + 1},

E+
e = {uαe,u,1,αe,u,1αe,u,2, . . . ,αe,u,r−1αe,u,r,αe,u,rαe,v,r,αe,v,rαe,v,r−1, . . . ,

αe,v,2αe,v,1,αe,v,1 v,αe,u,rλe,1,αe,v,rλe,1, λe,1λe,2, . . . , λe,2rλe,2r+1,

λe,1λe,2r+2, . . . , λe,4rλe,4r+1}.
Then again we can make some remarks on an r-identifying code C in G+:

(a) for every v ∈ V and i ∈ {1, . . . , r}, βv,i ∈ C , because it is the only vertex that r-separates βv,i+r and βv,i+r+1; the same 
is true for βv,i , 2r + 2 ≤ i ≤ 3r. Similarly, for every edge e ∈ E , λe,i ∈ C for i ∈ {1, . . . , r} ∪ {2r + 2, . . . , 3r};

(b) for every v ∈ V , at least one of the r +1 vertices βv,r+1, . . . , βv,2r+1 is a codeword, because βv,2r+1 is r-covered by C . 
The same is true for βv,3r+1, . . . , βv,4r+1, and, for every edge e ∈ E , for λe,r+1, . . . , λe,2r+1, and for λe,3r+1, . . . , λe,4r+1. As a 
consequence, |C | ≥ |C ∩ V | + (2r + 1)(|V | + |E|);

(c) for every edge e = uv ∈ E , at least one of the two vertices u and v belongs to C , because the only two vertices that 
r-separate αe,u,r and αe,v,r are u and v .

Assume that VCM admits a vertex cover V ∗ , containing x, in G . Then it is tedious but straightforward to check that

C = V ∗ ∪ {βv,i, λe,i : i ∈ {1, . . . , r + 1} ∪ {2r + 2, . . . ,3r + 1}, v ∈ V , e ∈ E} (4)

is r-identifying in G+ (and contains x). The end of the proof in the general case is then exactly the same as in the case 
r = 1, with the factor 3 replaced by (2r + 1).

(iii) Going from Sub-OIdCEr with X = {x} to Sub-OIdCEr is immediate, noting that the problem with X = {x} is a sub-
problem, whereas Sub-OIdCEr remains in LNP . �

As a matter of fact, we have proved a result stronger than Proposition 18.

Proposition 19. For r ≥ 1, the decision problem Sub-OIdCEr remains LNP-complete when X is a singleton.

Corollary 20. For r ≥ 1, the problem List-Sub-OIdCEr is LNP-complete, even when X is a singleton.

Proof. By Proposition 17, List-Sub-OIdCEr belongs to LNP , and (cf. Remark 7) it has the LNP-complete problem Sub-OIdCEr

with X = {x} as a subproblem. �
The statement (b) of the following corollary of Proposition 18 is not as strong as could be hoped in comparison with (c), 

because Lemma 3, and even Corollary 4, which is stated for r-identifying codes, only use 1-identification numbers, not 
r-identification numbers (see the paragraph following Corollary 4, and Conjecture 24).



10 O. Hudry, A. Lobstein / Theoretical Computer Science 626 (2016) 1–12
Corollary 21. (a) For r ≥ 1, the problem List-IdNr is LNP-hard.
(b) For r ≥ 1, the problem IdNr is NP-hard.
(c) The problem IdN1 is LNP-hard.

Proof. (a) We have seen in the proof of Proposition 16 that Sub-OIdCEr can be solved by calling twice an algorithm solv-
ing List-IdNr , and comparing two values of the function ωr , so List-IdNr is at least as difficult as Sub-OIdCEr , which is 
LNP-complete.

(b) Use Lemma 8(1) and the NP-completeness of IdCr (Proposition 12).
(c) Use Lemma 8(2) together with the LNP-completeness of Sub-OIdCE1. �
We now turn to the three search problems OIdCSr (determine an optimal r-identifying code), Sub-OIdCSr (given a subset 

of vertices X , determine an optimal r-identifying code containing X) and Sub-SmIdCSr (given a subset of vertices X , de-
termine a smallest r-identifying code containing X). The previous results, together with Lemma 8, immediately imply the 
following corollary, which gives a lower bound on the complexity of these problems.

Corollary 22. (a) For r ≥ 1, the problem OIdCSr is NP-hard; the problem OIdCS1 is LNP-hard.
(b) For r ≥ 1, the problem Sub-OIdCSr is LNP-hard, even in the case when X is a singleton.
(c) For r ≥ 1, the problem Sub-SmIdCSr is NP-hard, even in the case when X is a singleton; the problem Sub-SmIdCS1 is LNP-hard, 

even in the case when X is a singleton.

Proof. (a) Use Lemma 8(3) and the facts that IdNr is NP-hard and IdN1 is LNP-hard.
(b) Use Lemma 8(4) and the fact that Sub-OIdCEr is LNP-complete, even when X is a singleton.
(c) Use Lemma 8(5) and the facts that IdNr is NP-hard and IdN1 is LNP-hard. �
Then we show that the complexity of these three problems does not go beyond FPNP .

Proposition 23. (i) For r ≥ 1, the problem OIdCSr belongs to the class FPNP.
(ii) For r ≥ 1, the problem Sub-OIdCSr belongs to the class FPNP.
(iii) For r ≥ 1, the problem Sub-SmIdCSr belongs to the class FPNP.

Proof. (i) Let Ar be an algorithm solving List-Sub-OIdCEr . In particular, Ar can solve instances of Sub-OIdCEr for which X
is a singleton. In a first stage, we show how to solve OIdCSr by calling Ar a polynomial number of times.

Let G = (V , E) be an instance of OIdCSr , with n vertices. We recall that for a vertex x ∈ V , for any set of pairs of vertices 
L ⊆ W and any set of vertices M ⊆ V , we let L({x}) be the set of pairs in L which are not r-separated by x, and M({x}) be 
the set of vertices in M not r-covered by x.

In a first step, we run Ar with G, L1 = W , M1 = V and different singletons (= vertices) of V until we get a pos-
itive answer, i.e., we find a vertex x1 belonging to at least one (unknown) optimal r-identifying code in G . We set 
L2 = L1({x1}), M2 = M1({x1}). In a second step, we run Ar with G, L2, M2 and different vertices of V \ {x1} until we 
find a vertex x2 belonging to at least one optimal (r, L2, M2)-identifying code. Then we set L3 = L2({x2}), M3 = M2({x2}). 
At Step i, we run Ar with G, Li, Mi and different vertices of V \ {x1, . . . , xi−1} until we find a vertex xi belonging to at 
least one optimal (r, Li, Mi)-identifying code, and we set Li+1 = Li({xi}), Mi+1 = Mi({xi}). By Lemma 6, we know that 
ωr(Li, Mi) = ωr(Li−1, Mi−1) − 1. We come to a stop at Step k, k ≤ n, when Lk = Mk = ∅, ωr(Lk, Mk) = 0, which means that 
C = {x1, . . . , xk−1} is (r, W , V )-identifying, i.e., C is r-identifying in G .

Since ir(G) = ωr(L1, M1) = ωr(Lk, Mk) + (k − 1) = k − 1, we see that C has the right size and thus, it is optimal.
How many times do we need to call Ar ? If n is the order of the graph, we have at most n steps, in which we call Ar

a decreasing number of times, starting with at most n calls in the first step, so that we have something like at most n2/2
calls to Ar , plus the handling of the lists of pairs Li and the lists of vertices Mi . (Note however that, since a vertex which 
has been tried and rejected because it does not belong to any optimal (r, L j, M j)-identifying code for the current lists needs 
not be tested again in the following steps, the number of calls can be reduced to n, approximately.)

This proves that, by calling the algorithm Ar a polynomial number of times (polynomial with respect to n), we have 
designed an algorithm which outputs an optimal r-identifying code in G , i.e., solves OIdCSr . This ends our first stage.

In turn, Sub-OIdCEr can be solved using a logarithmic number of calls to an algorithm solving List-IdCr (Proposition 16), 
which is in NP. So, all in all, we can solve OIdCSr by calling a polynomial number of times an algorithm solving a problem 
in NP. This proves that OIdCSr belongs to FPNP .

(ii) Now we want to call Ar in order to solve Sub-OIdCSr . First, we run Ar with X . If the answer is negative, we know 
that no optimal r-identifying code contains X , and we stop. We assume now that the answer is positive. Then we proceed 
as in (i): we choose a first vertex in X which will play the part of x1, we choose a second vertex in X for x2, and so on 
until we have used all the vertices in X . Then we look for a vertex belonging to at least one optimal (r, L j, M j)-identifying 
code for the current lists, and we can go on running the algorithm and conclude exactly as previously.



O. Hudry, A. Lobstein / Theoretical Computer Science 626 (2016) 1–12 11
Fig. 4. The locations of our problems in the classes of complexity.

The only difference with (i) is that the first vertices must belong to a specific subset, provided that this subset is 
contained in an optimal r-identifying code.

(iii) Finally, we want to call Ar in order to solve Sub-SmIdCSr . We proceed exactly as in (ii), except that we do not 
need to check whether X is included in an optimal r-identifying code: with X = {x1, . . . , x|X |} and starting from G , L1 = W
and M1 = V , we construct L2 = L1({x1}), M2 = M1({x1}), L3, M3, . . . , L|X |+1 = L|X |({x|X |}), M|X |+1 = M|X |({x|X |}), without 
needing to run Ar . Then, once we have used all the vertices in X , we proceed as previously in Cases (i) and (ii), running Ar

with different vertices in V \ X until we find one belonging to at least one optimal (r, L|X |+1, M|X |+1)-identifying code, and 
so on. At the end, if X belongs to at least one optimal r-identifying code, we have found such a code, and if X does not 
belong to any optimal r-identifying code, we have found an r-identifying code containing X and with the smallest possible 
size. �
3. Conclusion

The following results were already known:

• IdR is polynomial (Corollary 10).
• IdCr is NP-complete for all r ≥ 1 (Propositions 11 [6,8] and 12 [5]).

We recapitulate below our own results, and present conjectures. For any fixed integer r, r ≥ 1,

• IdNr belongs to FLNP (Proposition 14) and is NP-hard (Corollary 21(b)); IdN1 is LNP-hard (Corollary 21(c)).
• Sub-OIdCEr is LNP-complete (Proposition 18), even if |X | = 1 (Proposition 19).
• OIdCSr belongs to the class FPNP (Proposition 23(i)) and is NP-hard (Corollary 22(a)); OIdCS1 is LNP-hard (Corol-

lary 22(a)).
• Sub-OIdCSr belongs to the class FPNP (Proposition 23(ii)) and is LNP-hard, even if |X | = 1 (Corollary 22(b)).
• Sub-SmIdCSr belongs to the class FPNP (Proposition 23(iii) and is NP-hard, even if |X | = 1 (Corollary 22(c)); Sub-SmIdCS1

is LNP-hard (Corollary 22(c)), even if |X | = 1.

These results are represented in Fig. 4, though in a simplified and thus improper way: we make no difference between 
decision problems and non-decision problems, between P NP and FPNP , . . . The four problems IdR, IdCr , IdN1, and Sub-OIdCEr

are located exactly. The problem IdNr (r > 1) is “between” NP-hard and FLNP; in Fig. 4, we place it, for lack of a better 
knowledge, outside NP ∪ co-NP, and below the line LNP-hard, but we conjecture that it is above this line (as is IdN1); this 
conjecture is represented by an arrow and a question mark in the Figure:

Conjecture 24. For r ≥ 1, the problem IdNr is LNP-hard.

The two search problems OIdCSr (r > 1) and Sub-SmIdCSr (r > 1) are between NP-hard and FPNP; in Fig. 4, we place 
them, for lack of a better knowledge, outside FLNP , and below the line LNP-hard, but we conjecture below that they are 
P NP-hard. The three search problems OIdCS1, Sub-OIdCSr , and Sub-SmIdCS1 are between LNP-hard and FPNP; in Fig. 4, we 
place them, for lack of a better knowledge, outside FLNP , and below the line P NP-hard. We conjecture that they are also 
P NP-hard; this multiple conjecture is represented by an arrow and a double question mark in the figure:

Conjecture 25. For r ≥ 1, the problems OIdCSr , Sub-OIdCSr and Sub-SmIdCSr are P NP-hard, even when X is a singleton.



12 O. Hudry, A. Lobstein / Theoretical Computer Science 626 (2016) 1–12
Acknowledgements

We wish to thank the two referees for their very careful reading and helpful remarks and suggestions.

References

[1] D. Auger, Identifying codes in trees and planar graphs, Electron. Notes Discrete Math. 34 (2009) 585–588.
[2] D. Auger, Minimal identifying codes in trees and planar graphs with large girth, European J. Combin. 31 (2010) 1372–1384.
[3] D. Auger, I. Charon, O. Hudry, A. Lobstein, Complexity results for identifying codes in planar graphs, Int. Trans. Oper. Res. 17 (2010) 691–710.
[4] I. Charon, G. Cohen, O. Hudry, A. Lobstein, New identifying codes in the binary Hamming space, European J. Combin. 31 (2010) 491–501.
[5] I. Charon, O. Hudry, A. Lobstein, Minimizing the size of an identifying or locating-dominating code in a graph is NP-hard, Theoret. Comput. Sci. 290 

(2003) 2109–2120.
[6] G. Cohen, I. Honkala, A. Lobstein, G. Zémor, On identifying codes, in: Proceedings of DIMACS Workshop on Codes and Association Schemes ’99, vol. 56, 

Piscataway, USA, 2001, pp. 97–109.
[7] F. Foucaud, Aspects combinatoires et algorithmiques des codes identifiants dans les graphes, Université de Bordeaux 1, France, December 2012, Thèse 

de Doctorat, 194 pages (in English).
[8] F. Foucaud, Decision and approximation complexity for identifying codes and locating-dominating sets in restricted graph classes, J. Discrete Algorithms 

31 (2015) 48–68.
[9] F. Foucaud, S. Gravier, R. Naserasr, A. Parreau, P. Valicov, Identifying codes in line graphs, J. Graph Theory 73 (2013) 425–448.

[10] F. Foucaud, G. Mertzios, R. Naserasr, A. Parreau, P. Valicov, Identification, location-domination and metric dimension on interval and permutation 
graphs, II, algorithms and complexity, Algorithmica (2016), in press, available at http://arxiv.org/abs/1405.2424.

[11] M.R. Garey, D.S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness, Freeman, New York, 1979.
[12] E. Hemaspaandra, H. Spakowski, J. Vogel, The complexity of Kemeny elections, Theoret. Comput. Sci. 349 (2005) 382–391.
[13] L. Hemaspaandra, Complexity classes, in: Handbook of Discrete and Combinatorial Mathematics, CRC Press, Boca Raton, 2000, pp. 1085–1090.
[14] I. Honkala, On the identifying radius of codes, in: Proceedings of the 7th Nordic Combinatorial Conference, Turku, Finland, 1999, pp. 39–43.
[15] I. Honkala, A. Lobstein, On identifying codes in binary Hamming spaces, J. Combin. Theory Ser. A 99 (2002) 232–243.
[16] I. Honkala, A. Lobstein, On the complexity of the identification problem in Hamming spaces, Acta Inform. 38 (2002) 839–845.
[17] O. Hudry, On the complexity of Slater’s problems, European J. Oper. Res. 203 (2010) 216–221.
[18] O. Hudry, A. Lobstein, More results on the complexity of domination problems in graphs, Int. Trans. Oper. Res. (2016), in press.
[19] D.S. Johnson, A catalog of complexity classes, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity, 

Elsevier, Amsterdam, 1990, pp. 67–161.
[20] M.G. Karpovsky, K. Chakrabarty, L.B. Levitin, On a new class of codes for identifying vertices in graphs, IEEE Trans. Inform. Theory IT-44 (1998) 599–611.
[21] A. Lobstein, Watching systems, identifying, locating-dominating and discriminating codes in graphs, a bibliography, http://www.perso.enst.fr/~lobstein/

debutBIBidetlocdom.pdf.
[22] C.H. Papadimitriou, Computational Complexity, Addison–Wesley, Reading, 1994.
[23] A. Parreau, Problèmes d’identification dans les graphes, Thèse de doctorat, Université de Grenoble, France, July 2012, 214 pages.

http://refhub.elsevier.com/S0304-3975(16)00045-1/bib61756765303965s1
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib61756765303966s1
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib61756765303963s1
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib63686172303862s1
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib63686172303362s1
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib63686172303362s1
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib636F68653031s1
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib636F68653031s1
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib666F7563313262s1
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib666F7563313262s1
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib666F75633135s1
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib666F75633135s1
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib666F7563313164s1
http://arxiv.org/abs/1405.2424
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib676172653739s1
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib68656D613035s1
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib68656D613030s1
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib686F6E6B393961s1
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib686F6E6B303262s1
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib686F6E6B303263s1
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib68756472793130s1
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib68756472313561s1
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib6A6F686E3930s1
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib6A6F686E3930s1
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib6B617270393861s1
http://www.perso.enst.fr/~lobstein/debutBIBidetlocdom.pdf
http://www.perso.enst.fr/~lobstein/debutBIBidetlocdom.pdf
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib706170613934s1
http://refhub.elsevier.com/S0304-3975(16)00045-1/bib706172723132s1

	More results on the complexity of identifying problems in graphs
	1 Introduction and preliminary results
	1.1 Outline of the paper
	1.2 Deﬁnitions and notation
	1.3 Some useful facts on identiﬁcation

	2 Complexity results for identifying codes
	2.1 Presentation of the problems
	2.2 Known results and motivations
	2.3 The results

	3 Conclusion
	Acknowledgements
	References


