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ABSTRACT

Phase recovery of modified spectrograms is a major issue in au-
dio signal processing applications, such as source separation. This
paper introduces a novel technique for estimating the phases of
components in complex mixtures within onset frames in the Time-
Frequency (TF) domain. We propose to exploit the phase repeti-
tions from one onset frame to another. We introduce a reference
phase which characterizes a component independently of itsactiva-
tion times. The onset phases of a component are then modeled as
the sum of this reference and an offset which is linearly dependent
on the frequency. We derive a complex mixture model within on-
set frames and we provide two algorithms for the estimation of the
model phase parameters. The model is estimated on experimental
data and this technique is integrated into an audio source separation
framework. The results demonstrate that this model is a promising
tool for exploiting phase repetitions, and point out its potential for
separating overlapping components in complex mixtures.

Index Terms— Phase repetitions, phase reconstruction, audio
source separation, time-frequency analysis

1. INTRODUCTION

A variety of audio signal processing techniques acts in the TF do-
main, exploiting the particular structure of music signals. For in-
stance, the family of techniques based on Nonnegative Matrix Fac-
torization (NMF) is often applied to spectrogram-like representa-
tions, and has proved to provide a successful and promising frame-
work for audio source separation [1].

However, when it comes to resynthesizing time signals, obtain-
ing the phase of the corresponding Short-Time Fourier Transform
(STFT) is necessary. In order to produce perceptually satisfactory
sounding signals, it is important to enforceconsistency, i.e. to ob-
tain a complex-valued component that is close to the STFT of a
time signal. In the source separation framework, a common prac-
tice consists in applying Wiener-like filtering (soft masking of the
complex-valued STFT of the original mixture) [2]. However,this
method does generally not lead to consistent components. Alterna-
tively, a consistency-based approach is often used for phase recov-
ery [3]. That is, a complex-valued matrix is iteratively computed
in order to maximize its consistency. A recent benchmark hasbeen
conducted to assess the potential of source separation methods with
phase recovery in NMF [4]. It points out that consistency-based
approaches provide poor results in terms of audio quality. Besides,
Wiener filtering fails to provide good results when sources overlap
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in the TF domain. Thus, phase recovery of modified audio spectro-
grams is still an open issue [5].

Another approach to reconstruct the phase of a spectrogram is
to use a phase model based on the analysis of mixtures of slowly-
varying sinusoids [6]. Contrary to consistency-based approaches
using the redundancy of the STFT, this model exploits the natu-
ral relationships between adjacent TF bins. This approach is used
in the phase vocoder algorithm [7], where it is mainly dedicated
to time stretching. In [8], a complex NMF framework with phase
constraints based on sinusoidal modeling is introduced. In[9], the
authors proposed to generalize this approach and have provided a
phase unwrapping algorithm that has been applied to an audiosig-
nal restoration task. However, the knowledge of the phases within
onset frames is required to initialize the unwrapping. Finally, rela-
tive phase offsets between partials have been exploited in acomplex
matrix decomposition framework in [10].

In this paper, we propose to exploit the phase repetitions from
one onset frame to another in order to estimate the phases of the
complex-valued components composing a mixture. We model the
phase of a given source within an onset frame as the sum of a ref-
erence phase and an offset which is linearly dependent on thefre-
quency. We then derive a mixture model of complex components
within onset frames. The phase parameters are estimated by means
of two algorithms, relying on either astrict or arelaxed phase con-
straint. Phase parameters estimation is performed on experimental
signals. It is also combined to the linear unwrapping technique [9]
and integrated into an audio source separation framework. Contrary
to consistency-based approaches, this technique is based on a si-
nusoidal model, thus it will be compared to the traditional Wiener
filtering technique. Since our phase reconstruction methodcan be
used in addition to any spectrogram factorization technique, we will
assume that the spectrograms of the components are known.

The paper is organized as follows. Section 2 presents the phase
model. Section 3 is dedicated to the estimation of the phase pa-
rameters. Section 4 describes several experiments that highlight the
potential of this technique. Finally, section 5 draws some conclud-
ing remarks and prospects future directions.

2. REPEATING PHASE MODEL

2.1. Main concept

Let us consider a time signalx(n), n ∈ Z. The expression of the
STFT is, for each frequency channelf ∈ J0;F − 1K andt ∈ Z:

X(f, t) =
N−1
∑

n=0

x(n+ tS)w(n)e−2iπ f
F
n
, (1)
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Figure 1: Spectrogram with two onset frames (left) and phase
difference between onset frames (right)

wherew is anN sample-long analysis window andS is the time
shift (in samples) between successive frames.

We assume thatx represents a source that is activatedtwice.
The corresponding onset frame indexes in the TF domain are de-
noted byt1 andt2. The key idea here is thatX(f, t1) andX(f, t2)
are the Fourier transforms of two signals that are approximately
equal up to a gain factorρ ∈ R+ and a time delayη ∈ J0;N − 1K.
In the TF domain, that leads to:

X(f, t2) ≈ X(f, t1)ρe
iλf
, with λ =

2πη

F
. (2)

The family of NMF techniques exploits (2) through its magni-
tude. Indeed, it models the spectrogram of a source as a spectral
template that is activated over time with a variable gain factor. We
propose here to exploit (2) through its phase: the phase of a compo-
nent within an onset frametm is obtained by applying an offset to a
reference phase that only depends on the frequency:

∠X(f, tm) = φ(f, tm) ≈ ψ(f) + λ(m)f, (3)

where∠(.) denotes the complex argument. Since the reference
phase is defined up to a delay, we can set for instanceλ(0) = 0
to ensure thatψ(f) is not ambiguously defined1.

2.2. Example

We propose to investigate the validity of the model (3) on a sim-
ple example. We consider signals made up of two occurrences of a
piano note obtained from the Midi Aligned Piano Sounds (MAPS)
database [11]. A gain factor is applied to the second occurrence. We
then compute the phase difference between onset frames. Accord-
ing to the model, this difference is expected to be a linear function
of the frequency. This procedure is illustrated in Figure 1.

The relative error between the observed data and the modeled
estimate is averaged over30 signals. A1.5% error is obtained.
Those first observations seem to assess the accuracy of our model,
and justify to exploit phase repetitions by modeling the phase dif-
ference between onset frames as a linear function of the frequency.

2.3. Mixture model

Let us now consider the STFTX ∈ C
F×T of a mixture ofK

sourcesXk, whose magnitudes and phases are denotedAk andφk

respectively. We denotetm them-th onset frame,m ∈ J0;M −1K.
We then define the onset matrixY ∈ C

F×M :

1However, when dealing with mixtures of sources in practicalapplica-
tions, observing an isolated source is no longer guaranteed, since audio
sources often overlap in the TF domain. Then, bothψk andλk parame-
ters must be estimated for any sourcek.

Y (f,m) = X(f, tm) =

K
∑

k=1

A
k(f, tm)eiφ

k(f,tm)
. (4)

Incorporating the model (3) in (4) leads to the following mixture
model:∀(f,m) ∈ J0, F − 1K × J0,M − 1K,

Ŷ (f,m) =

K
∑

k=1

A
k(f, tm)eiψ

k(f)
e
iλk(m)f

. (5)

It is worth noting that this model reduces the dimensionality
of the data within onset frames (assuming thatM > 1): the on-
set phases of the sourcesφk are represented byKFM parameters,
while our model uses onlyK(F +M) parameters.

3. PHASE PARAMETERS ESTIMATION

We propose in this section a technique for estimating the phase pa-
rametersψk(f) andλk(m) in model (5). Magnitude parametersAk

are assumed to be known. The estimation is performed throughthe
minimization of a cost function. A first method consists in choos-
ing the cost function as the squared Euclidean distance between the
data and the model. We qualify this technique asstrict because the
parameters are directly learned from the data.

However, when the data are no longer properly modeled by (5),
a strict constraint may be too restrictive to estimate the parameters.
We then propose a method based on alternating the estimationof
the phases of the components (4) and the estimation of the phase
parameters (5). Drawing on previous work such as [12], this leads
to a method that we will qualify asrelaxed.

3.1. Strict phase constraint

In this section, we consider the following cost function:

Cs =
∑

f,m

|Y (f,m)−

K
∑

k=1

A
k(f, tm)eiψ

k(f)
e
iλk(m)f |2. (6)

The parameter estimation is then performed in two steps.
Estimation ofψk(f). We calculate the partial derivative ofCs

with respect toψk(f) and we seekψk(f) such that this derivative
is zero. This leads to the following estimation:

ψ
k(f) = ∠

(

∑

m

B
k(f,m)Ak(f, tm)e−iλ

k(m)f

)

, (7)

whereBk(f,m) = Y (f,m)−
∑

l 6=kA
l(f, tm)eiψ

l(f)eiλ
l(m)f .

Estimation of λk(m). The problem of minimizingCs with
respect toλk(m) becomes that of minimizing:

C̃s(k,m) =
∑

f

|Bk(f,m)e−iψ
k(f)−Ak(f, tm)eiλ

k(m)f |2. (8)

Let us noteβk(f,m) = Bk(f,m)e−iψ
k(f) and:

β
k(m) = [βk(0,m), ..., βk(F − 1,m)]T ,

Λk(m) = [1, eiλ
k(m)

, ..., e
iλk(m)(F−1)]T ,

α
k(m) = [Ak(0, tm), ..., Ak(F − 1, tm)]T .
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Algorithm 1 Strict phase estimation procedure

Inputs: Y,A, ψini, λini
Initialization :
ψ = ψini, λ = λini

Ŷ k(f,m) = Ak(f, tm)eiψ
k(f)eiλ

k(m)f

Ŷ =
∑K

k=1 Ŷ
k

Bk = Y − Ŷ + Ŷ k

while stopping criteria not metdo
for k = 1 toK, f = 0 toF − 1 andm = 1 toM − 1 do

Computeψ

ψk(f) = ∠

(

∑

m
Bk(f,m)Ak(f, tm)e−iλ

k(m)f
)

Computeβ

βk(f,m) = Bk(f,m)e−iψ
k(f)

βk(m) = [βk(0,m), ..., βk(F − 1,m)]T

Computeλ
λk(m) = ∠

(

βk(m)H↓ β
k(m)↑

)

Compute Ŷ
Ŷ k(f,m) = Ak(f, tm)eiψ

k(f)eiλ
k(m)f

Ŷ =
∑K

k=1 Ŷ
k

ComputeB
Bk = Y − Ŷ + Ŷ k

end for
end while
Outputs: Ŷ , Ŷ k, ψ, λ

Then, (8) can be rewritten as:

C̃s(k,m) = ||αk(m)⊙ Λk(m)− β
k(m)||2, (9)

where||.|| denotes the Euclidean norm and⊙ the Hadamard prod-
uct. This problem can be solved by means of an adaptation of the
ESPRIT algorithm [13]. Indeed, we observe that whenC̃s is zero,
then (we partially omit the indexesk andm for more clarity):

β
H

↓
β
↑
= (α⊙ Λ)H↓ (α⊙ Λ)↑ = α

H
↓ α↑e

iλk(m)
, (10)

wherev↓ (resp. v↑) denotes the vector obtained by removing the
last (resp. the first) entry from vectorv, and.H denotes the Hermi-
tian transpose. This leads to the following estimation:

λ
k(m) = ∠

(

β
k(m)H↓ β

k(m)↑
)

. (11)

From (7) and (11) we can derive the full procedure (detailed in
Algorithm 1) of the iterative phase parameters estimation.

3.2. Relaxed phase constraint

In this paragraph, we consider a relaxed constraint, which leads to
the following cost function:

Cr =
∑

f,m

|Y (f,m)−
K
∑

k=1

A
k(f, tm)eiφ

k(f,tm)|2

+ σ
∑

f,m,k

A
k(f, tm)2|eiφ

k(f,tm) − e
iψk(f)

e
iλk(m)f |2, (12)

whereσ is a prior weight which promotes the phase constraint. The
minimization of this cost function is performed with a technique

Algorithm 2 Relaxed phase estimation procedure

Inputs: Y,A,ψini, λini, φini, σ
Initialization :
φ = φini, ψ = ψini, λ = λini

Ŷ k(f,m) = Ak(f, tm)eiφ
k(f,tm)

Ŷ =
∑K

k=1 Ŷ
k

Bk = Y − Ŷ + Ŷ k

while stopping criteria not metdo
for k = 1 toK, f = 0 toF − 1 andm = 1 toM − 1 do

Computeφ
φk(f, tm) = ∠(Bk(f,m)Ak(f, tm)

+σAk(f, tm)2eiψ
k(f)eiλ

k(m)f )
Computeψ

ψk(f) = ∠

(

∑

m
Ak(f, tm)2eiφ

k(f,tm)e−iλ
k(m)f

)

Computeγ

γk(f,m) = Ak(f, tm)eiφ
k(f,tm)e−iψ

k(f)

γk(m) = [γk(0, m), ..., γk(F − 1, m)]T

Computeλ
λk(m) = ∠

(

γk(m)H↓ γ
k(m)↑

)

Compute Ŷ
Ŷ k(f,m) = Ak(f, tm)eiφ

k(f,tm)

Ŷ =
∑K

k=1 Ŷ
k

ComputeB
Bk = Y − Ŷ + Ŷ k

end for
end while
Outputs: Ŷ , Ŷ k, ψ, λ, φ

similar to the one employed for the strict constraint method. The
estimation of the parameterλk(m) requires the introduction of a
new auxiliary variableγ which is similar to the variableβ intro-
duced in the previous paragraph:

γ
k(f,m) = A

k(f, tm)eiφ
k(f,tm)

e
−iψk(f)

. (13)

Only one additional step is required for estimatingφk(f, tm),
which consists in a calculation identical to (7). The procedure of
phase parameters estimation under the relaxed constraint is pro-
vided in Algorithm 2.

4. EXPERIMENTAL RESULTS

In this section we present some experiments conducted to evalu-
ate the potential of our method. For all experiments, signals are
sampled atFs = 11025 Hz. The STFT is computed using a
512 sample-long normalized Hann window with75% overlap. The
model is estimated by running100 iterations of our two algorithms
(the performance is not further improved beyond).

The MATLAB Tempogram Toolbox [14] is used to estimate the
onset frames. We then extract the onset matrixY from the full data
matrixX. The PEASS Toolbox [15] is used to evaluate the source
separation quality. It computes the following energy ratios: the SIR
(signal to interference ratio) that measures the rejectionof interfer-
ences, the SAR (signal to artifact ratio) for the rejection of artifacts,
and the SDR (signal to distortion ratio) for the global quality.
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Figure 2: Estimation error between data and estimated mixture.
Model-built data (left) and piano notes mixture (right).

4.1. Onset phase estimation

In this experiment, we seek to estimate the onset phase parameters
on mixtures of two sources. For all mixtures, each source is succes-
sively observed alone, then the two sources are simultaneously acti-
vated. Algorithms are tested on model-built data (i.e. based on (4))
and on mixtures of piano notes from the MAPS database [11]. We
test both the strict and the relaxed algorithms, for variousvalues of
the parameterσ. Magnitudes valuesA are assumed to be known, in
order to specifically inquire about the quality of phase estimation.
These algorithms are compared to the traditional Wiener filtering
approach. For all these methods, we compute the estimation error
1
K

∑

k ||Y
k − Ŷ k||F whereŶ k is the estimatedk-th source within

onset frames and||.||F denotes the Frobenius norm. Results are
averaged over30 signals for each dataset and presented in Figure 2.

For the model-built data, the algorithm under strict constraint
leads to a better phase estimation than Wiener filtering method. In-
deed, this method overcomes the issue of TF overlap, leadingto an
accurate estimation of the phases of the data. The relaxed algorithm
also provides interesting results, however the quality of the estima-
tion is highly dependent on the value of the parameterσ. On real-
istic data, the strict algorithm does not perform better than Wiener
filtering. The strict phase constraint seems too restrictive to lead to
an accurate estimation of the parameters. However, when there-
laxation parameterσ is properly chosen (around0.2 in this case),
our method leads to a slightly better phase estimation than the tra-
ditional Wiener filtering technique.

Those results demonstrate the potential of a model exploiting
phase repetitions between onset frames. Future research could in-
vestigate on the automatic calculation of the optimal valuefor the
relaxation parameterσ.

4.2. Application to source separation

We propose to apply our estimation technique to a source separation
task. We consider several datasets:

A: 30 mixtures of two sources, composed of synthetic damped
sinusoids. Sources do not overlap in the TF domain.

B: 30 mixtures of two sources, composed of synthetic damped
sinusoids. Sources overlap in the TF domain.

C: A 1.57 second-long MIDI audio excerpt. It is composed of
several occurrences of three bass notes, three keyboard notes,
and one guitar chord.

For mixtures in datasets A and B, each source is successively
observed alone, then both sources are activated simultaneously.

Dataset Method SDR SIR SAR

A
Wiener 29.3 20.8 58.6
RePU 3.2 9.6 26.1

B
Wiener 10.5 7.9 20.9
RePU 3.2 8.8 25.2

C
Wiener −2.3 −20.6 20.8
RePU −3.2 −16.7 11.6

Table 1: Average source separation performance (SDR, SIR and
SAR in dB) for various algorithms and datasets

Onset phase estimation is performed with the relaxed algorithm
andσ = 0.2. Then, the linear unwrapping algorithm [9] is applied
to complete the phase restoration over time frames. This method
will be referred to asRePU(RepeatingPhase withUnwrapping). It
is compared to the traditional Wiener filtering approach.

Results presented in Table 1 on dataset A show a clear superi-
ority of Wiener filtering method over our technique. This wasex-
pected because there is no overlap in the TF domain in this dataset.
Thus, if a source is active in a TF bin, the phase of this sourceis
exactly equal to the phase of the mixture. However, when overlap
occurs in the TF domain (dataset B), our method leads to an in-
crease in interference and artifact rejection. This resultpoints out
the potential of our technique for separating overlapping sources in
the TF domain. Finally, the test conducted on a realistic musical
excerpt (dataset C) shows that our method leads to a slight increase
in interference rejection compared to Wiener filtering.

The MATLAB code related to this work and some sound ex-
cerpts are provided on the author web page [16]. An informal per-
ceptive evaluation of the source separation quality suggests that the
performance measurement employed in these tests may not be able
to capture some properties of the separated signals. For instance, the
beat phenomenon cannot be suppressed when the phase is retrieved
with Wiener filtering, while our technique dramatically attenuates
this phenomenon. However, we sometimes observe a loss in tran-
sient definition when using our technique.

5. CONCLUSION

The model introduced in this paper is a promising tool for estimat-
ing phase parameters of components in complex mixtures within
onset frames. The phase repetitions are exploited by means of the
modeling of an onset phase as the sum of a reference phase and a
delay linearly dependent on the frequency. Estimation is performed
with an algorithm relying on either a strict or a relaxed constraint.
Experimental results show that a fine tuning of the algorithmparam-
eter leads to a more accurate phase estimation than with the tradi-
tional Wiener filtering method. In particular, this technique showed
its potential for the source separation task when it is combined with
a phase unwrapping method.

Future research will focus on refining this repeating model in
order to encompass a variety of complex signals, e.g. sources ac-
tivated with different nuances and intensities. In addition to mod-
eling repetitions from one onset frame to another, we could model
the phase correlations between frequency channels within an on-
set frame. Finally, the magnitudes of the sources are not known in
practice, thus they could be estimated jointly with phase parameters
within a phase-constrained complex NMF framework [17]. Indeed,
including a phase constraint in a complex NMF model seems to be
a promising approach for exploiting both magnitude and phase rep-
etitions in complex mixtures.
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