
Contrast re-enhancement of Total-Variation regularization
jointly with the Douglas-Rachford iterations

Charles-Alban Deledalle Nicolas Papadakis
CNRS – Université Bordeaux
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Abstract—Restoration of a piece-wise constant signal can be performed
using anisotropic Total-Variation (TV) regularization. Anisotropic TV
may capture well discontinuities but suffers from a systematic loss of
contrast. This contrast can be re-enhanced in a post-processing step
known as least-square refitting. We propose here to jointly estimate the
refitting during the Douglas-Rachford iterations used to produce the
original TV result. Numerical simulations show that our technique is
more robust than the naive post-processing one.

I. INTRODUCTION

We consider the reconstruction of a 2D signal identified as a vector
u0 ∈ RN from its noisy observation f = Φu0 + w ∈ RP with w ∈
RP a zero-mean noise component and Φ∈RP×N a linear operator
accounting for a loss of information (e.g., low-pass filter). Anisotropic
TV regularization writes, for λ > 0, as [1]

uTV ∈ argmin
u∈RN

1
2
||Φu− f ||2 + λ||∇u||1, (1)

with∇u∈R2N being the concatenation of vertical and horizontal compo-
nents of the discrete gradient vector field of u, and ||∇u||1 =

∑
i |(∇u)i|

being a sparsity promoting term. Anisotropic TV is known to recover
piece-wise constant signals. However, even though the discontinuities can
be correctly recovered in some cases, the amplitudes of uTV are known
to suffer from a loss of contrast compared to u0 [2].

II. LEAST-SQUARE REFITTING PROBLEM

A simple technique to correct this effect, known as least-square
refitting, consists in enhancing the amplitudes of uTV while leaving
unchanged the set of discontinuities, as

ũTV ∈ argmin
u ; supp(∇u)⊂supp(∇uTV)

||Φu− f ||2 (2)

where, for x ∈ R2N , supp(x) = {i ∈ [2N ] ; ||xi|| 6= 0} denotes the
support of x. Post-refitting identifies supp(∇uTV) and solves (2) [3],
typically with a conjugate gradient. However, uTV is usually obtained
thanks to a converging sequence uk, and unfortunately, supp(∇uk) can
be far from supp(∇uTV) even though uk can be made arbitrarily close
to uTV. Such erroneous support identifications can lead to results that
strongly deviates from the solution ũTV.

III. JOINT REFITTING WITH DOUGLAS-RACHFORD

To alleviate this difficulty, we build a sequence ũk jointly with uk that
converges towards a solution ũTV. We consider the Douglas-Rachford
sequence uk applied to the splitting TV reformulation [4] given by

uTV ∈ argmin
u∈RN

min
z∈RN×2

1
2
||Φu− f ||2 + λ||z||1,2 + ι{z,u ; z=∇u}(z, u)

where ιS is the indicator function of a set S. This leads to the proposed
algorithm given, for τ > 0 and β > 0, by Eq. (3) (see right column).
The sequence uk is exactly the Douglas-Rachford sequence converging
towards a solution uTV [5]. Regarding ũk, we prove the following.

Theorem 1. Let α > 0 be the minimum non zero value of |(∇u)i|,
i ∈ [2N ]. For 0<β<αλ, ũk converges towards a solution ũTV.

Sketch of proof: As uk converges towards a solution uTV, for k large
enough, we get after few manipulations and triangle inequalities that



µk+1 = (Id + ∆)−1(2uk−µk−div(2zk−ζk))/2 + µk/2,

µ̃k+1 = (Id + ∆)−1(2ũk−µ̃k−div(2z̃k−ζ̃k))/2 + µ̃k/2,

ζk+1 = ∇µk+1, ζ̃k+1 =∇µ̃k+1,

uk+1 = µk+1 + τΦt(Id + τΦΦt)−1(f−Φµk+1),
ũk+1 = µ̃k+1 + τΦt(Id + τΦΦt)−1(f−Φµ̃k+1),

zk+1 = Ψζk+1 (ζk+1, λ), z̃k+1 =Πζk+1 (ζ̃k+1, λ)

(3)

where Ψζ(ζ, λ)i =

{
0 if |ζi| 6 τλ,
ζi − τλ sign ζi otherwise

and Πζ(ζ̃, λ)i =

{
0 if |ζi| 6 τλ+ β,
ζ̃i otherwise.

Fig. 1. Damaged image, result of TV, post-refitting and our joint-refitting.{
i ; |ζki | > τλ+ β

}
= supp(∇uTV) (for the given range of β). As a

result, for k large enough, the sequence (3) can be rewritten by substitut-
ing Πζ(·, λ) by the projector onto

{
u ; supp(u) ⊂ supp(∇uTV)

}
which

is exactly the Douglas-Rachford sequence for the refitting problem (2)
which is provably converging towards a solution ũTV [5]. �

IV. RESULTS AND DISCUSSION

Figure 1 shows results on an 8bits image damaged by a Gaussian
blur of 2px and white noise σ = 20. The parameter β is chosen as the
smallest positive value up to machine precision. While TV reduces the
contrast, refitting recovers the original amplitudes and keep unchanged
the discontinuities. Post-refitting offers comparable results to ours except
for suspicious oscillations due to wrong support identification.

Being computing during the Douglas-Rachford iterations, our refitting
strategy is free of post-processing steps such as support identification.
It is moreover easy to implement and can be used likewise for other `1
analysis penalties. Extensions of this approach for isotropic TV or block
sparsity regularizations are under investigation.
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