
Synchronized Delivery of 3D Scenes with Audio and Video

Cyril Concolato∗ Jean Le Feuvre† Emmanouil Potetsianakis‡

Institut Mines-Telecom; Telecom ParisTech; CNRS LTCI
46, rue Barrault
75013, PARIS

Abstract

Nowadays, 3D graphics have established their presence on the web
- alongside audio and video. In fact, 3D scenes are often used in
conjunction with audio and video, to create virtual worlds. How-
ever, the diverse nature of these various media components raises
synchronization and packaging challenges. In order to address
these challenges, we propose packaging 3D scenes, with audio and
video, inside MP4 containers. This way, the 3D and other media are
delivered as a whole, and on the receiving end, we are able to ex-
tract and synchronize the content, from within the browser. In this
paper, we explain our methodology, present an end-to-end exam-
ple scenario, and its associated implementation, using open-source
tools.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—[Standards, Languages] H.5.1. [HCI]: Multimedia In-
formation Systems—;

Keywords: X3D, HTML5, MP4, Streaming, Synchronization

1 Introduction

Recent innovations in browser technology, such as the introduction
of HTML5 canvas, audio and video elements, and the associ-
ated Javascript APIs such as MediaSourceExtension (MSE)
and Webaudio, simplified the media content integration in web
pages. In conjunction with the WebGL API, which allows hardware
accelerated rendering of graphics without the need of plug-ins, in-
teractive multimedia from the browser is more accessible than ever.
The aforementioned evolutions not only facilitated the use of au-
diovisual (AV) content, but popularized the use of 3D scenes for
the web. Especially in the case of virtual worlds, AV content is of-
ten hosted inside 3D scenes to create immersive user experiences.
There are numerous examples, like the ”Flight of The Navigator”1

by Mozilla, which demonstrates a 3D environment incorporating
video texturing for virtual billboards, or the ”No Fun Cube”2 by
The Presets, which couples auditory experiments with the explo-
ration of a video-textured 3D cube.

Despite the progress in the topic of multimedia content represen-
tation, existing solutions fail to establish an efficient transportation

∗e-mail:cyril.concolato@telecom-paristech.fr
†e-mail:jean.lefeuvre@telecom-paristech.fr
‡e-mail:emmanouil.potetsianakis@telecom-paristech.fr

1https://videos.cdn.mozilla.net/uploads/mozhacks/flight-of-the-
navigator/

2http://nofun.thepresets.com/

technology. The predominant approach is to fetch the 3D docu-
ments from a location, typically using AJAX, while the AV con-
tent is streamed from a different location, even if they are rendered
in the same context and share a common distributor. As a result,
the content is often unsuitable for offline consumption, without us-
ing caching tools, and even in online use cases, delivery issues be-
tween the AV and 3D content might occur (different latency be-
tween sources, unavailability of a server, etc).

In this paper, we propose and describe how to package both AV and
3D content in a single MP4 container, to benefit from the features
that the MP4 file format offers in terms of synchronization, deliv-
ery and interoperability. We also demonstrate an end-to-end solu-
tion using this packaging, based on open-source tools, for the con-
sumption of synchronized video-textured 3D content from within
the browser.

In the following Section 2, we review the current trends in the field
of 3D scenes with AV content, in order to illustrate the mechanisms
of our proposal in Section 3. Then, in Section 4 we demonstrate a
sample application we developed, implementing our solution. Fi-
nally, in Section 5 we summarize and present our future work.

2 State of The Art

In a survey by Evans et al. [Evans et al. 2014] various 3D technolo-
gies for the web were studied. Even though the publication is not
focused on transportation, packaging and synchronization aspects
of 3D graphics, it indicates that a widespread distribution mech-
anism for 3D scenes does not exist. We believe that all the major
web-based technologies for 3D graphics mentioned in the study, are
compliant with our solution.

Limper et al. [Limper et al. 2013], published a paper focusing on
the delivery of 3D content for the web. Their work is thorough
in the domain of compression and encoding, but it does not men-
tion any specific streaming and packaging technology. It is relevant
nonetheless with our work, since MP4 files can carry compressed
3D scenes (e.g. BIFS, MPEG-3DGC).

Kapetanakis et al. demonstrated a basic virtual reality world built
with X3DOM, that integrates video streaming over MPEG-DASH
(with Dash.js) [Kapetanakis et al. 2014]. MPEG-DASH is a stan-
dardized mean of transmitting multimedia content and it is utilized
to do adaptive streaming of videos. The authors chose to statically
load the 3D model with the webpage. Dash.js could be modified to
stream the 3D content, but without solving the distributed resources
issue, or having consideration for offline scenarios. This approach
can benefit from our solution, since one or more X3D scenes can be
inserted in the same MP4 file used for the video (and then delivered
over DASH if desired).

3 Packaging 3D scenes in MP4 files

As mentioned in Section 1, the main idea of our proposal is to pack-
age the 3D content in the same MP4 container as the AV content,
to benefit from the MP4 properties. MP4 files allow storing media
data of a particular type in a structure called track. A track is used



to carry samples, with associated timestamps. These timestamps
indicate, in the MP4 timeline, at which moment the media data is
to be consumed by the application. Multiple tracks can be stored
in the same file, either providing different types of data (e.g. audio
and video streams), or the same type of data for alternative or com-
plementary streams (e.g. audio in different languages). Regarding
delivery, MP4 files can be delivered as a whole over HTTP, using
progressive download, or split as mutliple segments and streamed
over HTTP, using MPEG-DASH.

We apply these concepts for the carriage of 3D data in MP4, by
placing 3D scenes in tracks. Tracks for this type of data are indi-
cated by the type ’meta’. For XML-based 3D scenes (e.g. X3D) we
indicate the sub-type of the track to be ’metx’. For other formats
(e.g. Three.js scenes), the appropriate sub-type is ’mett’, originally
reserved for text. Other sub-types are available for binary (possibly
compressed) data.

Each sample of a track, carries one 3D scene. In other words, for
XML-based scenes, one sample carries one full XML document.
Fragmentation of XML per sample [Concolato and Potetsianakis
2015] would also be possible if progressive rendering of XML doc-
uments is available.

The effects of this approach are:

• The delivery of the 3D and AV content altogether facilitates
the synchronization of these media components.

• Alternative 3D representations (e.g. providing different levels
of detail) can be realized by using several tracks.

• Streaming of 3D content can be achieved by providing multi-
ple samples (i.e. 3D documents) per track.

• The file can be delivered using DASH.

• The AV content of the file is still playable by clients without
3D support.

Second 3D Scene Third 3D SceneFirst 3D Scene

Video Content

t1 t2 t3

Track 1

Track 2

MP4 Container

Track 3 Alternative 3D Scene

Figure 1: Outline of a valid MP4 container authored for 3D docu-
ment streaming

An illustration of an example MP4 file is shown in Figure 1. Track
1 contains the video stream, Track 2 a stream of three 3D scenes,
and Track 3 one 3D scene. At t1 the 3D scene inside the sample of
Track 2 is rendered, while at t2 the client is able to chose between
the 3D scene in Track 2, or the alternative scene in Track 3 and so
forth.

4 Application Example

In order to demonstrate our proposed solution, we realized a
web application which dynamically loads video-textured X3D
scenes during video playback. MP4Box is used for the packag-
ing, while the javascript library MP4Box.js handles the extrac-
tion and synchronization of the content (both tools are part of

the GPAC [Le Feuvre et al. 2007] open-source multimedia frame-
work3). Finally, X3DOM [Behr et al. 2009] is used to render the
X3D scenes (via WebGL).

To create valid MP4 files, each stream (audio, video and 3D) is
stored in a separate MP4 track. MP4Box natively supports audio
and video import, while for X3D (or any otherwise non-supported
stream) requires NHML descriptor files as shown in Listing 1. For
each MP4 track, one NHML file is used, with parameters speci-
fied as attributes of one NHNTStream element. Since we are us-
ing X3D documents (which is an XML-based 3D format), we set
’meta’ as mediaType and ’metx’ as mediaSubType, followed
by the XML namespace. Other optional arguments that can be set
are trackID, text encoding and xml schema location.
Every 3D scene is imported into a separate sample by providing its
filename in mediaFile and the timeslot in DTS (according to the
defined timeScale). We can specify a duration, otherwise
the samples are considered to be consecutive (without gap). Each
sample has a self-contained 3D document, therefore it is always a
Random Access Point (set at isRap). This property allows seeking
inside the MP4 file.

<NHNTStream t i m e S c a l e =” 90000 ” mediaType=”
meta ” mediaSubType=” metx ” xml namespace=
” h t t p : / /www. web3d . o rg / s p e c i f i c a t i o n s / x3d
−namespace ” >
<NHNTSample DTS=” 0 ” isRAP=” yes ”

mediaFi le =” f i r s t . x3d ” />
<NHNTSample DTS=” 900000 ” isRAP=” yes ”

mediaFi le =” second . x3d ” durat ion =”
9900000 ” />

< / NHNTStream>
Listing 1: Sample NHML descriptor file

On the client side, the application uses MP4Box.js to analyze the
tracks of the received MP4 file, and then prepares the web page for
the streams, according to the type of the available tracks. After the
rendering context is initialized for every stream, it parses the sam-
ples of each track. Audio or video streams are decoded through
MSE, and the video samples are rendered in a canvas HTML ele-
ment. In case a sample is parsed containing an X3D document with
video (or canvas) texture node(s) referring to the same MP4
file, the reference(s) is (are) replaced with a reference to the al-
ready active canvas element used for the video track. If multiple
video tracks are present, fragment identifiers are used to point to a
video track in particular (e.g. URL="file.mp4#trackID=2").
This is the only modification of the X3D document that might oc-
cur, throughout the process. Then, the updated X3D document is
parsed to X3DOM, with a reload content instruction. Finally, af-
ter X3DOM sets the DOM context, it uses WebGL to render the 3D
scene. An overview of the web application architecture is shown in
Figure 2.

We created a sample MP4 file with two tracks, containing a video
stream in the first one, a 3D scene with a video-textured cylinder
and a 3D scene with a video-textured box in the second. Both of the
3D scenes reference the same video, and we used the same NHML
descriptor for the import as in Listing 1, placing them in consecutive
samples. We also kept the original video output visible, for the
frame-accurate synchronization to be evident. Figure 4a shows the
output at 6” of playback, while Figure 4b at 47”, at which point we
have already switched to the second 3D scene.

We tested the scenario, using the requestAnimationFrame
to refresh the canvas content, in Google Chrome, running on a
machine with an Intel Xeon CPU of 4 Cores at 3.6GHz, 16GB of

3https://github.com/gpac/



Figure 2: Structure of web application

RAM and a Nvidia Quadro 600 graphics card. In a set of 20 runs,
the mean delay measured from the cue of the first X3D sample, until
the rendering of the first textured frame was 21ms. For the second
X3D scene, the mean delay measured from the cue, until rendering
was 119ms.

The aforementioned delays include the latency caused by 3D scene
texture URL processing, setting up and switching to the new 3D
rendering context and the X3DOM reloading. However, the MP4
file structure is such that it allows MP4Box.js to analyze it and ex-
pose the timing information in advance, as shown in Figure 3. Since
we receive the 3D scene early (at t1), we start the video playback
when the 3D scene is set up (at t3), thus keeping the video and 3D
synchronized from the beginning. In a similar manner, the second
scene is received early (at t4), and it can be constructed inside a new
-initially invisible- canvas element (at t5), then at the right time
(at t6), replace the previous (which is destroyed in the background),
ergo circumventing the gap between 3D scenes.

5 Conclusion and Future Work

Our work proposes a novel approach to 3D and AV distribution for
the web, by packaging the contents in a single MP4 container. This
way, we are able to consider streaming and offline scenarios and
resolve synchronization issues. We are able to insert 3D scenes in
dedicated tracks, thus constructing valid MP4 files, that allow the
AV content to be consumed even by clients that lack 3D content
support. Also, this approach is content-agnostic, since we do not
modify the original content prior to importing, thus offering support
for most 3D formats, given a compliant client.

On the receiving end, the client is able to extract the 3D scenes from
the MP4 container, and once they are rendered, to provide frame-
accurate synchronization with the AV content. We demonstrated
our solution by implementing it in a web application for X3D

scenes, where the 3D content is dynamically loaded and tightly
timed to the video. All the tools used to build the application
are freely available and were used without any modification of the
source code. Since MP4Box.js only extracts the samples from the
tracks, any format can be used (e.g. XML3D) in a similar manner.

Due to the aforementioned reasons, our mechanism can be used to
improve the content distribution of existing solutions [Jankowski
and Decker 2012] [Kapetanakis et al. 2014], or extent applications
that require tight synchronization between the AV and 3D content
[Potetsianakis et al. 2014].

Our future work will target scenarios with 3D formats that support
stream-based animations (e.g. BIFS). A possible implementation
would be to carry the base 3D scene in a track, while the timed ani-
mations are placed in another track. The client will be able to render
the scene and update it with an animation, whenever it occurs.

Finally, we are also working on tackling latency issues that occur
when rendering complex 3D scenes. More specifically, we plan on
implementing a progressive loading mechanism for large 3D docu-
ments. With this mechanism, the backbone of the scene is rendered
as fast as possible, and it is updated as the rest of the elements
are parsed. Alternatively, since the scene information is known in
advance, a render time estimate will be calculated, thus allowing
preparation of the scene in the background, for seamless playback.

References

BEHR, J., ESCHLER, P., JUNG, Y., AND ZÖLLNER, M. 2009.
X3DOM: A DOM-based HTML5/X3D Integration Model. In
Proceedings of the 14th International Conference on 3D Web
Technology, ACM, New York, NY, USA, Web3D ’09, 127–135.

BERJON, R. 2006. Remote Events for XML (REX) 1.0. World
Wide Web Consortium, Working Draft WD-rex-20061013.

CONCOLATO, C., AND POTETSIANAKIS, E. 2015. In-Browser
XML Document Streaming. In XML Prague 2015, 197–205.

EVANS, A., ROMEO, M., BAHREHMAND, A., AGENJO, J., AND
BLAT, J. 2014. 3D Graphics on The Web: A Survey. Computers
& Graphics 41, 43–61.

JANKOWSKI, J., AND DECKER, S. 2012. A dual-mode user inter-
face for accessing 3d content on the world wide web. In Proceed-
ings of the 21st international conference on World Wide Web,
ACM, 1047–1056.

KAPETANAKIS, K., PANAGIOTAKIS, S., MALAMOS, A., AND
ZAMPOGLOU, M. 2014. Adaptive video streaming on top of
Web3D: A bridging technology between X3DOM and MPEG-
DASH. In Telecommunications and Multimedia (TEMU), 2014
International Conference on, 226–231.

LE FEUVRE, J., CONCOLATO, C., AND MOISSINAC, J.-C. 2007.
GPAC: Open Source Multimedia Framework. In Proceedings of
the 15th International Conference on Multimedia, ACM, New
York, NY, USA, MULTIMEDIA ’07, 1009–1012.

LE FEUVRE, J., CONCOLATO, C., DUFOURD, J.-C.,
BOUQUEAU, R., AND MOISSINAC, J.-C. 2011. Experimenting
with Multimedia Advances Using GPAC. In Proceedings of the
19th ACM International Conference on Multimedia, ACM, New
York, NY, USA, MM ’11, 715–718.

LIMPER, M., WAGNER, S., STEIN, C., JUNG, Y., AND STORK,
A. 2013. Fast Delivery of 3D Web Content: A Case Study.
In Proceedings of the 18th International Conference on 3D Web
Technology, ACM, New York, NY, USA, Web3D ’13, 11–17.



Figure 3: Seamless 3D rendering timeline

(a) During rendering of the first 3D scene (t = 6s) (b) During rendering of the second 3D scene (t = 47s)

Figure 4: Web application screenshots

NIEDERMEIER, U., HEUER, J., HUTTER, A., STECHELE, W.,
AND KAUP, A. 2002. An MPEG-7 Tool For Compression
And Streaming of XML Data. In Multimedia and Expo, 2002.
ICME’02. Proceedings. 2002 IEEE International Conference on,
vol. 1, IEEE, 521–524.

POTETSIANAKIS, E., KSYLAKIS, E., AND TRIANTAFYLLIDIS,
G. 2014. A Kinect-based Framework For Better User Ex-
perience In Real-Time Audiovisual Content Manipulation. In
Telecommunications and Multimedia (TEMU), 2014 Interna-
tional Conference on, IEEE, 238–242.

SINGER, D. 2012. ISO/IEC 14496-12: 2012 Part 12: ISO Base
Media File Format. International Organization for Standardiza-
tion.


