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ABSTRACT
Nonnegative matrix factorization (NMF) is an effective and popular
low-rank model for nonnegative data. It enjoys a rich background,
both from an optimization and probabilistic signal processing view-
point. In this study, we propose a new cost-function for NMF fitting,
which is introduced as arising naturally when adopting a Cauchy
process model for audio waveforms. As we recall, this Cauchy
process model is the only probabilistic framework known to date
that is compatible with having additive magnitude spectrograms
for additive independent audio sources. Similarly to the Gaussian
power-spectral density, this Cauchy model features time-frequency
nonnegative scale parameters, on which an NMF structure may be
imposed. The Cauchy cost function we propose is optimal under
that model in a maximum likelihood sense. It thus appears as
an interesting newcomer in the inventory of useful cost-functions
for NMF in audio. We provide multiplicative updates for Cauchy-
NMF and show that they give good performance in audio source
separation as well as in extracting nonnegative low-rank structures
from data buried in very adverse noise.

Index Terms—NMF, audio, Cauchy distribution, robust esti-
mation, probabilistic modeling

I. INTRODUCTION
When facing tabular data, gathered as a large F ×T matrix V , a

recurring approach is to decompose it using a low-rank model, i.e.
decompose it as the interaction of only a small number of patterns
or components. In practice, the topic of Matrix Factorization (MF)
aims to approximate V as the product

V ≈WH, (1)

where W and H are of dimensions F×K and K×T , respectively,
and K � max (F, T ) is the number of components. This problem
has been addressed by the scientific community for decades, and
depending on how we define or constrain W and H , a whole new
range of solutions and approaches emerge. For instance, truncated
singular value decomposition or QR factorization, and all related
algorithms [1] provide an efficient solution to (1).

MF has found a renewed interest in the last decade in the
particular case where both the input matrix V and the latent
factors W and H are taken as nonnegative, i.e. with positive
entries. In that case, model (1) is called a Nonnegative MF (NMF),
pioneered in [2]. Many matrices encountered have positive entries,
such as images, histograms or audio spectrograms [3] and having
nonnegative W and H forces the decomposition to only feature
additive contributions of a few elements that often bear a physical
meaning.

From an optimization perspective, learning the factors W and H
of the model V ≈ WH is done by minimizing a data-fit cost-
function d (V |WH). Whereas early studies such as [2] consid-
ered the squared error and the Kullback-Leibler (KL) divergence,
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many others where proposed later, notably the family of β-
divergences dβ , subsuming them as special cases [4], [5]. In another
vein, robust cost-functions were also proposed recently, enabling
the estimation to behave well in the presence of outliers in V (see,
e.g. [6], [7] and references therein). Additionally, a regularization
term may be included, that favors some features that may be
expected in the latent factors W and H , such as smoothness [8],
[9], [10] or sparsity [11], [12].

Whereas NMF was initially settled in such an optimization
perspective, it was early realized that depending on the criteria
considered, different probabilistic interpretations would arise, ac-
tually whenever the cost function is amenable to a negative log-
likelihood. This happens for instance with the KL cost function,
that emerges naturally in a Poisson probabilistic framework [13].
Similarly, the Itakura-Saito divergence is equivalent to variance
fitting in a centered complex isotropic Gaussian model [14], [15].
In this paradigm, the regularization terms concerning W and H
are often interpreted as providing prior distributions on those
parameters [16]. Interestingly, these probabilistic interpretations not
only lead to a better understanding of the NMF model, but also
to alternative ways of estimating the parameters different from
those considered in the initial study [2]. For instance, exploiting
the Expectation-Maximization algorithm was found useful in this
context [17], as well as Markov Chain Monte Carlo (MCMC)
sampling [18], [19].

In this study, we propose a new particular probabilistic in-
terpretation of NMF modeling: the cost function we consider is
the negative log-likelihood in an isotropic Cauchy distribution. As
we show, this particular and original choice has many interesting
features. First, it comes as the only way we are aware of to justify
NMF models for signals having additive magnitude spectrograms,
if we want the probabilistic interpretation to be coherent all the way
down to the actual waveforms. Choosing the Cauchy cost function
provides the corresponding optimal way to learn a NMF model.
As we show, this cost-function differs from the KL divergence
commonly used in the same setting, notably in the Probabilistic
Latent Component Analysis literature (PLCA, see e.g. [20]). The
Cauchy-NMF thus comes as an interesting alternative to KL-NMF.

Beyond the mere theoretical appeal of providing a new coherent
framework for audio, we also show that the Cauchy model brings
in a second and more practical advantage, which is robustness to
outliers. Indeed, Cauchy is a special case of α-stable distribution,
which have been a central topic in the field of robust statistics [21],
[22]. Cauchy corresponds to α = 1. From this viewpoint, Cauchy-
NMF permits in practice to build low-rank approximations of
large matrices that feature heavy outliers. It thus comes as an
interesting alternative to, say, robust Principal Component Analysis
(RPCA [23]) in the sense that the underlying factors W and H
are further constrained to be nonnegative. We show that it is
competitive to other such robust NMF algorithms [6], [7], and
behaves remarkably well in the presence of very adverse α-stable
noise in a signal enhancement context.

This paper is structured as follows. In section II, we motivate
the Cauchy NMF framework for audio processing applications. We



show that it comes as a principled model for time-series with a
large dynamic range, which is common in music. In section III,
we propose a computationally effective algorithm for Cauchy NMF.
Finally, we evaluate the method in section IV.

II. CAUCHY NMF FOR AUDIO
II-A. Cauchy processes

Let x̃ be the complete waveform of an audio signal in the time
domain. This waveform is split into overlapping frames and the
Fourier transform of each one of them is taken, yielding the so-
called Short-Term Fourier Transform (STFT) x of x̃. It is an F×T
matrix with complex entries x (f, t). F is the number of frequency
bands and T is the number of times frames. In audio, where
the waveforms are real, we assume that only the non-redundant
frequency information is kept in the STFT x.

In [24], the α-harmonizable model was proposed, that includes
Cauchy as the special case α = 1. First, all frames are assumed
independent as commonly done in audio, notwithstanding the
overlap between adjacent frames. Then, the waveform of each
frame is assumed to be the outcome of a stationary Cauchy process.
Whereas assuming local stationarity is common in audio, assuming
a Cauchy distribution is less usual: the well-documented Gaussian
assumption is more frequent there.

While Gaussian processes come with a very elegant theory (see
e.g. [25], [26]), Cauchy processes also have many desirable prop-
erties. First, adopting a Cauchy process model permits large devia-
tions in the observed outcomes, thus allowing for data with a large
dynamic range such as audio [27], [28], [24]. Second, we claim
that they address one important drawback of the Gaussian model:
its lack of robustness from a parameter estimation perspective.
Indeed, an observation that is far from the current belief will induce
significant changes in a Gaussian model. However, this spurious
observation may be caused not only by model discrepancies that
would justify the update, but also by outliers in the data, such
as those caused by sources interferences in a source separation
perspective. A more regularized pace for model updates may thus
be preferable not to get stuck in sub-optimal estimates. Such a
regularization can be induced by the heavy-tail Cauchy distribution.

Interestingly, assuming both a stationary and Cauchy distributed
waveform x̃ is equivalent to assuming independent STFT en-
tries x (f, t), with each one distributed with respect to an isotropic
complex Cauchy distribution (noted Cc). We call this a Cauchy-
harmonizable model, or a Cauchy process for short, as a special
case of the α-harmonizable family introduced in [24]:

x̃ Cauchy (locally stationary) process⇔
{

all x (f, t) independent
x (f, t) ∼ Cc (σ (f, t))

.

(2)
In (2), σ (f, t) is called a scale parameter. This equivalence
for α-stable processes between stationarity and an independently
distributed isotropic spectral representation is demonstrated e.g.
in [29, th. 6.5.1]. The Cauchy distribution is only a special case of
this result.

An interesting property of Cauchy processes is their stability
property. It means that if J signals sj are Cauchy proccesses, so
will be their sum. More precisely, if

∀j, sj (f, t) ∼ Cc (σj (f, t))

are the STFTs of J independent Cauchy (harmonizable) processes
called sources, then their sum x, the mixture, is distributed as1:

x (f, t) ,
∑
j

sj ∼ Cc

(∑
j

σj (f, t)

)
, (3)

1, stands for a definition.

so that its scale parameters σ are given by:

σ (f, t) =
∑
j

σj (f, t) . (4)

In other words, the scale parameters σj of Cauchy sources add
up to form the scale parameters σ of their mixture. Let p and pj
denote the modulus of the observed STFTs of x and sj respectively,
also called the magnitude spectrograms. Skipping the details, it can
basically be shown [30] that they form asymptotically unbiased
estimates of the Cauchy scale parameters σ and σj in (4), up to a
multiplicative constant independent of the signal. This leads to:

p (f, t) ≈
∑
j

pj (f, t) , (5)

which is often taken as a starting point in many audio processing
studies (see e.g. [31]). To put it simply, (5) means that the
magnitude spectrograms of the sources add up to form that of
the mixture. As far as we know, only Cauchy processes have this
property. Interestingly enough, we also have [24]:

E
[
sj (f, t) | x (f, t) , {σj}j

]
=

σj (f, t)∑
j′ σj′ (f, t)

x (f, t) , (6)

which means that if we know only the mixture and the scale
parameters, we can estimate the sources through a soft TF masking.
Doing so is furthermore the optimal way to proceed in a pos-
terior expectation sense. A practical estimate ŝj of sj is hence
obtained by replacing the true scale parameters by the magnitude
spectrograms pj . This strategy has long been known to provide
excellent performance in many audio processing studies, even if no
theoretical interpretation of this fact was available until recently.

To summarize, the Cauchy process model puts together robust
signal processing tools through the use of the heavy-tail Cauchy
distribution [21], [27], and the efficiency of TF masking, that was
known to be theoretically grounded only for wide-sense stationary
signals until recently [24].

II-B. The Cauchy NMF model
In the literature, the α-harmonizable model with α = 2 is

called the Local Gaussian Model (LGM [32], [33], [26]). The
scale parameters, termed Power Spectral Densities (PSDs) are in
that case denoted as σ2

j . They correspond to variances and are
thus nonnegative. A popular model for audio sources is to express
their PSDs as single spectral nonnegative patterns Wj (f), each of
dimension F × 1, modulated over time through activation vectors
Hj (t), of dimension 1× T :

σ2
j =WjHj , (7)

yielding σ2 =
∑
jWjHj for the PSD of the mixture. This can be

expressed in a concise matrix form as:

σ2 =WH, (8)

where Wj are the columns of W and Hj are the rows of H .
The NMF has been very popular in audio and has encountered
successful applications in both music information retrieval [9] and
audio processing tasks [17], [31]. In essence, those approaches boil
down to fitting the empirical power-spectrogram p2 of the mixture,
by minimizing the Itakura-Saito divergence d0 (IS):{

Ŵ , Ĥ
}
← argmin

W,H

∑
f,t

d0

(
p2 (f, t) |

∑
j

Wj (f)Hj (t)

)
.

However, many studies have also reached excellent performance
by fitting the magnitude spectrogram p of the mixture instead
of p2. This is notably the case in PLCA studies [31], where



the KL divergence d1 is often used as a cost-function. In audio
processing, the choice of this divergence is in fine justified by good
empirical performance, but as we discussed above, only the Cauchy
model over waveforms leads to additive magnitude spectrograms.
Logically, we thus propose to study the performance of the Cauchy-
NMF model:

σ =WH, (9)

where the scale parameters σ (f, t) now pertain to Cauchy instead
of Gaussian random variables x (f, t).

III. ESTIMATION OF THE PARAMETERS
On probabilistic grounds, a natural idea to estimate the param-

eters {W,H} of the Cauchy NMF model is to adopt a maximum
likelihood approach. Since all TF bins x (f, t) are independent, this
leads to2:{
Ŵ , Ĥ

}
← argmin

W,H

D (σ) ,
∑
f,t

− log P (x (f, t) |W,H)

 ,

(10)
where D (σ) is the global cost function to be minimized and
the closed-form expression of P (x (f, t) |W,H) is given by the
Complex isotropic Cauchy distribution [29, ex. 2.5.6 p. 81]:

P (x (f, t) |W,H) =
σ (f, t)

2π
(
p (f, t)2 + σ (f, t)2

)3/2 . (11)

It is straightforward to show that D (σ) in (10) is given by:

D (σ)
c
=
∑
f,t

[
3

2
log
(
p (f, t)2 + σ (f, t)2

)
− log σ (f, t)

]
, (12)

where c
= denotes equality up to an additive constant independent

of {W,H}. The common methodology here is to proceed by
iteratively updating W and H so as to decrease D (σ), while
the other one is kept fixed. We considered two approaches for
this purpose. We call the first one the naive update, presented
in section III-A, and the second one is called the Majorization-
Equalization (ME) update, presented in section III-B.

III-A. Naive multiplicative updates
A first straightforward but heuristic approach involves the deriva-

tive of the global cost function D (σ) in (12) with respect to any
parameter —written θ— to be updated (θ is either W or H):

∂D (σ)

∂θ
=∑
f,t

(
3σ (f, t)

p (f, t)2 + σ (f, t)2
− 1

σ (f, t)

)
∂σ (f, t)

∂θ
. (13)

Since this derivative can be expressed as the difference G+ (θ)−
G− (θ) between two nonnegative terms:

G+ (θ) =
∑
f,t

3σ (f, t)

p (f, t)2 + σ (f, t)2
∂σ (f, t)

∂θ

G− (θ) =
∑
f,t

σ (f, t)−1 ∂σ (f, t)

∂θ
,

we can adopt the now classical multiplicative update procedure
pioneered in [2] and update θ through:

θ ← θ · G− (θ)

G+ (θ)
,

2The notation P (z) here denotes the probability density function of the
random variable z.

All updates use the latest available versions of all parameters for comput-
ing σ:

• W ←W · (σ
·−1)H>

zH>

• H ← H · W
>(σ·−1)
W>z

The notations a·b and a
b

denote element-wise multiplications and divisions,
respectively, while a·p denotes element-wise exponentiation for p ∈ Z. z is
defined in (14).

Table I. Naive multiplicative updates for Cauchy NMF.

where a · b and a
b

denote element-wise multiplications and divi-
sions, respectively. Provided W and H have been initialized as
nonnegative, they remain so throughout iterations. The procedure
is summarized in table I, where z is defined as:

z (f, t) ,
3σ (f, t)

p (f, t)2 + σ (f, t)2
. (14)

III-B. Majorization-equalization update
Even if the updates found in table I are derived straightforwardly

using classical non-negative methodology, they do not guarantee a
non-increasing cost-function D (θ). An alternative way to derive
update rules for the parameters is to adopt the Majorization-
Equalization (ME) approach presented in [5]. In essence, the
strategy first requires identifying a majorization of the cost-
function (12), which is of the form:

∀ (σ̂, σ) , D(σ̂) ≤ g (σ̂, σ)

with ∀σ,D (σ) = g (σ, σ). Then, given some current parameter,
we look for a new different value, such that the new model σ̂
obeys g (σ̂, σ) = D (σ). This approach guarantees that the cost
function will be non-increasing over the iterations, and it is
known to provide a faster convergence rate than the "majorize-
minimize" approach [34]. Besides, remember that in the case of β-
divergences, this strategy leads to the regular NMF multiplicative
update rules [5]. Due to space constraints, the complete details of
the ME derivation we propose will be given in a further study.
Here, we simply mention that the majorization we used is:

∀ (σ, σ̂) , D(σ̂) ≤ D(σ)

+
∑
f,t

3

2

σ̂ (f, t)2 − σ (f, t)2

σ (f, t)2 + p (f, t)2
+
σ (f, t)

σ̂ (f, t)
− 1. (15)

We provide the corresponding updates for the model parameters
in table II and highlight that the Cauchy cost function (12) is
guaranteed to be non-increasing over iterations using these updates.

IV. EVALUATION
IV-A. Separation performance on musical signals

To test the performance of Cauchy NMF for sound source sep-
aration, a database of 25 single channel mixtures each containing
2 monophonic instruments was used. Details of the dataset can be
found in [35]. The naive Cauchy updates as well as the ME updates
were tested against KL-NMF (with magnitudes of STFT) and IS-
NMF (with power spectrograms). The rank of the factorization
was chosen as 10, and basis functions were clustered using the
oracle clustering approach described in [36]. The tests were ran 10
times, with the same random initialization used for all algorithms
tested. Figure 1 then shows the Signal to Distortion Ratio (SDR)
as obtained using [37]. It can be seen that the performance of both
Cauchy algorithms is competitive with that of the KL divergence



All updates use the latest available versions of all parameters for comput-
ing σ. Update each matrix θ (either W or H) through:

θ ← θ ·
bθ

aθ +
√
a·2θ + 2bθ · aθ

where aθ and bθ are of the same size as θ and given by:

θ aθ bθ

W 3
4

σ
σ·2+p·2

H> σ·−1H>

H 3
4
W> σ

σ·2+p·2
W>σ·−1

The notations a·b and a
b

denote element-wise multiplications and divisions,
respectively, while a·p denotes element-wise exponentiation for p ∈ Z.

Table II. Majorization-equalization updates for Cauchy NMF.

Fig. 1. SDR for Cauchy Naive (CN), Cauchy ME (ME), KL and
IS NMF algorithms (10 runs). Higher is better

and outperforms that of IS-NMF, with informal listening tests
suggesting the separation quality is perceptually similar for both
Cauchy algorithms and the KL divergence. This demonstrates that
Cauchy NMF is useful for audio source separation. Figure 2
shows the convergence of both Cauchy NMF algorithms against
the iteration number. Both algorithms converge well, with the naive
updates initially converging faster than the ME updates. In practice,
the naive updates were always observed to converge even if it is
not theoretically guaranteed by the update rules.

IV-B. Denoising performance on synthetic signals
To test the denoising ability of Cauchy NMF, synthetic test data

were created using 5 component pairs for W and H generated by
taking the 4th power of random Gaussian noise, resulting in sparse
components. The product WH , of dimension F ×T was then used
as the scale parameters of independent symmetric α-stable random
observations, for various values of α in the range 0.2 - 2. Fitting
parameters on this observation permits to test the robustness of the
proposed algorithms against adversity of noise, because small α in
essence lead to observations corrupted by very adverse impulsive
noise. Performance of model parameters estimation was tested for
the Cauchy NMF algorithms, as well as KL-NMF, IS-NMF and
RPCA. Here the rank of the NMF decompositions was set to 5.

Fig. 2. Cauchy Cost Function vs. Iteration Number (10 runs).

Fig. 3. Reconstruction of original data measured using Log(α-
dispersion) as a function of α

Fig. 4. Reconstruction of original data measured using Log(KL
divergence) as a function of α

Figure 3 shows the average results obtained over 100 independent
runs when using the α-dispersion to measure reconstruction of the
original clean data as a function of α. The α-dispersion is defined as

Lα =
∑
ft

|σ (f, t)− σ̂ (f, t)|1/α , (16)

where σ =WH and σ̂ = Ŵ Ĥ . Due to the large range of the data,
the log of the α-dispersion is plotted.

Remarkably, the Cauchy NMF algorithms show a very similar re-
construction to that obtained using RPCA, with all three coinciding
in the plots shown. It can be seen that the Cauchy NMF algorithms
are more robust to noise than KL-NMF and IS-NMF, demonstrating
the usefulness of Cauchy NMF in adverse noise conditions.

Also measured was the quality of the reconstruction of the
data in terms of the KL divergence, shown in figure 4. Here the
absolute value of the RPCA low rank matrix is used as a proxy
for the actual RPCA reconstruction due to the negative values
allowable in RPCA. It can be seen that, in terms of reconstruction
measured using the KL divergence, Cauchy NMF algorithms are
considerably more robust than KL-NMF and IS-NMF for impulsive
noise (α ≤ 1), while showing improved robustness at low α
compared to RPCA. This demonstrates that Cauchy NMF is a
suitable algorithm for robust denoising of data.

V. CONCLUSION
We have introduced new algorithms for NMF based on the

complex Cauchy distribution, and shown that it is a natural fit for
audio signals where the magnitude spectrograms are assumed to
be additive. We provide two methods for implementing Cauchy
NMF, the first one based on naive multiplicative updates and the
second one based on a majorization-equalization approach, for
which the cost function is guaranteed to reduce at each iteration.
It is then shown that in practice both algorithms converge well
and that they are competitive with existing NMF-based separation
algorithms, while having the benefit of being theoretically justified.
Furthermore, Cauchy NMF is demonstrated to be more robust to
noise than KL and IS-NMF, while demonstrating similar robustness
to RPCA.
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