
Fast DASH Bootstrap
Nassima Bouzakaria, Cyril Concolato, Jean Le Feuvre
Institut Mines-Télécom; Telecom ParisTech; CNRS LTCI

46, rue Barrault, 75013 Paris, France
 {nassima.bouzakaria, cyril.concolato, jean.lefeuvre}@telecom-paristech.fr

Abstract—Adaptive HTTP Streaming has become a

widespread technology for delivering video to the end users.

However, this technology usually suffers from various latencies,

requiring an initial delay before playback. This is problematic

for low delay or interactive applications, such as gaming or live

event webcasting. A long initial waiting time is perceived by most

users as bad quality, or even non-working content. In this paper,

we review the causes of initial delays in MPEG-DASH and

common strategies used to reduce this latency. We propose a new

method based on HTTP/1.1 and compatible with existing

infrastructures for the initial setup of an MPEG-DASH session.

We compare our proposal to several existing approaches based

on HTTP/1.x and on the HTTP/2 server push technique. Our

experimental results show that 2 RTTs can be avoided and that

the total downloaded size is reduced by 25% when using

HTTP/1.1 and by 20% in HTTP/2 with similar latency.

I. INTRODUCTION

According to recent studies [1], the traffic on broadband

and mobile Internet is dominated by video data. This video

data is delivered over the Internet, or Over-The-Top (OTT),

using the HTTP protocol, especially using HTTP adaptive

streaming technology. Such technology enables reusing the

Internet infrastructure (caches, proxies) and offers the ability

for the client to select content with appropriate characteristics

(codec, language …) and to dynamically adapt the content

quality depending on the available bandwidth. The standard

called Dynamic Adaptive Streaming over HTTP (DASH) [2]

developed by MPEG and 3GPP is becoming the most popular

technology for the delivery of audiovisual content over the

internet and is the scope of this paper.

The quality of an adaptive video streaming session is

influenced by many factors [3], such as the bitrate of the

media content or the number and duration of rebuffering steps.

The start-up delay is also perceived by users as an important

factor. Some studies [4] indicate that if this delay exceeds 2

seconds, the number of people that abandon viewing

dramatically increases. It is therefore important to reduce it.

The start-up delay in DASH can be divided into: the

bootstrap delay, which is the time needed to download the

Media Presentation Description (MPD) file and so-called

initialization segments (IS), required for decoder initialization;

the buffering delay required for storing the first media

segments; and the initial decoding time of those segments. In

this paper, we focus on the bootstrap delay.

In DASH, it is the client’s responsibility to make its choices

on which initialization and media segments to download. It

starts by issuing an HTTP request to retrieve the MPD,

informing about the different media streams (audio, video,

subtitle), their formats and qualities. Once the MPD is

received, the client parses it, selects a set of adaptation sets

compatible with its capabilities in terms of codecs, content

media types, languages. Within each adaptation set, it chooses

a representation that best satisfies its needs regarding bitrate,

resolution, and frame rate. It then issues additional HTTP

requests to fetch the IS of each selected representation for the

initial playback. This double download of MPD and IS

increases the bootstrap delay. Apart from the start-up delay,

DASH streaming is also impacted by additional delays due to

the segmentation or buffering [5], but they are out-of-scope of

this paper. This paper proposes and evaluates several methods

to reduce the bootstrap delay of DASH. All methods are based

on the idea that the bootstrap phase should not require

multiple round-trips between the client and the server. The

methods exploit the counter-intuitive fact that in some

situations downloading the MPD and all IS in one download

can be achieved faster than downloading the MPD and then

the only needed IS. Finally, the proposed methods have been

designed to have no negative impact on the existing caching

and delivery infrastructure.

This paper is organized as follows. Section 2 presents

related works. Section 3 reviews typical DASH client

strategies for starting a streaming session. Section 4 presents

our proposal to reduce the bootstrap delay. Section 5 presents

the test-bed of our experiments. Section 6 details the

experimentations and obtained results. Section 7 concludes

this paper and proposes future work.

II. RELATED WORKS

In this section, we briefly review related works on latency

reduction for web and video content.

There have been several proposals to reduce the start-up

delay for short web transfers, such as those required for the

delivery of DASH MPD and IS. These proposals work at the

TCP transport level. One proposal [6] involves increasing the

initial congestion window size (init_cwnd) to 10 TCP

segments (about 15 KB) in order to minimize the web latency

caused by the slow start phase of a TCP connection. The

authors have shown that 90% of HTTP web responses of top

sites and Google applications fit in these segments and that

using the proposed init_cwnd size reduces the latency by

approximately 10% with the largest benefits being

demonstrated in high RTT and bandwidth delay product

networks. In this paper, we will also use this init_cwnd of 10

TCP segments.

Radhakrishnan et al. [7] have identified the TCP three-way

handshake as an important component of web latency imposed

on new TCP connections. They proposed a new mechanism

called TCP Fast Open (TFO) that enables safe data transfer

during TCP’s initial handshake. This means that data will be

transferred within a TCP SYN and SYN ACK packets.

Through traffic analysis and network emulation, the authors

have shown that TFO can improve HTTP request latency by

10% and the whole page load time from 4% to 40 %. TFO

eliminates one full RTT of latency but is still limited in terms

of maximum data size to be transferred during the handshake,

and in which HTTP request types can be sent. This proposal

requires modifications in the servers.

At the application level, Swaminathan et al. [8] proposed a

low latency live video streaming approach using the HTTP/2

server push feature. The paper defined three push strategies

(No-push, All-push, K-push) that determine which resources

to push and when to push them. The server push was

implemented in a DASH streaming session. Based on

experimental results, the authors have shown that the server

push approach enables low latency live streaming by simply

reducing the segment duration without causing an explosion in

the number of HTTP requests. However, the proposed

approach only allows reducing latency during the live

streaming session, and the delay required for the session start-

up is not addressed. Additionally, it requires HTTP/2 which is

not yet deployed in all servers nor clients.

Chérif et al. [9] proposed a DASH Fast Start system which

aims at reducing the start-up delay in a DASH streaming

session using the SPDY server push feature. The server

pushes a set of IS that the client can accept or reject. The

results show that the start-up delay was minimized up to 50%.

However, the authors compared the performance of the

proposed solution using SPDY to HTTP/1.1 only in the case

of parallel TCP connections. In this paper, we will use a

similar approach but with standard HTTP/2 and we will

compare it to different TCP approaches.

The aim of our paper is to improve the start-up delay,

specifically the bootstrap delay in DASH live streaming, at the

application level based on HTTP/1.1, by reducing the number

of round trips between the client and the server before starting

the streaming session, and without modifying the existing web

infrastructures or the TCP stack.

III. DASH CLIENT BOOTSTRAP STRATEGIES

For the start-up of a streaming session, during the

bootstrap phase, the DASH client is required to download

MPD and IS files. Note that an IS is necessary only when

media segments are based on ISO/IEC 14496-12 (ISOBMFF),

that we consider in this paper, as it is used by most existing

DASH deployments. For that, the client can use several

strategies depending on the version of the HTTP protocol and

on the number of TCP connections. In this section, we

survey some strategies highlighting their advantages and

drawbacks. For each strategy, we indicate the number of

TCP connections, the number of HTTP requests/responses

and we derive the associated bootstrap delay, which are

summarized in Table II.

Because MPD and IS are small (as shown in section VI),

we consider that the server can send MPD and IS in the initial

slow start phase of a TCP connection. For that, we assume

that there is no packet loss, no delayed acknowledgement, and

no congestion. Table I reports the employed parameters

throughout the study.

A. Non-Persistent TCP Connection

Using HTTP/1.0, connections are non-persistent. This

means that a client has to open a new TCP connection to send

each HTTP request and receive the MPD file and the number

(XC) of chosen IS. Following the TCP standard, each

connection begins with a three-way handshake which takes a

full RTT of latency between the client and the server.

Moreover, each resource suffers from a slow start phase. The

bootstrap delay required to fetch all resources is T1 as

indicated in Table II.

B. Persistent TCP connection without pipelining

TCP connections can be maintained to send and receive

multiple requests/responses, using the HTTP/1.1 persistent

connection mechanism. The server can deliver the associated

resource (MPD and XC IS) over a single TCP connection. This

feature allows avoiding connection setup for each IS and
eliminates the TCP three-way handshake. The client incurs

only one handshake, plus one slow start phase in the

beginning. Using this approach, we can see however that the

server is idle most of the time which can trigger a Slow Start

Restart TCP behaviour. The bootstrap delay is T2 as indicated

in Table II.

C. Persistent TCP connection with pipelining

Pipelining is a little improvement of the persistent

technique where HTTP requests and responses can be

pipelined on a connection, so that the server idle time is

reduced. Using this technique, the DASH client is able to

make multiple requests for the MPD file and the XC IS early

without waiting for each individual response. The server still

processes the HTTP requests in sequence, but can respond to a

request as soon as the previous one is done. The server sends

the responses in the same order as the requests were received

which implies a head-of-line blocking problem [10]. In

particular, this means that a DASH client that chooses to

request multiple IS for a given adaptation set has to request

those extra IS last, in particular if media segments are also

downloaded, in order to avoid the head-of-line blocking. This

latter problem is solved by multiplexing in HTTP/2, but this is

not possible in HTTP/1.1. We note that in practice, not all web

servers support pipelining. T3 is the corresponding bootstrap

delay reported in Table II.

TABLE I SYSTEM PARAMETERS

Notation Definition

N Number of adaptation set in an MPD

Mj Number of representations within an adaptation set j

M Number of representations in an MPD

X Number of IS in an MPD

Xc Number of IS chosen by the client

SSD (A) Download time of A in the slow start phase of a

TCP connection using HTTP/1.x

SSD (A) Download time of A in the slow start phase of a

TCP connection using HTTP/2

TABLE II ANALYTICAL EVALUATION OF THE DIFFERENT DASH CLIENT BOOTSTRAP STRATEGIES

Request Strategies Number of TCP

Connections

Number of HTTP

Requests/Responses

Bootstrap Delay

Non-persistent 1 + XC 1 + XC

C

X

k
kssssC ISDMPDDRTTX

1
 1)()(12T

Persistent 1 1 + XC

C

X

k
kssssC ISDMPDDRTTX

1
 2)()(2 T

Pipelined 1 1 + XC

C

X

k
kss ISMPDDRTT

1
 3)(3T

Parallel 1 + XC 1 + XC))(2(max)(2T ,..14 kssXckss ISDRTTMPDDRTT

HTTP/2 1 1 / 1+ XC

C

X

k

kss ISMPDRTT
1

5)(D3T

D. Parallel TCP connections

Another possible strategy for a DASH client consists in

opening multiple parallel TCP connections. This is used for

example by web browsers when downloading web page

resources. The maximum number of parallel connections that

recent browsers use is 6 [10]. The use of multiple connections

eliminates the response queue on the server side compared to

the single persistent pipelining connection, but is not always

supported by servers. Each connection setup introduces an

overhead due to a TCP three-way handshake and a TCP slow

start state and needs to share its bandwidth with other

connections. In absence of pipelining, the number of HTTP

requests/responses is the same as the number of connections.

The bootstrap delay is T4 as indicated in Table II.

E. HTTP/ 2 connection

DASH client can overcome the limitations of the previous

strategies based on HTTP/1.x by using HTTP/2. An HTTP/2

connection starts with a TCP three-way handshake which

takes one full RTT as the TCP transport layer does not change.

Most client implementations (Firefox, Chrome) support

HTTP/2 only over an encrypted connection using Transport

Layer Security protocol (TLS). Unfortunately, establishing a

TLS secure channel between the client and the server requires

a TLS handshake which takes two RTT or one RTT for

abbreviated TLS handshake [10]. The server push and

request-response multiplexing are the most promising features

in HTTP/2. When server push is enabled, the web server

pushes all IS files after receiving the MPD request instead of

responding to one request for each IS file. This is achieved by

the server sending PUSH_PROMISE frames to the client to

signal its intention to push the XC IS resources without

requesting it. Once the client receives PUSH_PROMISE

frames, it has the ability to accept or cancel the proposed IS

files. However, the PUSH_PROMISE frames for IS resources

must be sent by the server before the end of stream of the

requested resource MPD. HTTP/2 uses true multiplexing that

allows many streams (MPD and IS) to be interleaved together

on a connection at the same time, so that the head-of-line

blocking problem is eliminated. The bootstrap delay is T5 as

indicated in Table II.

F. Summary

MPD and IS transfers require a certain amount of round

trips between client and server making the bootstrap delay a

significant parameter in determining the start-up time of a

streaming session. The bootstrap delay formulas in Table II

are dominated by an RTT component, influenced by the

number of TCP connections, the number of requests and by

the slow start phase. Based on the analytical evaluation of the

strategies presented in Table II, the minimum bootstrap delay

using HTTP/1.x is obtained using a persistent TCP connection

with pipelining. However it is not widely supported and still

suffers from a big number of RTT mainly due to the number

of HTTP requests/responses transfers. In the rest of this paper,

for HTTP/1.x we will experiment only with the persistent TCP

connection without pipelining strategy because it is the most

used and supported strategy by web servers. Note however

that the benefits of our approach would be the same compared

to the pipelining approach.

IV. IMPROVED DASH BOOTSTRAP

In this section, we present our new approach to reduce the

bootstrap delay, which consists in using a single HTTP

request to fetch the necessary information to start the playback.

The first HTTP request made by the DASH client to retrieve

the MPD is not modified, but the response content sent by the

origin server is, while remaining compatible with caches and

proxies. The principle of creating this HTTP response is to

rely on the MPD to carry the additional IS resources. This can

be done in two ways which are detailed below. Note that

although tested, multi-part messages were ruled out in this

paper as they do not fit well with caches and browser-based

DASH.

A. Base64 IS embedding

A simple option is to encode the IS using the Base64

encoding and to put it in the MPD file, in the initialization

attribute, using the “data:” URI scheme 1 . When a client

receives the MPD, it will need to decode the Base64 string to

recover the original binary IS. The advantage of this naïve

1 http://tools.ietf.org/rfc/rfc2397.txt

method is its compatibility with the current DASH standard.

The drawback is that a 33% overhead is involved when using

Base64 encoding. It may therefore not be acceptable but is a

good anchor point.

B. ISOBMFFMoov embedding

When looking more closely to the problem, it appears that

most useful information present in the IS is also present in the

MPD, such as width, height, codec profiles, sample rate,

media timescale, etc. Therefore, our second option consists in

adding to the MPD the missing parts required to reconstruct

the IS at the client side from that MPD. For that, we analysed

the MPD file and the IS of different content and we identified

four potential missing pieces of information:

i. In ISOBMFF, decoder configuration is stored in the

Sample Description box (stsd). For some video packaging

types (identified by "avc3" and "hev1"), the configuration box

is mostly empty in IS file, can be reconstructed from the MPD

information, and can therefore be omitted. For other

packaging types such as audio, subtitle or some video

(identified by "avc1", "hvc1" or others), the box does contain

information required by the client and has to be embedded in

the MPD.

ii. A track may have an edit list, which shall be sent to

the client to ensure proper synchronization. In most simple

cases however, the edit list only consists in a single time offset.

iii. Default sample properties (size, duration, description

index, flags) and sample group configurations (characteristics

such as random access or pre-roll) can be configured at the

file level or for each segment. In some DASH profiles such as

Common File Format (CFF)2, the properties are defined only

at the media segment level. We also use this approach.

iv. Finally, to handle multiplexed representations,

TrackID is required.

From this analysis, we introduced a new

<ISOBMFFMoov> element in the MPD, carrying for each

track its ID, the base64 stsd box and the edit list, either in

base64 as shown in Fig. 1 or as a media offset to the MPD

timeline. Note that the proposal can be extended to handle

other file or track level boxes, such as static meta boxes. Our

2 http://uvvuwiki.com/images/c/cb/CFFMediaFormat-1.1r1.pdf

proposed approach is slightly similar to the IIS Microsoft

Smooth Streaming existing approach
3
. However, this latter

does not use at all IS files for decoder initialization. Manifests

carry only the decoder configuration information. This

approach is not suitable for generic ISOBMFF content.

Since this approach embeds all IS in the MPD which has a

100% cache hit ratio, it has the additional benefit of avoiding

cache miss on non-popular IS.

V. TEST-BED

A. Experimental Setup

Fig. 2 depicts the architecture of the experimental system.

It consists of four components: a web client, a bandwidth

shaper, a network emulator, and a web server, connected via

Ethernet in a local area network. The network emulator

component was used to add a delay to obtain an RTT value of

50 ms using the Linux Emulator Network (Netem). Based on

the bandwidth shaper component, we limited the maximum

outgoing bandwidth to 2 Mbps from the server to the client

using Linux Traffic Control (TC) command line tool and the

Hierarchical Token Bucket (HTB). The Network emulator and

the bandwidth shaper were running on the server machine.

We implemented a web server that supports HTTP/1.1 and

HTTP/2 on top of NodeJS. In the case of HTTP/2, we used the

server push mechanism to start pushing all the IS resources as

soon as it receives the client request for the MPD. If the client

does not want a pushed IS files, it can reject it. We used the

Chrome Canary browser and the Dash-JS4 video player which

is based on XMLHttpRequest (XHR).

Because init_cwnd is a critical parameter in determining

how quickly the DASH streaming session can start, our

experiments were evaluated under two different values of

init_cwnd. We set at first the init_cwnd value to 3 TCP

segments and then to 10 TCP segments. The init_cwnd was

configured on the server side, running Ubuntu, with the

default congestion control algorithm "TCP Cubic", using the

"initcwnd" option of the ip route command. The Maximum

Transmission Unit (MTU) allowed by Ethernet is 1500 bytes.

When we exclude IP and TCP headers from the MTU, it

remains a Maximum Segment Size (MSS) with 1460 bytes.

B. Dataset

We used ISOBMFF live profile DASH content from the

DASHIF5. We have selected 33 sequences (MPD files and

associated IS), for which multiple qualities, bitrates, codecs,

languages are available. Common Encryption test cases were

not selected due to some authoring issues in the source IS.

Only the first period IS were considered, as we want to

3 http://www.iis.net/downloads/microsoft/smooth-streaming
4 http://dashif.org/reference/players/javascript/1.3.0/index.html
5 http://dashif.org/testvectors/

 Web Server
 Network EmulatorBandwidth Shaper

Web Client
Fig. 2 Experimental System

<MPD ...>

 <Period ...>

 <AdaptationSet ...>

 <Representation mimeType="video/mp4"

 codecs="avc1.4d401f" ...>

 <ISOBMFFMoov>

 <ISOBMFTrack id="1"

 stsd="AAAlHN0c2QA..."

 editDelay="0.04s"/>

 </ISOBMFFMoov>

 <SegmentTemplate ... />

 </Representation>

 ...

 </AdaptationSet>

 </Period>

</MPD>

Fig. 1 Example of MPD embedding ISOBMFF information

evaluate bootstrap time not seek time. N equals to 2 (video

and audio) in each MPD. M is 7 where Mvideo is bounded

between 1 and 6 representations, in various bitrates or

resolutions. Videos identified by "avc1" and "avc3" are

present. In addition, Maudio is only 1 representation, using the

"aac" codec. None of these sequences uses shared IS among

representations (bitstream switching). Therefore, X varies

between 2 and 7 in this content.

VI. EXPERIMENTS AND RESULTS

In order to validate our approach, we have conducted two

types of experiments: experiments to measure the total

download size of the MPD and IS files, including the HTTP

response headers for our two methods and for all strategies

reported in Table II, and experiments to measure and compare

the bootstrap delay between the persistent TCP connection

without pipelining strategy, our proposal using HTTP/1.1 and

HTTP/2, and the HTTP/2 push-based approach. All results are

available publicly6.

A. Total download size

We first measured the IS size for all representations in our

test sequences, and noted that this size is within the range 600

bytes to 1KB.

Then for all strategies reported in Table II, we measured

the size of the responses i.e. the MPD, the XC files, and the

headers when:

 XC is maximal (i.e. equal to M) as implemented by

GPAC player7 .

 XC is minimal (i.e. equal to N) as implemented by

Dash-JS4 player where the average IS size of each

adaptation set is used.

Table III reports the average, min and max sizes for the 33

DASHIF sequences. We can see first that our

ISOBMFFMoov-based embedding method reduces the

downloaded data size by 25% compared to the approach that

download the minimal amount of IS and the MPD separately

(as implemented in Dash-JS). As we can also see, the strategy

used by GPAC, which downloads all IS to prepare for future

switches, always leads to more bytes downloaded than Dash-

JS. Interestingly also, we can see that downloading all IS in

one single HTTP response using Base64 encoding may lead to

a smaller amount of data being downloaded. This is due to the

size of the HTTP response headers. We measured that those

headers are around 257 bytes per response, mainly due to long

strings used for cache information (Etag, modified dates).

Note that those measures already exclude the large (~230bytes)

6 http://download.tsi.telecom-paristech.fr/gpac/dash-bootstrap
7 http://gpac.io

Cross-OriginResourceSharing headers (CORS).

We then compared with HTTP/2 with and without push.

The total HTTP/2 download size is obtained from the transfer

size field in the Network Panel of Google Chrome. As we can

see in Fig. 3, using our method, over HTTP/2 with header

compression, the total download size is reduced by

approximately 25% compared to the amount of data being

downloaded for the persistent TCP connection approach, and

20% compared to the HTTP/2 push method.

B. Bootstrap delay

We now compare, in terms of bootstrap delay, our

ISOBMFFMoov-based approach first to the persistent TCP

connection without pipelining based on HTTP/1.1 and then to

the HTTP/2 server push approach.

For the persistent connection without pipelining strategy,

we measured using Google Chrome Network Panel the

elapsed time between when the Dash-JS player establishes a

TCP connection to request the MPD from the web server and

when it receives the last byte of the last IS. The MPD

processing time by Dash-JS as reported by Chrome is not

included in this measurement. Additionally, we also measured

the time to download the ISOBMFFMoov-based MPD.

Fig. 4 shows these measurements when the downloads

were made over an Ethernet network, using HTTP/1.1, with

varying TCP’s init_cwnd (3 and 10 TCP segments). The

DASHIF sequences are sorted according to the total download

size measured in the previous experiment when the IS and

MPD are delivered separately over a single persistent TCP

connection.

These results show first that the bootstrap delay using our

approach is decreased by around 2 RTT (100 ms) compared to

the persistent approach used by Dash-JS player. These 2 RTT

are due to the two request-response cycles that the Dash-JS

player needs to retrieve the video and audio IS to start the

initial playback.

We notice also that the bootstrap delay when init_cwnd is

set to 3 TCP segments seems stable for almost all sequences

using our approach. From the 26
th

 to the 33
th

 sequence, the

delay is increased by 1 RTT (50 ms). This is explained by the

fact that the number of TCP segments allowed in the

init_cwnd (3 TCP segments about 4380 bytes) is not sufficient

to fit the entire MPD with embedded IS information. In this

case, the TCP slow start algorithm requires waiting for

acknowledgements to arrive before new data is sent which

induces an additional RTT. The size of these eight sequences

TABLE III. TOTAL DOWNLOAD SIZE (MPD, IS, HEADERS) FOR EACH

STRATEGY (BYTES)

 XC=M
(GPAC)

XC=N
(Dash-JS)

MPD
Base64 IS

MPD
ISOBMFFMoov

Average 7524 5221 7627 4075

Min 3972 3641 3829 2451

Max 10364 8168 11211 6844

Fig. 3 Total download size for each strategy

is increased because they are

packaged using the "avc1" mode

and therefore, the base64 encoded “stsd” box is larger. We

observe the same behaviour for the persistent approach used

by Dash-JS except that the bootstrap delay is increased by 1

RTT (50 ms) from the 30
th

 to the 33
th

 sequence. This is due to

the MPD size that exceeds the init_cwnd size for these

sequences.

When increasing the init_cwnd to 10 TCP segments

(approximately 14 600 bytes), the bootstrap time is stable for

all sequences for both approaches. This is because the size of

the downloaded resources is less than the init_cwnd size.

Finally, it should be noted that our approach is more

efficient when the number of IS chosen by the client (XC) is

closer to X, i.e. when the MPD contains several adaptation

sets with different content types. We presented here a worst

case, with only 2 adaptation sets.

Beside the experiment measurements, we also computed

the theoretical download time for those resources for both

approaches according to the formulas shown in Table II. The

download time of a resource in the slow start phase without

losses is given below [11]:

Dss(S) =
C

S
RTT

cwndinit

 1)

_

1)-S(
(log

 (1)

where S is the download resource size, is set to 2 because

we assumed no delayed acknowledgments and C is the

network capacity. Dss is composed of the number of RTT

required to transfer data in the slow start plus the transmission

delay. We compared the theoretical bootstrap delay with the

real one for both approaches and we confirmed that they are

approximately identical which proved the reliability of our

experiments.

We finally measured the bootstrap delay using our

ISOBMFFMoov-based approach and the server push method

over HTTP/2. The server push is enabled on the web server

and on the client, and the server is aware of the all IS to push

for a given MPD.

The results in Fig. 5 show that both methods take 3 RTT: one

RTT for the TCP handshake, one RTT for the TLS handshake,

and one RTT for the only MPD request. Both methods

provide similar results with a slight advantage for the HTTP/2

push approach despite the fact that the download size of our

approach is smaller. After deep inspection with Wireshark, we

suspect a problem with the NodeJS server that we will

investigate in the future.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have reviewed the possible cause of latency

in the bootstrap phase of a DASH session, analysed the

different strategies currently used by existing implementations

to limit this delay, using the different options offered by the

HTTP and TCP layers, and provided an analytical evaluation

of their bootstrap delay. We then have proposed a more

compact method for transmitting the MPD and initialization

data to the client, and compared the different methods,

showing that the total download size is reduced by 25%

compared to the amount of data being downloaded for the

persistent TCP connection without pipelining strategy and

20% versus HTTP/2 push method. Furthermore, we show a

gain of 2 RTTs in HTTP/1.x and no penalty when using

HTTP/2. This suggests that our approach can be valuable even

during the transition phase to HTTP/2. Future works include

evaluating the impact on our proposal in player

implementation and on session switching delays.

REFERENCES

[1] Sandvine, "Global Internet phenomena report 1H 2014", Sandvine

Intelligent Broadband Networks, 2014.

[2] I. Sodagar, “The MPEG-DASH standard for multimedia streaming
over the Internet,” Transactions on MultiMedia, IEEE, vol. 18, no. 4,

pp. 62–67, April 2011, doi: 10.1109/MMUL.2011.71.

[3] S. Egger, T. Hossfeld, R. Schatz and M. Fiedler, “Waiting times in
quality of experience for web based services,” QoMEX 2012, Yarra

Valley, Australia, July 2012.

[4] Conviva, “Viewer experience report,” February 2013,
http://www.conviva.com/reports/Viewer_Experience_Report.pdf

[5] N.Bouzakaria, C. Concolato and J. Le Feuvre, “Overhead and

performance of low latency live streaming using DASH,” In Proc. Of
IEEE IISA 2014 Greece. pp. 92-97.

[6] N. Dukkipati, et al. “An argument for increasing TCP's initial

congestion window,” SIGCOMM Computer Communication Rev.,
ACM, 2010, 40, 26-33.

[7] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain and B. Raghavan, “TCP

fast open,” Proceedings of the Seventh Conference on Emerging
Networking EXperiments and Technologies, ACM, 2011, 21:1-21:12.

[8] S. Wei, and V. Swaminathan, “Low latency live video streaming over

HTTP 2.0,” Proc of Network and Operating System Support on Digital
Audio and Video Workshop, ACM, 2014, 37:37-37:42.

[9] W. Chérif, Y. Fablet, E. Nassor, J. Taquet, Y. Fujimori, “DASH fast

start using HTTP/2”, NOSSDAV, 2015, 25-30
[10] I. Grigorik, “High performance browser networking,” O’Reilly Media,

May 2013.

[11] N. Cardwell, S. Savage and T. Anderson. “Modeling TCP latency,” in
IEEE INFOCOM, 2000, 1724-1751

Fig. 5 Bootstrap Delay on HTTP/2

Fig. 4 Bootstrap delay measured for the ISOBMFFMoov-based approach

and persistent TCP connection without pipelining approach over HTTP/1.1

http://www.conviva.com/reports/Viewer_Experience_Report.pdf
http://dblp2.uni-trier.de/pers/hd/c/Ch=eacute=rif:Wael
http://dblp2.uni-trier.de/pers/hd/f/Fablet:Youenn
http://dblp2.uni-trier.de/pers/hd/n/Nassor:Eric
http://dblp2.uni-trier.de/pers/hd/t/Taquet:Jonathan
http://dblp2.uni-trier.de/pers/hd/f/Fujimori:Yuki

