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Abstract—SAR images have distinctive characteristics com-
pared to optical images: speckle phenomenon produces strong
fluctuations, and strong scatterers have radar signatures several
orders of magnitude larger than others. We propose to use an
image decomposition approach to account for these peculiarities.

Several methods have been proposed in the field of image
processing to decompose an image into components of different
nature, such as a geometrical part and a textural part. They
are generally stated as an energy minimization problem where
specific penalty terms are applied to each component of the sought
decomposition.

We decompose temporal series of SAR images into three
components: speckle, strong scatterers and background. Our de-
composition method is based on a discrete optimization technique
by graph-cut. We apply it to change detection tasks.

I. INTRODUCTION

Denoising and restoration is one of the oldest challenges
of image processing. Like other coherent imaging techniques,
SAR imagery suffers from strong fluctuations due to speckle
phenomenon. Speckle can be described as a multiplicative
noise, while most algorithms developed in the field of image
processing are designed to deal with an additive noise. This
calls for an adaptation of algorithms developed for optical
images or the development of new techniques.

The simplest way to reduce the noise is multi-looking
which amounts to averaging pixel values within a small
window. With a window big enough, noise can be strongly
reduced, at the cost of a resolution loss. This kind of method is
not well suited to areas with bright scatterers. Point-like strong
scatterers have a high contrast compared to the background
and are typically caused by man-made structures, such as
buildings. Local averaging methods need to deal with these
points separately in order to prevent from spreading them
out on the whole window. Strong scatterers can be identified
using for instance a likelihood ratio test as in [1] and [2]. The
corresponding detector compares the radiometry of the point
under test to the average value computed over a surrounding
window (e.g., cross-shaped). While being simple, this test fails
when other scatterers are present in the window.
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To cope with these problems related to the specific nature
of the SAR images, we propose to model separately these
two contributions (background and bright scatterers) and to
jointly estimate them. This paper extends the idea of SAR
image decomposition introduced in [3] and in [4] to temporal
series and applies it to change detection.

This decomposition is then applied to detect changes
between SAR images taken at different times. Detecting and
analyzing changes is one of the primary application for SAR
data, mainly thanks to the reliability of acquisition regarding
the weather. The problem has first been tackled by [5] using
a difference operator. State-of-the art methods now use likeli-
hood ratio test such as in [6] and in [7].

In section II, we describe a model to detect strong scatterers
and perform change detection. This model is stated as a
minimization problem. In section III, we provide a way of
obtaining the exact solution for this problem. Finally, we
describe and evaluate our models in an application of change
detection in section IV.

II. MULTI-TEMPORAL SPARSE + SMOOTH
DECOMPOSITION MODEL

Total variation (TV) minimization [8] is a method widely
used for noise reduction. It strongly penalizes signal fluctua-
tions while preserving edges by minimizing the total variation
of the signal (i.e., the sum of the spatial gradient magnitude).

Although this method has been applied by several authors
to speckle noise reduction in SAR imagery (see [9]–[13]),
it is not well adapted to urban areas where punctual bright
scatterers are frequent. Indeed, bright scatterers are points with
a radiometric value several orders of magnitude higher than the
surrounding background. Using total variation regularization
for such signals has the effect of removing the point-like
scatterers and of biasing the estimation of the neighboring
area (spreading effect). On the other hand, these points are
sparsely distributed in the image and are thus present in a
limited number. In this section, we propose a decomposition
model combining regularity of the background and sparsity of
the bright scatterers in multi-temporal series.

We consider a temporal series of observed images V =
{v1, . . . ,vn} where vt is the observed image at the t-th date.
The underlying (noiseless) scene is U = {u1, . . . ,un}. The978-1-4673-7119-3/15/$31.00 c© 2015 IEEE



scene ut at the t-th date is modeled as a sum of 2 components:
uBVt (component with bounded variations, representing the
background) and uSt (sparse component representing the
bright scatterers). The observed image vt is related to the
underlying scene ut by:

vt = (uBVt + uSt)× nt, (1)

where nt is a speckle noise realization corresponding to a SAR
acquisition system with multiplicative noise model. In the case
of SAR images, noise follows a Rayleigh distribution (when
considering amplitude images) and is weakly correlated (if
images are not over-sampled) so that the likelihood distribution
can be considered separable:

p(V|U) =

n∏
t=1

∏
i∈Ω

p(vt(i)|ut(i))

=

n∏
t=1

∏
i∈Ω

2vt(i)

u2
t (i)

exp

(
−v2

t (i)

u2
t (i)

)
, (2)

where Ω is the set of the pixels in an image and ut(i) is the
value at pixel i in image t.

We define next the prior p(U) in order to enforce the
decomposition of the radar scene into its two independent
components UBV and US:

− log p(U) = −βBV log p(UBV)− βS log p(US) , (3)

where the distributions p(UBV) and p(US) model each com-
ponent. The background is consider to be formed by homo-
geneous regions with sharp boundaries (piece wise constant
model), with possibly some abrupt changes between two dates.
Images following such models have a low 3D total variation,
we therefore choose to define:

− log p(UBV) = TV3D(UBV)

=

n∑
t=1

∑
i,j∈C

|uBVt(i)− uBVt(j)|


+

n−1∑
t=1

(∑
i∈Ω

|uBVt(i)− uBVt+1(i)|

)
,

where C is the set of all cliques in Ω depending of the chosen
neighborhood. The choice of an anisotropic version of total
variation (the gradient magnitude is defined in the L1 norm
sense) will find its justification in the numerical optimization
method described in the next section. The component contain-
ing strong scatterers is sparse, which is classically enforced by
an energy that increases with the number of non-zero elements,
such as the L0 pseudo-norm:

− log p(US) = ‖US‖0 . (4)

Up to a constant term, the (opposite) log posterior distribution
corresponds to the following energy:

E(U) = − log(p(V|U))− log(p(U)), (5)

with:

− log(p(V|U)) = − log

(
n∏
t=1

∏
i∈Ω

2vt(i)

u2
t (i)

exp

(
−v2

t (i)

u2
t (i)

))

=

n∑
t=1

∑
i∈Ω

{
− log(2vt(i))

+ 2 log(uBVt(i) + uSt(i))

+
v2
t (i)

(uBVt + uSt)2(i)

}
= DT(vt,uBVt,uSt), (6)

with the first term (− log(2vt(i))) independent of U, which
will thus be discarded in the following. In summary, the energy
is given by:

E(U) =

n∑
t=1

βSL0(uSt) + DT(vt,uBVt,uSt)

+ βBV TV3D(UBV) . (7)

III. EXACT DISCRETE OPTIMIZATION BY GRAPH-CUTS

The cost function introduced in equation 7 is highly non-
convex. In this section, we show how to find the global
optimum of the optimization problem (up to a given precision
defined by the quantization step size) without resorting to an
approximation by L1 relaxation of the L0-norm, as typically
done when solving such optimization problem.
First, we consider the sub-problem of solving arg min

US

E(U)

for a fixed UBV:

US

∧

(UBV) = arg min
US

n∑
t=1

(DT(vt,uBVt,uSt) + βSL0(uSt))

+ βBV TV3D(UBV) .

Since all terms are separable, we can solve the minimization
independently for each pixel:

uSt(i)
∧

(uBVt(i)) =

{
uSt(i)

? if DT(vt(i),uBVt(i),uSt(i)
?)

+βS < DT(vt(i),uBVt(i), 0)
0 otherwise

With uSt(i)
? = arg min

uSt(i)
DT(vt(i),uBVt(i),uSt(i)).

We can now rewrite the minimization problem under a
form involving only UBV:

arg min
uBV

E(U) = arg min
uBV

n∑
t=1

DT(vt,uBVt,uSt

∧
(uBVt))

+ βS‖uSt

∧
(uBVt)‖0

+ βBV TV3D(UBV) (8)

The first two terms of equation 8 are separable (i.e.,
they correspond to a sum of terms involving a single pixel
at a time) and the last one is convex and involves only
pairwise terms (i.e., pairs of pixel values). This minimization
problem can thus be exactly minimized by graph-cuts using the
method described in [14]. This optimization method consists

if seen as a discrete optimization problem, i.e., for a given quantization of
the component uBV



Fig. 1: Decomposition of an image of Saint-Gervais acquired by TerraSAR-X. Thanks to the German Aerospace Agency (DLR)
for the images (project MTH0232 and LAN1746).

in searching the min-cut in a graph where every possible
value for each pixel is represented by a node. Neighboring
nodes (spatially or in time) are interconnected by vertices with
weights corresponding to βBV . Nodes representing the same
pixel i at two consecutive possible values α and α + 1 are
interconnected by vertices with weights p(vt(i)|α). We show
an example of a decomposition obtained with our model using
this optimization technique in figure 1.

Note that the graph construction used here presents a high
memory usage: it requires V = n × |Ω| × |A| vertices and
E = 7n×|Ω|× |A| edges where n is the number of images in
the series, |Ω| is the number of pixels in each image and |A|
the number of possible values for the background image. In the
implementation of the min-cut algorithm introduced in [15], a
vertex takes 48 bytes and an edge takes 32 bytes. Therefore,
the graph construction requires 272 × n × |Ω| × |E| bytes,
limiting the size of the images that can be processed. On a
larger image, we could use algorithms such as those described
in [10] or in [16] that sub-sample the set of amplitudes to
lower the memory occupation of the optimization technique
and obtain an approximate solution to the problem.

Regarding computational cost, it has a worst-case complex-
ity of O(EV 2|C|) where |C| is the minimum cut and is also
the complexity of our method. On a computer with an Intel
Xeon(R) CPU E5-1620 with 16Gb of RAM, the algorithm
takes 52,04s to compute on 2 images of 300×400 pixels with
50 levels of quantification. Note that we do not fully benefit
from the power of the processor as the implementation of the
algorithm is single-core.

IV. SCATTERERS CHANGE DETECTION

A. Method

For a series of observed images V, the model de-
scribed in section II provides a serie of decompositions
{(uBV1,uS1), . . . , (uBVn,uSn)}. A first change detection
approach consists of exploiting the scatterer detection to find
changes between them. This is not a straightforward task since
the value and the exact position of the detected scatterers
can greatly vary when a small change happens in the scene.
Therefore, we start by binarizing the scatterers images {uSt}
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Fig. 2: False positive alarm versus true positive curves of
various change detection algorithms

that we name in the following {uS
bin
t }. We describe the

procedure for change detection between two images u1 and
u2 taken in these series.

The main difficulty to overcome when performing change
detection based on point-like scatterers is that these points are
not necessarily stable. To handle this situation, we look for
pixels that are detected as scatterers in an image without any
scatterer detected in a neighborhood in the other image. This
can be formalized by:

T (i) =

∣∣∣∣∣∑
δ

uS
bin
1 (i+ δ)−

∑
δ

uS
bin
2 (i+ δ)

∣∣∣∣∣ (9)

where T is a temporary image, and T (i) represents the chances
of having a change at position i. δ is used to iterate over the
neighborhood of the pixel i. This image is then thresholded to
find the changes between the two images.

B. Results

We ran this algorithm on a time serie of SAR images
of Saint-Gervais (France). We compare the results of this
algorithm with other change detection methods in figure 2
and we show an example of results in image 3. While the
results are not as good as dedicated state-of-the-art change
detection algorithms such as the ones presented in [17] our



(a) Input image 1. (b) Input image 26.

(c) Changes on image 1. (d) Changes on image 26.

Fig. 3: Change detection results using the proposed method
on images of Saint-Gervais series. Regions with changes that
have been detected are indicated in red.

method performs better than the ones presented in [18] and in
[19].

V. CONCLUSION

This paper introduces a decomposition model suitable to
multi-temporal series of SAR images. The proposed model
combines a TV regularization with an L0 pseudo-norm to
achieve a good estimation of the radiometry of the scene
even when point-like bright scatterers are present. It provides
a decomposition between the background of the scene and
the scatterers. We proposed a simple application of this de-
composition framework to change detection using the images
of scatterers computed by the algorithm on a SAR series.
The method yields results close to that of state-of-the-art
algorithms.

Further work includes more complex change detection
approaches using all components (background and targets). A
contrario framework could be used to detect changes as in
[20] from the scatterers images. Furthermore, strategies should
be investigated to tackle the practical problem caused by the
heavy consumption of memory of our optimization method.
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