
Discovery and registration of components
in multimodal systems distributed on the IoT

B. Helena RODRIGUEZ
W3C’s MMI Working Group Editor

Paris, FRANCE
helena.rodriguez@shopedia.fr

Jean-Claude MOISSINAC
Institut Mines-Telecom

Telecom ParisTech CNRS LTCI
46, rue Barrault 75634 Paris CEDEX 13

moissinac@telecom-paristech.fr

Abstract— One of the major gaps in the current HTML5
web platform is the lack of interoperable means for an
application to discover services and applications available in a
given space and network. This problem is shared by the
multimodal applications developed with web technologies, for
example, in smart houses or applications for the Internet of
Things. To address this gap, we produced a SOA approach for
the W3C’s Multimodal Working Group that aims to allow the
discovery and registration of components used in multimodal
interaction systems in the web of things. In this approach, the
components are described and virtualized in a dedicated module
communicating with two dedicated events, and registering
components in a Resources Manager to facilitate the fine
management of concurrent multimodal interactions, and the
interoperable discovery, registration and filtering of features
provided by heterogeneous and dynamic components in the web
of things.

Keywords-component; Multimodal Interaction, Semantic
Interaction, Interface Services, MMI Architecture and
Interfaces, Pervasive computing, Context awareness

I. INTRODUCTION
The Multimodal Architecture and Interfaces

(MMI-Arch) is a current Recommendation of the
World Wide Consortium [1] introducing a generic
structure and a communication protocol to allow
the components in a multimodal system to
communicate with each other. It proposes also a
generic event-driven architecture and a general
frame of reference focused exclusively in the control
of the flow of data messages. This frame of
reference has been proposed due to a lack of
distributed approaches for multimodal systems “in
the cloud”. These approaches are mostly produced in
ad-hoc solutions, as shown by a state of the art of
100 relevant multimodal systems where it was
observed that more than 97% of the systems had
little or no discovery and registration support [2].

 At the time, even the W3C’s MMI Architecture
and Interfaces (MMI-Arch) and its runtime
framework [3] failed to address: 1) the component’s
discovery and registration to support fusion
(integration) and fission (composition) mechanisms,
2) the modality component’s data model needed by
this registry and 3) the modality component’s
annotation to facilitate the orchestration (and even
the turn-taking) mechanism.

These three issues are addressed and to some
extent resolved by our SOA proposal, which is now
adopted as a W3C’s recommendation.

Thus, our proposal has become an interoperable
extension for the MMI-Arch’s model, designed to
support the automation of the discovery, registration
and composition of multimodal semantic services. It
is also designed to fulfill the requirements of high-
level Quality of Service (QoS) like: the accurate
selection of components when these are not
available anymore, do not meet the expected
functionality or disrupt the context of use.
 With these goals in mind, our contribution was
structured on three parts: 1) a new addressing
method needed for the component’s announcement
at bootstrapping; 2) an architectural extension in
order to support the handling of the state of the
multimodal system using a virtual component
approach for registration and 3) two new events for
the messaging mechanism, to address the
requirements of discovery and registration on
distributed systems.

These three parts are currently completed by the
creation of a common and interoperable vocabulary
of states and generic features to allow the gross

DOI: 10.18293/DMS2015-39

discovery of modalities in large-networks over a
concrete networking layer [4]

In the following sections we will present our
contribution as follows: In Sec. 2 we will give an
overview of the problem, followed by a study of the
related work in Sec 3. In Sec. 4 we describe our
work on Discovery and Registration and finally, we
present a conclusion and some perspectives to
continue this work.

II. PROBLEM STATEMENT
Historically, multimodal systems were

implemented in stable and well-known
environments. Its complexity demanded laboratory-
like implementation and very few experiences were
developed for real-time contexts or component
distribution. But this situation has evolved. The web
developer’s community is progressively confronted
with the problem of modality integration in large-
scale networks which is expected to be huge in the
years to come, when the Web of Things will attain a
state of maturity.

The increasing amount of user-produced and
collected data will also require a more dynamic
software behavior with a more adequate approach 1)
to handle the user’s technical environment where the
demand for energy supply is getting higher and
higher, and 2) to encourage and improve the
efficiency in consumption boosting the creation of
systems compatible with smart-grid technologies.

For example, in Japan [5] (as in European
countries) the distributed applications will play a
very strategic role in the reduction of energy
consumption, helping to evolve to an on-demand
model. With this goal, the sustainable consumption
in houses must be handled and analyzed distantly,
using data collected by multimodal applications
installed on multiple kinds of devices of the Internet
of Things.

These applications must interact in a coordinated
manner in order to improve the energetic efficiency
of the application behavior, to collaborate in the
home automation management and in some cases,
even the user profiling; the whole with a distributed
platform.

Thus, we face the raising of multiple issues,
concerning the multimodal user interaction with
very heterogeneous types of devices (some of them

with low resources), protocols and messaging
mechanisms to be synchronized in an interoperable
way.

In this context, on one side, modality discovery
and selection for distributed applications becomes a
new working horizon giving new challenges for
multimodal systems, user-centric design and the web
research. And in the other side, generic and
interoperable web approaches, using web
technologies but capable of going beyond the
browser model, will be unavoidable.
A. Multimodal Discovery and Registration

Multimodal systems are computer systems
endowed with rich capabilities for human-machine
interaction and able to interpret information from
various communication modes. According to [6] the
three principal features of multimodal systems are:
1) the fusion of different types of data; 2) real-time
processing and temporal constraints imposed on
information processing; 3) the fission of restituted
data: a process for realizing an abstract message
through output on some combination of the available
channels.

On these systems, modality management is
mostly of the time hard-coded, leaving aside the
problem of a generic architecture respond to
extensibility issues and the need of discovery,
monitoring and coordination of modalities in real-
time with context- awareness. Consequently,
multimodal applications were manually composed
by developers and shared via web APIs and
embedded web technologies, in an ad-hoc and
proprietary way.

To address this lack of a generic approach, the
MMI Architecture proposes an architectural pattern
for any system communicating with the user through
different modalities simultaneously instantiated in
the same interaction cycle. In this unique context of
interaction the final user can dynamically switch
modalities. This kind of bi-directional system
combines inputs and outputs in multiple sensorial
modes and modalities (e.g. voice, gesture,
handwriting, biometrics capture, temperature
sensing, etc) and can be used to identify the meaning
of the user’s behavior or to compose intelligently a
more adapted, relevant and pertinent message.

Other important characteristic of the Multimodal
Architecture and Interfaces specification is that it

uses the MVC design pattern generalizing the View
to the broader context of the multimodal interaction
presentation, where the information can be rendered
in a combination of various modalities. Thus, the
MMI recommendation distinguishes (Fig. 1) three
types of components: the Interaction Manager, the
Data Component and the Modality Components.

Figure 1. The W3C's Multimodal Architecture

The Interaction Manager is a logical component
responsible of the integration and composition of the
interaction cycles following multimodal rules. It
handles all the exchanges between the components
of the Multimodal System and the hosting runtime
framework. To ensure some of these tasks, the
Interaction Manager must access the data stored in a
second component representing the Model, the Data
Component, which is a logic entity that stores the
public and private data of any module or the global
data of the System.

Finally, in the MMI Architecture, the term
Modality covers the forms of representing
information in a known and recognizable rendered
structure. For example, acoustic data can be
expressed as a musical sound modality (e.g. a human
singing) or as a speech modality (e.g. a human
talking).

The component representing the presentation
layer in the MMI Architecture is indeed, a Modality
Component. This is a logic entity that handles the
input and output of different hardware devices (e.g.
microphone, graphic tablet, keyboard) or software
services (e.g. motion detection, biometrics sensing).

Modality Components are also loosely coupled
software modules that may be either co-resident on a
device or distributed across a network. This aspect

promotes low dependence between Modality
Components, reducing the impact of changes and
facilitating their reuse. In result, these components
have little or no knowledge of the functioning of any
other modules and the communication between
modules is done through the exchange of events
following a protocol provided by the MMI
architecture.

Nevertheless, the architecture focuses only on
the interaction cycle, leaving aside 1) the support of
the lifecycle of Modality Components -from a
system perspective-, 2) a more dynamic application
behavior, and 3) the non- functional goals of some
features to adapt the application to a particular
space, device family and interaction type, using
context-aware techniques.

As a result, we decided to extend the
architecture’s model in our work with the MMI
Working Group in order to address the lack of an
interoperable frame of reference to handle the
runtime system’s lifecycle that includes the
dynamical discovery and registration of Modality
Components, as we will see on Sect. 4.
B. Beyond the Browser

Today, there is an enormous variety and quantity
of devices interacting with each other and with
services in the cloud: 7 trillion wireless devices will
be serving 7 billion people in the 5 years to come
[7]. Web technologies are expected to be at the
center of the Internet of Things (IoT), thanks to their
universal adoption and huge scalability.
Nevertheless the definition of a standardized
programming model for objects beyond the page-
browser mechanism has not been established yet,
and the classical internet of documents or the
internet of knowledge has being built with a series of
architectural premises that could be inadequate and
even a foundational obstacle to this new challenge.

To address it, device-centric technologies,
proposals and protocols are spreading all over the
current discussion around the Web of Things,
assuming that the "infinite things problem" will be
resolved by creating “virtual images” of this reality
on IoT systems. But this solution will just transfer a
real-world problem to a virtualized one, with the
concurrency of policies, architectures, platforms,
protocols and standards that such a transfer implies.

On one hand, browser vendors are advocating for
browser-based solutions assuming that a model that
works well for web pages (based on the document
model) and web apps (mostly based on client- server
models) in computers and mobiles, can be easily
extended to any other kind of objects.

But, how can we model a rice cooker as a
document? Is it really logical to communicate with
an air conditioner as a “data resource” ? How to
apply a client-server model to reflexive objects in
the network, acting at the same time as server and
clients of their own services? Are addresses
registers of devices as stable as the addresses
directories of web pages or web apps? How to
express on, off or stand-by states with web
technologies? And what will be the environmental
and energetical price to this choices?

On the other hand device vendors are advocating
for energy efficient and lightweight protocols fine-
tailored for constrained devices; and willing to
provide a web gateway to allow the communication
between these devices and the web. After near 20
years of research, some of the industrial consortiums
leaded by energy providers and device vendors built
a series of low-level protocols and technologies
supported by national policies: KNX [8], ZigBee
SEP 2.0 [9], Z-Wave [10], Echonet [11], ETSI M2M
[12], DLNA [13], UPnP[14], ZeroConf [15], etc.

As the above list shows, these concurrent
protocols and technologies have to be evaluated and
selected by a developer or a new device producer. If
this panorama of exploded technologies continues,
the situation that mobile developers endured during
years will reappear in the web of objects:
heterogeneous operating system, SKD’s, app
distribution circuits and developing models for an
infinity of objects.

To sum up, there is a real and urgent need of a
vendor- agnostic model of components and
communication, to encompass the diversity of
proposals and technologies in the Internet of Things,
and the need of generic devices to reduce the effort
of implementation for developers and app vendors.

Our effort in the MMI Working Group, has been
always focused to evolve Web technologies from
device-centric applications, to natural interaction
experience and user-centered models that will
extend the definition of an application to seamlessly

encompass multiple heterogeneous devices
collaborating and sharing resources and
computational capabilities, both locally and across
the web.

As an illustration of the problem, in a multimodal
system devices may contain nested logical devices,
as well as functional units, or services. A functional
categorization of devices is currently defined by the
UPnP protocol with 59 standardized device
templates and a generic template profile, the Basic
Device. With the same spirit, the Echonet
consortium defines a number of 7 Device Groups for
multiple Classes of Devices while Zigbee SEP 2.0
defines 20 device categories. In the three cases, the
device specification defines explicitly the device’s
properties and access methods. In contrast, more
generic protocols, like Z-wave use the Generic
device approach and 3 abstract classes of Devices.
Device classifications are provided also by The
Composite Capability Preference Profiles
Specification of the W3C or even with the User
Agent Profile Specification extension of CC/PP [16]
maintained by the Open Mobile Alliance (formerly
the WAP Forum) with the Specification's Part 7:
Digital Item Adaptation, in which Terminals and
Terminals capabilities are described.

It is also possible to leverage the current work of
the W3C’s Device APIs Working Group [17], which
is working on a set of heterogeneous deliverables
going from the device object level to very specific
features, browser extensions, HTML5 extensions
and event networking issues: Vibration API, Battery
Status API, HTML Media Capture, Proximity
Events, Ambient Light Events, Media Capture and
Streams, MediaStream Image Capture, Media
Capture Depth Stream Extensions, Network Service
Discovery (HTTP- based services advertised via
common discovery protocols within the current
network), Wake Lock API, Menu API and the
sensor API to come.

This example showing the device description
proposals, illustrates the concurrency of concerns,
approaches and proprietary interests around the
“thing” indexing and registration problem. This
work can be made more extensible and less driven
by the specific capabilities of today's mobile devices
by aligning it with the generic, device-independent
Multimodal Interfaces API. It would also be very
useful to integrate these proposals with the

taxonomic efforts already made by consortia like
Echonet during the last 20 years in a common and
standardized vocabulary and generic API.

We can imagine that the horizon opened by the
web of things is as exponential as the technical
solutions currently available. This situation explains
and supports the MMI Working Group generic
approach and, as we will present on the following
sections, defines our proposal for discovery and
registration of Modality Components.

III. OVERVIEW OF RELATED WORK
In a previous work [2] we studied a sample of 16

multimodal architectures that were selected from a
previous analysis of a larger set (100) of multimodal
implementations. The selection criteria has being the
amount of information provided by the authors
about the architectural facets of the implementation,
its completeness and its representativeness of three
domains of research: distribution, the modality
description and the use of semantic technologies.

In the following section we will present a first
group of emerging trends directly related to the
criteria of discovery and registration, and later, a
second group transversal to the same criteria.
A. Emerging trends related to the criteria

1) EVENT HANDLING.
The first recurrent topic is event handling. Seven

architectures tried to address the management of
events, which is normal in the human computer
interaction research because user interfaces are
highly event-oriented.

The event management concerns are resolved
with seven different techniques. In OAA [18],
triggers provide a general mechanism to express
conditional requests. Each agent in the architecture
can install triggers either locally, on itself, or
remotely on its facilitator or peer agents. There are
four types of triggers: communication triggers; data
triggers; task triggers; and time triggers.

GALATEA [19] uses macro-commands while an
Agent Manager that possesses a macro-command
interpreter expands each received macro-command
in a sequence of commands and sending them
sequentially to the designated modules. With task
control layers in OPENINTERFACE [20],
communication paradigms (event- based, remote
procedure call, pipe, etc) are implemented with

adapters/connectors using rules for instantaneous
events and persistent events. In MEDITOR [21],
events are handled with three specialized managers:
the input messages queue, the input messages
generator and the output messages generator. The
temporal order is ensured and disambiguation is
handled with a routing table and predefined rules.
Hardwired Reactions are the tool in REA [22], for
quick reactions to stimuli. These stimuli then
produce a modification of the agent’s behavior
without much delay, as predefined events.

In DIRECTOR [23] events are handled at the
level of pipeline execution –continuous- and at the
level of scripting –discrete-. In HEPHAISTK [24],
events are handled by the Event Manager, which
ensures the temporal order of events. The client
application is a client, but also is another input
source, and consequently the Event Manager is
needed also as a recognition agent, which
communicates through a set of predefined messages.

In contrast, the MMI Architecture responds to the
same concern with the Interaction Life-Cycle
Events, and the proposal of a dedicated component:
the Interaction Manager. This solution provides a
clear separation between the interaction control and
the interaction content data, but hardwired
mechanisms are not envisioned, neither the transport
queue mechanism implemented in MEDITOR,
GPAC [25] and HEPHAISTK that can be an
important support for the fusion / fission of
modalities. In consequence, these mechanisms were
detected as possible extensions to the W3C’s
Architecture to provide some complementary
resources to handle multimodal events in an
interoperable way.

2) STATE MANAGEMENT
The second key topic, recovered from 5 of the

sampled architectures is the state management. It
corresponds also to the session management. This
feature is oriented to register the evolution of the
interaction cycle and provides the information about
any modification of the state of the system and the
components. It is designed as a monitoring process
in support of the decision layer (SMARTKOM [26],
HEPHAISTK), as a display list manager in support
of the fusion and fission mechanisms (DIRECTOR),
as a blackboard (OAA, HEPHAISTK), a central
place where all data coming from the different

sources are standardized, and other interested agents
can dig them at will.

Finally, the states are handled by an object
manager -for decoding and rendering purposes-
(GPAC), and even as a routing table (MEDITOR).
Concerning this subject the MMI Framework
recommends a specific component to handle the
multimodal session and the state of components; yet,
it does not give details about the interfaces needed to
use this component or about its role in the
management of the interaction cycles. As a result, an
extension to the MMI Architecture can be conceived
to complete this generic description with specific
details about the eventual implementation, behavior
and responsibilities of this state manager.
B. Emerging trends transversal to the criteria

1) GENERIC MODELS
The first transversal key topic is the definition of

models: 12 of our architectures proposed interesting
approaches concerning the modeling of the entities
that participate in the multimodal interaction.
However, only SMARTKOM addresses the
modeling task with a proposal coming from web
semantic technologies.

In addition, depending on the modeled entity, the
models are more or less expressive or homogeneous,
and consequently, usable. The modeling of the
multimodal interaction phenomenon (SMARTKOM,
HEPHAISTK, MEDITOR), the task (GALATEA,
OPENINTERFACE, SQUIDY [27]), the dialog
interaction (REA, GALATEA, SMARTKOM), and
the devices (SMARTKOM) is more extensive,
tested and advanced than the modeling of the user
(REA), the application (OAA, SMARTKOM,
ELOQUENCE, GPAC, HEPHAISTK) or the
environment & context of usage (SMARTKOM)
conceived to support and enrich the multimodal
interaction.

This growing and common interest on models -
expressed in SMARTKOM as a foundational
principle, opens the way to reinforce the MMI
recommendation with an effort to address this issue
and to see how the MMI Framework & Architecture
can respond to data modeling needs.

2) DISTRIBUTED ARCHITECTURES
The second transversal topic is distribution. It is

tackled with solutions like the remote installation of
triggers (OAA), the distribution of the fusion-fission

mechanisms into nodes and components
(OPENINTERFACE, SQUIDY) that can even be
external to the multimodal system, the management
of inputs as “sensed” data (input sensors) or as
broadcasted media containing behavior (and
interaction) information in the distributed streams
(GPAC); and finally, the distribution of application
services (SMARTKOM, HEPHAISTK). This topic
is also reflected on the service-oriented proposals of
application services and services advertisement
(OAA, SMARTKOM) and the networking services
layer to manage the broadcasted input and output
data of a rich application (GPAC). The MMI
Framework & Architecture reflects this topic in its
distributed nature based on web standards.
Nevertheless, there are few current implementations
using the web services or a service-oriented
approach from a distributed perspective.

The current implementations are oriented to
prototype mobile interfaces (Orange Labs), to
provide a multimodal mobile client for health
monitoring (Openstream), to test an authoring tool
(Deutsche Telekom R&D) and to complete
JVoiceXML, an open source platform for voice
interpretation (TU Darmstadt). We believe that it is
possible that interesting extensions arise from a fully
SOA implementation of the MMI Framework &
Architecture standard according with its distributed
nature ant the needs that are appearing with the
Internet of Things.

3) CONTROL DELEGATION
A final transversal topic is the delegation of the

interaction management by a client application. It is
present in the form of application agents (CICERO,
OAA) or application services (SMARTKOM,
HEPHAISTK). The MMI Framework &
Architecture does not deal with this subject because
the application is meant to be the concrete
implementation of the architecture. A delegation
approach supposes that an external functional core
can delegate the management of the interaction to a
multimodal system built in accordance with the
standard, and providing multimodal functionalities
to the client application installed on devices with
low processing capabilities.

This approach is not currently addressed, even if
it could be the type of requirement of a multimodal
browser, a home gateway virtualization or an IoT
web application. Our current work on the W3C

MMI Working Group addresses the possible
extensions that such approach could bring and how
the MMI Architecture standard can support this type
of future implementation.

 In short, the study of the related work allow us to
structure and define our collaboration in the W3C
Multimodal Working Group, to extend the MMI
Architecture with a proposal oriented to facilitate the
distributed implementations coming from the
Internet of Things.

IV. DISCOVERY & REGISTRATION FOR MMI
SYSTEMS

To the best of our knowledge, there is no
standardized way to build a web multimodal
application that can dynamically combine and
control discovered components by querying a
registry build based on the modality states. At the
same time -as we showed in Sect. 3 - research efforts
also lack of this distributed perspective. Based on
this previous analysis, we decide to focus on three
complementary extensions to the MMI Architecture:
1) we propose to complete the current addressing
method in order to evolve from a client-server model
to an anycast model. 2) We propose to reinforce the
management of the “multimodal session”, and more
precisely, a dedicated component to handle the
system’s state and support the system’s
virtualization of components. And 3) we propose to
extend the transport layer with two new events
designed to complete and reinforce the interaction
Lifecycle Events.
A. Extending the MMI addressing methods

To inform the system about the changes in the
state of the Modality Components, an adaptive
addressing mechanism is needed. We consider that
the combination of push/pull mechanisms is crucial
to extend the MMI Architecture to the Web of
Things. For example, in the case of the
unavailability of a given Modality Component, it
needs to communicate with the control layer. This
situation is not necessarily related to the interaction
context itself, but it can affect it, because the
interaction cycle can be stopped or updated
according to this change on the global state of the
system.

In the current state of the Multimodal
Architecture Specification [1], interaction events
like Prepare or Start, must be triggered only by the

Interaction Manager and sent to the Modality
Components. In result, a Modality Component
cannot send messages to the Interaction Manager
other than the message beginning the interaction
cycle: the newContext event. Any other event
originated by an internal command or like in our
example, by a change on the component’s state
cannot be raised. Nevertheless, to start an interaction
cycle the Modality Component needs to be already
part of the system and to be registered. The
registration process is part of a previous phase, when
even the presence of the user is not mandatory and
the communication must be bidirectional.

As Modality Components are reflexive objects in
the network acting at the same time as server and
clients, they need to communicate and to receive
messages as well. The flow of messages always
initiated by the Interaction Manager is not sufficient
to address use cases evolving in dynamic
environments, like personal externalized interfaces,
smart cars, home gateways, interactive spaces or in-
office assistance applications. In all these cases,
Modality Components enter and quit the multimodal
system dynamically, and they must declare their
existence, availability and capabilities to the system
in some way.

To address this need, we proposed our first
extension, which is a bidirectional flow of messages
to support a complete number of addressing methods
and to preserve a register of the system’s global
state. One of the results of this new flow of
messages is the capability to produce the
advertisement of Modality Components. It allows
the Multimodal System to reach correctness in the
Modality Components retrieval and also affects the
completeness in the Modality Component retrieval.
To return all matching instances corresponding to
the user's request, the request criteria must match
some information previously registered before the
interaction cycle starts.

For this reason, the MMI Architecture should
provide a means for multimodal applications to
announce the Modality Component’s presence and
state. This was the first step to address the
distribution requirement: Modality Components can
be distributed in a centralized way, a hybrid way or a
fully decentralized way.

For the Discovery & Registration purposes the
distribution of the Modality Components influences
how many requests the Multimodal System can
handle in a given time interval, and how efficiently
it can execute these requests. Even if the MMI
Architecture Specification is distribution-agnostic,
with this extension Modality Components can be
located anywhere and communicate their state and
their availability to new a dedicated component: the
Resources Manager.
B. Extending the MMI Architecture’s modules

The new flow of messages between the Modality
Components and the control layer needed a
mechanism tracing the relevant data about the
session and the system state. This is the first of the
responsibilities for the second extension, the
Resources Manager. This manager is responsible
for handling the evolution of the “multimodal
session” and the modifications in any of the
participants of the system that could affect its global
state. It is also aware of the system’s capabilities, the
address and features of modalities, their availability
and their processing state. Thus, the Resources
Manager is nested in the control layer of the
multimodal system and keeps the control of the
global state and resources of the system. And the
extended control layer encompasses the handling of
the multimodal interaction and the management of
the resources on the multimodal system. In this way,
with our extension, the architecture preserves its
compliance with the MVC design pattern.

The data handled by the Resources Manager can
be structured and stored in a virtualized manner. In
this way, the Resources Manager can be calibrated
for mediated discovery -and federated registering-.
The Resources Manager uses the scanning features
provided by the underlying network, looking for
components tagged in their descriptions with a
specific group label. If the discovered component is
not tagged with a group label, the Resources
Manager can use some mechanism provided to
allow subscriptions to a generic group. In this case,
the Modality Component should send a request
using the new flow of messages and using one of the
new discovery events to the Resources Manager,
subscribing to the register of the generic group.

In this way, the Resources Manager translates the
Modality Component’s messages into method calls
on the Data Component, like the MVC pattern

proposes but also, the Resources Manager
broadcasts to the Modality Component the changes
on the system’s state or notifies it following a
subscription mechanism. Upon reception of the
notification, the Modality Component updates the
user interface according to the information received.

The Resources Manager supports the
coordination between virtualized distributed agents
and their communication through the control layer.
This enables to synchronize the input constraints
across modalities and also enhances the resolution of
input conflicts from distributed modalities. It is also
the starting point to declare and process the
advertised announcements and to keep them up to
date and the core support for mediated and passive
discovery and it can also be used to trigger active
discovery using the push mechanism or to execute
some of the tasks on fixed discovery [4]. The
Resources Manager is also the interface that can be
requested to register the Modality Component's
information. It handles all the communication
between them and the registry. The flow of
discovery queries transit through it, which
dispatches the requests to the Data Component and
notifies the Interaction Manager if needed. These
queries must be produced using the state handling
events presented on the next Section.

To summarize, the Resources Manager delivers
information about the state and resources of the
multimodal system during and outside the
interaction cycle.
C. Extending the MMI Event model

With a new flow of messages and a new
component handling the state of the system, a
Modality Component can register its services for a
specific period of time. This is the basis for the
handling of the Modality Component's state. Every
Modality Component can have a lifetime, which
begins at discovery and ends at a date provided at
registration. If the Modality Component does not re-
register the service before its lifetime expires, the
Modality Component's index is purged. This
depends on the parameters given by the Application
logic, the distribution of the Modality Components
or the context of interaction.

When the lifetime has no end, the Modality
Component is part of the multimodal system
indefinitely. In contrast, in more dynamic

environments, a limited lifetime can be associated
with it, and if it is not renewed before expiration, the
Modality Component will be assumed to no longer
be part of the multimodal system. Thus, by the use
of this kind of registering, the multimodal system
can implement a procedure to confirm its global
state and update the «inventory» of the components
that could eventually participate in the interaction
cycle. Therefore, registering involves some Modality
Components' timeout information, which can be
always exchanged between components and, in the
case of a dynamic environment, can be updated from
time to time. For this reason, a registration renewal
mechanism is needed. We proposed a registration
mechanism based on the use of a timeout attribute
and two new events: the checkUpdate Event and the
UpdateNotification, used in conjunction with an
automatic process that ensures periodical requests.

The checkUpdate Event is provided a) to verify if
there are any changes in the system side; b) to
recover the eventual message; c) to adapt the request
timeout if needed and d) to trigger automatic
notifications about the state of the Modality
Component, if the automaticUpdate field in the
response is true. If a Modality Component is waiting
for some processing provided by other distributed
component, the checkUpdate Event allows the
recovery of progressive information and the fine-
tuning of requests by changing the timeout attribute.
This enhances input/output synchronization in
distributed environments.

On the other hand, the Update Notification is
proposed a) to periodically inform the Resources
Manager about the state of the Modality
Component; b) to help in the decision making
process (on the server side, for example).

For notification of failures, progress or delays in
distributed processing the Update Notification (Fig.
4) ensures periodical requests informing other
components if any important change occurs in the
Modality Component's state. This can support, for
example, grammar updates or image recognition
updates for a subset of differential data (the general
recognized image is the same but one little part of
the image has changed, e. g. the face is the same but
there is a smile)

The use of the timeout attribute helps in the
management of the validity of the advertised data. If

a Modality Component’s communication is out-of-
date, the system can infer that the data has the risk of
being inaccurate or invalid. The checkUpdate Event
allows the recovery of small subsets of the
information provided by the interaction manager, to
maintain up to date the data in the Modality
Components as in the Resources Manager.

V. CONCLUSION
The work on standardization produced by the

MMI Working Group in the last two years and its
focus on distribution has been fruitful.

Today, the first step needed to allow the
component’s discovery and registration helping for a
more adaptive fusion and fission mechanisms is
done. The Components have now a means to
announce its capabilities and states through different
addressing modes. Second, the modality
component’s data model needed as a building block
for a multimodal registry is founded, starting by a
common taxonomy of generic states (out of the
scope of this document, but available in [5]) (Fig.8)
and the construction of a generic classification
system for devices and groups of modes and
modalities. This premises of classification will allow
facilitate the orchestration mechanism with the
Modality Component’s annotation. A mechanism
that is now possible, thanks to the extension of the
MMI Architecture’s event model with two events
specified for discovery and registration needs.

These three issues are covered by our results and
now are entering on the W3C’s recommendation
processes to be available to the community of web
developers. From the requirements extracted from
the analysis of the state of the art and a series of use
cases provided by the industry [4], we produce three
pertinent extensions.

To handle multimodal events (See Sect. 3-A-1) in
an interoperable way, we extend the MMI
Architecture by completing the current addressing
method in order to evolve from a client-server model
to an anycast model using bidirectional
communication.

To ensure the handling of states (See Sect. 3-A-
2), we proposed to support the management of the
“multimodal session” by a dedicated component
using a virtualization of components to reflect the
current state of the system.

To allow distribution (See Sect. 3-B-2), we
proposed to extend the transport layer with two new
events completing and reinforcing the interaction
Lifecycle Events. An finally, to support the
delegation of control (See Sect. 3-B-3) and to use
generic models (See Sect. 3-B-1), we proposed a
virtualization mechanism used to create and store the
registry, based on generic multimodal properties, a
generic model of states needed for keeping the
registry up-to-date and a generic vocabulary for the
description of Modality Components.

The MMI’s Modality Component is an
abstraction flexible enough for any implementation
of the Internet of Things and networking model,
while keeping an interoperable structure. The MMI
Architecture is built around the management of
continuous media and their states not only as outputs
(presentations) but also as inputs. This means that
the architecture is fine-tuned to handle issues
derived from very dynamic environments needing
session control and recovering with all kinds of
medias and interaction modes.
In this paper we presented our current work on
Discovery and Registration of Modality
Components from a generic and interoperable
technology that will allow us to face the infinity
created by the web of things. From an extensive
study of the state of the art, we produced a series of
requirements and evaluation criteria that founds the
proposal presented on Sect. 4, which is now a
W3C’s Recommendation.
In a future activity the W3C working group will
produce an annotation vocabulary and the support of
the semantic annotation in the “info” dedicated
attribute on the new discovery and registration
events. This vocabulary is a first step on the
direction of a more expressive annotation of the
interaction with Modality Components using
ontologies and a more intelligent composition of
semantic web services for multimodal applications
with rich interaction features.

[1] MMI-Arch:http://www.w3.org/TR/mmi-arch/ Visited at :01/04/2015
[2] B. H. Rodriguez. “A SOA model, semantic and multimodal, and its

support for the discovery and registration of assistance services”.
PhD Thesis, Institut Mines-Télécom, Telecom ParisTech, Paris,
2013.

[3] Multimodal Interaction Framework http://www.w3.org/TR/mmi-
framework/ Visited at :01/04/2015

[4] B.H. Rodriguez (Ed)., D.Dahl, R. Tumuluri, P. Wiechno and K.
Ashimura. Registration & Discovery of Multimodal Modality
Components in Multimodal Systems: Use Cases and Requirements.
W3C Working Group Note 5 July 2012. Available at:
http://www.w3.org/TR/mmi-discovery/ Visited at :01/04/2015

[5] International Symposium on Home Energy Management System -Joint
discussion with the W3C MMI WG -, Keio University Shonan Fujisawa
Research Institute, 25-26 Feb., 2015

[6] J. Coutaz, L. Nigay, D. Salber, A. Blandford, J. May and R. Young
“Four easy pieces for assessing the usability of multimodal interaction:
the CARE properties” In: Proceedings of INTERACT’95Lillehammer,
June 1995

[7] W3C Workshop on the Web of Things Enablers and services for an open
Web of Devices, 25–26 June 2014, Berlin, Germany
http://www.w3.org/2014/02/wot/

[8] KNX network communications protocol for intelligent buildings (EN
50090, ISO/IEC 14543) http://www.knx.org/knx-en/index.php

[9] The Smart Energy Profile 2 http://www.zigbee.org/zigbee-
fordevelopers/applicationstandards/zigbeesmartenergy/

[10] Z-Wave http://www.z-wave.com
[11] ECHONET Energy Conservation and HomecareNetwork.

http://www.echonet.gr.jp/
[12] ETSI Machine to machine communication.

http://www.etsi.org/technologies-clusters/technologies/m2m
[13] Digital Living Network Alliance.http://www.dlna.org
[14] Universal Plug and Play http://www.upnp.org
[15] Zero Configuration Networking

https://developer.apple.com/bonjour/index.html
[16] Composite Capabilities/Preference Profiles

http://www.w3.org/Mobile/CCPP/
[17] Device APIs Working Group. http://www.w3.org/2009/dap/#roadmap
[18] D. Martin, A. Cheyer, and D. Moran, "The Open Agent Architecture: A

Framework for Building Distributed Software Systems," Applied
Artificial Intelligence, Volume 13, Number 1-2, January-March 1999,
pp. 91-128.

[19] NITTA. Activities of Interactive Speech Technology Consortium (ISTC)
Targeting Open Software Development for MMI Systems

[20] M. Serrano, L. Nigay, J-Y. Lawson, L. Ramsay, and S. Denef "The
openInterface framework: a tool for multimodal interaction" In: CHI '08
extended abstracts on Human factors in computing systems -CHI EA08.
ACM, New York, NY, USA. p.p.3501-3506.

[21] Y. Bellik Interfaces Multimodales : Concepts, Modèles et Architectures.
PhD Thesis, University Paris-South 11, Orsay, 1995.

[22] J. Cassell "Embodied Conversational Agents.Representation and
Intelligence in User Interfaces" In: AI Magazine, 2001. Vol. 22. No.4.

[23] http://en.wikipedia.org/wiki/Adobe_Director Visited at :01/04/2015
[24] B. Dumas, D.Lalanne, and R. Ingol. Démonstration: HephaisTK, une

boîte à outils pour le prototypage d'interfaces multimodales, 2008.
[25] J. Le Feuvre et al., Experimenting with Multimedia Advances using

GPAC, ACM Multimedia, Scottsdale, USA, November 2011
http://dl.acm.org/citation.cfm?doid=2072298.2072427

[26] Herzog, Gerd and Reithinger, Norbert. "The SmartKom Architecture: A
Framework for Multimodal Dialogue Systems" In: SmartKom:
Foundations of Multimodal Dialogue Systems, 2006. Springer Berlin
Heidelberg, p.p. 55-70. http://dx.doi.org/10.1007/3-540-36678-4_4

[27] Werner A. König, Roman Rädle, and Harald Reiterer. 2009. Squidy: a
zoomable design environment for natural user interfaces. In Proceedings
of the 27th international conference extended abstracts on Human
factors in computing systems (CHI EA '09). ACM, New York, NY,
USA, 4561-4566. DOI=10.1145/1520340.1520700

