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Abstract

This paper presents a likelihood ratio test based method of change detection
and classification for synthetic aperture radar (SAR) time series, namely
NORmalized Cut on chAnge criterion MAtrix (NORCAMA). This method
involves three steps: 1) multi-temporal pre-denoising step over the whole
image series to reduce the effect of the speckle noise; 2) likelihood ratio
test based change criteria between two images using both the original noisy
images and the denoised images; 3) change classification by a normalized cut
based clustering-and-recognizing method on change criterion matrix (CCM).
The experiments on both synthetic and real SAR image series show the
effective performance of the proposed framework.

Keywords: Change detection, Change classification, SAR time series,
Change criterion matrix, Normalized cut, Likelihood ratio test

Notations

Images:
yt Noisy image acquired at time t;
{yt1, yt2 , . . . , ytN} Noisy multi-temporal images;
ut Noise-free image of yt;
ût Denoised image of yt ;
ûPPBt Denoised image of yt by PPB filter;
y1stt Output of the first (temporal) step in the proposed

filter;
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Pixels:
yt(i) Pixel at position i in image yt ;
yt(i+ k) Pixel at position i + k, the k-th neighbor of

pixel yt(i) in patch yt(i) (in image yt) with k =
{1, 2, . . . , K};

ut(i) Noise-free pixel at position i in image ut ;
ût(i) Denoised pixel at position i in image ût ;
ût(i+ k) Denoised pixel at position i+ k, the k-th neighbor

of pixel ût(i) in patch ût(i+ k) (in image ût) with
k = {1, 2, . . . , K};

ym, yn Abbreviations of ytm(i) and ytn(i);

Patches:

yt(i) Patch of size
√
K ×

√
K with pixel yt(i) as center

in image yt ;

ut(i) Noise-free patch of size
√
K×

√
K with pixel ut(i)

as center in image ut ;

ût(i) Denoised Patch of size
√
K ×

√
K with pixel ût(i)

as center in image ût ;

Number of looks:
Lt Map of number of looks of image yt;
Lt(i) Number of looks of pixel yt(i);
Lt(i) Patch of number of looks of patch yt(i);

L̂t(i) Patch of (equivalent) number of looks of patch
ût(i);

L̂t Map of (equivalent) number of looks of image ût ;

Examples:
y(1) An example of pixel (it can be any pixel in the

multi-temporal images);
y(2) Another example of pixel;
u(1) Noise-free pixel of pixel y(1);
û(1) Denoised pixel of y(1);
L(1) Number of looks of pixel y(1);

L̂(1) Number (equivalent) number of looks of û(1).

2



1. Introduction

Change analysis in remote sensing images is the process of analyzing dif-
ferences (including identifying, recognizing and so on) in regions of interest
by observing them at different dates (Singh, 1989). Many applications of
remote sensing images involve change analysis, such as rapid mapping of dis-
aster, land-use and land-cover monitoring and so on. Lu et al. (2011) used a
change detection method to detect and locate the landslides for rapid map-
ping. Similarly, a multi-sensor change detection method between optical and
synthetic aperture radar (SAR) imagery is proposed in (Brunner et al., 2010)
for earthquake damage assessment of buildings. For urbanization monitor-
ing, post-classification change detection methods are proposed (Taubenböck
et al., 2012; Yin et al., 2011). From a methodological point of view, change
analysis methods can be classified into two classes, binary-temporal change
analysis and multi-temporal change analysis according to the number of im-
ages.

In the binary-date change analysis of two optical images, the most widely
used operator is difference operator (Singh, 1989). For multi-spectral images,
change vector analysis (Bruzzone and Prieto, 2000) is proposed. People also
perform the analysis on the transformed data instead of the spectral data
directly, such as Tasseled Cap transformation (Fung, 1990; Huang et al.,
2002), principal component analysis (Fung and LeDrew, 1987; Deng et al.,
2008) and independent component analysis (Marchesi and Bruzzone, 2009).
Beyond change detection, Bruzzone and Serpico (1997) explicitly identified
land-cover transitions (changes among Bare soil, Corn, Soybean, Sugar beet,
Wheat) in multi-temporal remote-sensing images based on supervised clas-
sification. Given SAR images, two main approaches have been developed in
the literature for change analysis: coherent change detection and incoherent
change detection. The former uses the phase information in the SAR images
through the study of the coherence map (Preiss and Stacy, 2006). In inco-
herent change detection, the amplitude log-ratio (Rignot and van Zyl, 1993)
is the most common operator. Improvements have been proposed thanks to
automatic thresholding methods (Bazi et al., 2005) or multi-scale analysis to
preserve details (Bovolo and Bruzzone, 2005). Lombardo and Oliver (2001)
proposed a generalized likelihood ratio test given by the ratio between geo-
metric and arithmetic means for SAR images. Quin et al. (2013) extended
this ratio of different means to a more general way with an adaptive and
nonlinear threshold, which can be applied to not only SAR image pairs but
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Figure 1: The global diagram of the proposed framework NORmalized Cut on chAnge
criterion MAtrix (NORCAMA). It consists of 3 steps, from left to right: 1) the pre-
processing step using a multi-temporal SAR filter (2S-PPB) (Su et al., 2014) to denoise;
2) a change detection step using the proposed change criteria based on likelihood ratio
test; 3) a change classification by the proposed clustering-and-recognizing method.

also SAR time series.
Beyond change analysis between two dates, multi-temporal change analy-

sis (more than 2 dates) mainly focuses on the long-term change information.
SAR image features consisting of long-term coherence and temporal back-
scattering is proposed for a classification purpose (Bruzzone et al., 2004).
Julea et al. (2011, 2012) propose a crop monitoring using satellite image
time series by a frequent sequential pattern (a group of pixels sharing com-
mon temporal patterns and satisfying a minimum spatial connectivity). A
generic change detection approach is proposed in (Verbesselt et al., 2010a)
for multi-temporal images by detecting and characterizing breaks for addi-
tive seasonal and trend changes. It integrates the decomposition of time
series into trend, seasonal, and remaining components within a long-term
time series. An improved harmonic seasonal model which requires fewer ob-
servations has been presented in (Verbesselt et al., 2010b). Transform tools
(De Jong et al., 2011; Mart́ınez and Gilabert, 2009) have also been used for
analysis of the normalized difference vegetation index time series.

In this paper, we address the problem of change classification of multi-
temporal SAR series. We will focus on same-sensor same-incidence case
and consider binary changes between two dates with applications to urban
areas. Although this is a restrictive case, this approach could be seen as a
screening stage for improved change analysis taking into account continuous
evolution. A global processing chain in 3 steps, namely NORmalized Cut
on chAnge criterion MAtrix (NORCAMA), is defined, as shown in Fig.1. In
the pre-processing step, a multi-temporal SAR image filter is used to reduce
speckle phenomenon. After that, two change criteria based on likelihood ratio
test combining noisy and denoised data are developed and compared. The
final step is a clustering-and-recognizing classification based on the change
criterion matrix, in which changes are classified into different types (including
step change, impulse change, cycle change and complex change). The last 2
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steps as well as the global framework are the main contribution of this paper.
Evaluation on synthetic and real images show the good performance of the
proposed approach.

This paper is organized as follows. Section 2 briefly recalls the multi-
temporal denoising method for SAR images. The proposed approximate
likelihood ratio test and generalized likelihood ratio test change criteria are
presented in Section 3. The proposed clustering-and-recognizing change clas-
sification method is then detailed in Section 4. This is followed by evaluation
(Section 5) and conclusion (Section 6).

2. Pre-Processing: Multi-Temporal Denoising

When dealing with multi-temporal images, lots of information is avail-
able and useful for estimation purposes in the time series. However, the
presence of high fluctuations due to speckle in SAR images hampers their
analysis. Based on this motive, we proposed a two-step probabilistic patch
based (2SPPB) denoising method (Su et al., 2014) relying on non local means
(Buades et al., 2005) and probabilistic patch based weights (PPB) (Deledalle
et al., 2009) adapted to multi-temporal SAR images. To allow a self-content
reading of this paper and to introduction the useful notations, we briefly
summarize the main steps of this approach. A complete description can be
found in (Su et al., 2014). It consists of a temporal averaging step and a
spatial denoising step (summarized in Algorithm 1). Firstly, an average im-
age is created by combining stable pixels while keeping unchanged the pixels
not in accordance with the other dates (temporal averaging step). Then, on
this improved image, a spatial denoising step is applied. A key point in both
the temporal and spatial averaging is the weights based on the similarity be-
tween pixels, which are measured by similarity between surrounding patches.
This section presents a brief summary of 2SPPB which will be useful for the
following steps.

2.1. Pixel similarity

We denote by yt the observed SAR image, by yt(i) the noisy intensity
value at pixel index i at time t, and by ût(i) the estimation of the ac-
tual pixel value ut(i) (the true value that we are looking for). Considering
{yt1, yt2 , . . . , ytN} as the stack of multi-temporal images, the similarity cri-
terion S

(

yt(i), yt′(i), h, h
′
)

between pixels yt(i) and yt′(i) is defined through
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the similarity of their surrounding patches yt(i) and yt′(i) (the lower, the
more similar they are supposed to be):

S
(

yt(i), yt′(i), h, h
′
)

=
SGLR

[

yt(i),yt′(i)
]

h
+
SKL

[

ût(i), ût′(i)
]

h′
(1)

S
[

yt(i), yt′(i), h, h
′
]

consists of the sum of a generalized likelihood ratio SGLR

(GLR) from noisy images yt and yt′ and a Kullback-Leibler divergence SKL

(KL) from currently denoised images ût and ût′. SGLR and SKL are normalized
by parameters h and h′. For any pair of pixels y(1) and y(2), the GLR
criterion SGLR is comparing two small square patches y(1) and y(2) of size
K surrounding pixels at the positions of y(1) and y(2), and is defined as (Su
et al., 2014):

SGLR [y(1),y(2)] =
∑

k∈K

[L(1 + k) + L(2 + k)] log [L(1 + k)y(1 + k) + L(2 + k)y(2 + k)]

− [L(1 + k) + L(2 + k)) log (L(1 + k) + L(2 + k)]

− L(1 + k)log (y(1 + k))− L(2 + k)log (y(2 + k))

(2)

where, y(1 + k) is k-pixel in patch y(1) and L(1 + k) is the (equivalent)
number of looks of y(1 + k) (idem for y(2 + k) and L(2 + k)). The KL
criterion SKL is computed from a pair of denoised results ût and ût′ of the
noisy image yt and yt′ respectively. The criterion SKL is also defined on two
patches û(1) and û(2) as (Su et al., 2014):

SKL [û(1), û(2)] =
∑

k∈K

L(1 + k)
û(2 + k)

û(1 + k)
+ L(2 + k)

û(1 + k)

û(2 + k)
− L(1 + k)− L(2 + k)

+ L(1 + k) [ψ(L(1 + k))− ψ(L(2 + k)) + ln(û(1 + k)) + ln(û(2 + k))]

− L(2 + k) [ψ(L(1 + k))− ψ(L(2 + k)) + ln(û(1 + k)) + ln(û(2 + k))]

(3)

where ψ()̇ is the digamma function.
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2.2. Two steps denoising

The first step of 2SPPB is to average the temporal pixels with binary
weights:

y1stt (i) =
1

Z

∑

t′∈[t1,tN ]

ϕ
[

S
(

yt(i), yt′(i), h1st, h
′

1st

)]

· yt′(i) (4)

with, Z =
∑

t′∈[t1,tN ]

ϕ
[

S
(

yt(i), yt′(i), h1st, h
′

1st

)]

(5)

ϕ
[

S
(

yt(i), yt′(i), h1st, h
′

1st

)]

=

{

1, if S
(

yt(i), yt′(i), h1st, h
′

1st

)

< 1
0, otherwise

(6)

where, S
(

yt(i), yt′(i), h1st, h
′

1st

)

is computed from noisy images yt(i) and
yt′(i), and denoised images by PPB. The quantity Z is the weight normalizing
parameter. The second step of 2SPPB approach is to exploit similar pixels
in the temporally average image y1sttt

rather than in the stack {yt1, . . . , ytN}.
The estimation at time t is thus given by

ût(i) =
1

Z

∑

j∈Ωi

exp
[

−S
(

yt(i), yt′(i), h2nd, h
′

2nd

)]

· y1stt (j) (7)

Z =
∑

j∈Ωi

exp
[

−S
(

yt(i), yt′(i), h2nd, h
′

2nd

)]

(8)

where the GLR criterion in S
(

yt(i), yt′(i), h2nd, h
′

2nd

)

is computed using the
temporal step (the first step) result y1sttt

. To improve the final ût estima-
tion, the KL criterion is iteratively refined by using the previous estimate.
According to (Deledalle et al., 2009) and (Su et al., 2014), the number of
iterations is set to 10. The final result of this temporal denoising step will
be denoted by ût for date t (with a map of corresponding number of looks
L̂t). Algorithm 1 summarizes the multi-temporal denoising processing.
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Algorithm 1 The multi-temporal denoising (2SPPB) algorithm.

Input:
Registered temporal SAR images {yt1 , yt2, . . . , ytN}.
A date t1 of interest.

Output:
ût1: the denoising result of image yt1 .
————Step 1 (Temporal step):———-

1: for each yt in {yt1 , yt2, . . . , ytN} do
2: denoise yt using PPB filter (Deledalle et al., 2009);
3: obtain pre-denoised results ûPPBt ;
4: end for
5: for each pixel index i do
6: Calculate y1stt1

(i); (Eq. 5)
7: end for

——————————————————
————Step 2 (Spatial step):————–

8: Set ût1 = 1;
9: for Iteration from 1 to 10 do
10: for each pixel index i do
11: Calculate S

(

yt(i), yt′(i), h2nd, h
′

2nd

)

using y1stt1
(i) and ût1(i);

12: Update ût1(i) using Eq.8;
13: end for
14: end for

——————————————————
15: return Denoised result ût1 ;

3. Change Detection

In statistics, change detection problem can be considered as a comparison
of two hypotheses H0 and H1 (Radke et al., 2005):

H0 : u(1) = u(2) = u(12) (null hypothesis)

H1 : u(1) 6= u(2) (alternative hypothesis) (9)

where H0 is unchanged case and hypothesis H1 is changed case. Likelihood
ratio tests are classical techniques that can be used here to decide between
both of our hypotheses by thresholding the response of the following likeli-
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hood ratio (see e.g., (Kay, 1998)):

R(Y) =
p(Y|u(12),H0)

p(Y|u(1), u(2),H1)
(10)

where Y is an observation or a set of observations that typically depends on
u(1) and u(2). In this section, we propose to develop the likelihood ratio
test using the multi-temporal denoising results. Contrary to most likelihood
ratio tests which only use noisy data, both the denoised data and the noisy
data are involved in the proposed criteria.

3.1. Change Criterion by Approximate Likelihood Ratio Test

Recall that by y we denote a pixel intensity value. Under the speckle noise
model described in (Goodman, 1976), y is a realization of a random number
characterized by the Gamma probability density function (pdf) p(y|u). The
quantity u is the parameter of this Gamma pdf denoted as the noise-free
pixel value. According to Eq.10, the change criterion between y(1) and y(2)
using likelihood ratio can be defined as:

RALRT(y(1), y(2)) =
p (y(1), y(2)|u(12),H0)

p (y(1), y(2)|u(1), u(2),H1)
(11)

The criterion in Eq. 11 is a composite hypothesis problem because it requires
the noise-free value u which is unavailable in practice. Instead of using usual
generalized likelihood ratio extensions, we propose to use an approximation
which replaces the unknown noise free u by their estimated values û. Com-
bined with the Gamma probability density function, the likelihood ratio in
Eq. 10 becomes:

RALRT(y(1), y(2)) =
p (y(1), y(2)|u(12),H0)

p (y(1), y(2)|u(1), u(2),H1)

=

[

1

4

(

û(2)

û(1)
+
û(1)

û(2)
+ 2

)]

−L

exp

[

L

(

y(1)

û(1)
+
y(2)

û(2)
− 2y(1) + 2y(2)

û(1) + û(1)

)]

(12)

where L = L(1) = L(2) is the original spatially-invariant (equivalent) number
of looks. Note that the approximate likelihood ratio RALRT highly depends
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on the denoised values û(1) and û(2), since RALRT(y(1), y(2)) ≡ 1 when
û(1) = û(2) whatever y(1) and y(2).

3.2. Change Criterion by Generalized Likelihood Ratio Test

In a more general way, we can take into account the denoised values and
consider the likelihood probability ofH0 andH1 as p(y(1), y(2), û(1), û(2)|H0)
and p(y(1), y(2), û(1), û(2)|H1). To simplify this likelihood probability, we
can assume that {y(1), û(1)} and {y(2), û(2)} are independent, although
this assumption is not well justified (since, typically y(1) can intervene in
the estimation of û(2)). Thus,

p(y(1), y(2), û(1), û(2)|H0) =p(y(1), û(1)|u(12),H0)p(y(2), û(2)|u(12),H0)

p(y(1), y(2), û(1), û(2)|H1) =p(y(1), û(1)|u1,H1)p(y(2), û(2)|u2,H1) .

The likelihood ratio test is given by:

RGLRT(y(1), y(2)) =
p(y(1), û(1) | u(12),H0)p(y(2), û(2) | u(12),H0)

p(y(1), û(1) | u(1),H1)p(y(2), û(2) | u(2),H1)
. (13)

Since u(12), u1 and u2 are not available, they can be replaced by their max-
imum likelihood (ML) estimation:

u1 =
Ly(1) + L̂(1)û(1)

L+ L̂(1)

u2 =
Ly(2) + L̂(2)û(2)

L+ L̂(2)
(14)

u(12) =
Ly(1) + Ly(2) + L̂(1)û(1) + L̂(2)û(2)

2L+ L̂(1) + L̂(2)
.

L = y(1) = y(2), L̂(1) and L̂(2) are the number of looks of y(1), û(1) and
û(2) respectively. Note that this is very similar to (Lombardo and Oliver,
2001). Nevertheless, the multi-temporal denoised values used in the pro-
posed approach can provide more accurate estimation without loss of spatial
resolution. It was not the case in (Lombardo and Oliver, 2001) where spa-
tial partitioning and averaging were introduced as post-processing steps. In
case of Gamma distributions with different number of looks, each probability
term p(y, û|u) in Eq.13 can be approximated under conditional independence
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assumption by:

p(y, û|u) = p(y|u)p(û|u)

=
y−1û−1

Γ(L)Γ(L̂)

(Ly)L(L̂û)L̂

uL+L̂
exp

(

−Ly + L̂û

u

)

. (15)

Finally, the change criterion given by the generalized likelihood boils down
to:

RGLRT(y(1), y(2)) =

(

Ly(1) + L̂(1)û(1)

L+ L̂(1)

)L+L̂(1)(

Ly(2) + L̂(2)û(2)

L+ L̂(2)

)L+L̂(2)

(

2L+ L̂(1) + L̂(2)

Ly(1) + L̂(1)û(1) + Ly(2) + L̂(2)û(2)

)2L+L̂(1)+L̂(2)

(16)

Unlike RALRT, the generalized likelihood ratio RGLRT does not rely much on
the denoised values û(1) and û(2). Indeed, even though û(1) = û(2), RGLRT

still depends on the noisy values y(1) and y(2).

3.3. Thresholds for Change Detection

In (Kervrann and Boulanger, 2006), the authors proposed to define the
parameters according to the quantiles of the similarity criterion when it is
subject to identical and independent distributed random variables. Pursuing
this idea, we propose to choose the thresholds according to the quantiles of
RALRT and RGLRT. The change detection threshold can be set by τALRT =
quantile(RALRT, α = 0.01) (and τGLRT = quantile(RGLRT, α = 0.01)), which
means the false alarm rate is 1%. However, it is not easy to obtain the
distribution of RALRT and RGLRT since they depend on the number of looks
of noisy images, the number of images used in the denoising process and all
the parameters of multi-temporal filter (such as the h, h′, search window size,
patch size and so on). Thus, RALRT and RGLRT distributions are simulated
using synthetic SAR images to choose the thresholds.

For our purpose of parameter setting, any picture can be used to generate
multiple speckle images with no change. Note that all the synthetic multi-
temporal noisy images use the same true image, which guarantees no changes
among them. The same number of images and the same number of looks as
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(a) RALRT (b) RGLRT

Figure 2: The simulated histograms of RALRT and RGLRT using synthetic images. The
red lines are thresholds τALRT and τGLRT with false alarm 1%. The blue lines are the
histograms of unchanged RALRT and RGLRT.

(a) RALRT (b) RGLRT

Figure 3: An example of the normalized histograms (peak normalization) of RALRT and
RGLRT using real SAR images Paris (detailed in section 5). The red lines are thresholds
τALRT and τGLRT with false alarm 1%. The blue lines are the histograms of unchanged
RALRT and RGLRT. The green lines are the histograms of changed RALRT and RGLRT.

the real SAR images to be processed have to be used. Then, the multi-
temporal denoising process in section 2 is performed. The approximate and
generalized likelihood ratio test change criteria calculated from these images
are considered as pure distributions of RALRT and RGLRT. As shown in
Fig.2, the histograms of RALRT and RGLRT are truncated by the thresholds
(red lines) with false alarm 1%. The parts on the right of the thresholds
are considered as unchanged case, the left part is changed case. Fig.3 shows
the RALRT and RGLRT histograms of changed and unchanged pixels in real
SAR data Paris (image information detailed in section 5). Those changed
pixels are labeled manually. The robustness of the proposed change criteria
RALRT and RGLRT can be epitomized by the overlap of RALRT and RGLRT

histograms.
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(a) Step change.

(b) Impulse change.

Figure 4: Examples of step changes and impulse changes. From left to right: original
multi-temporal SAR images at time t1, t2, t3, t4, t5, change criterion matrix of a pixel in
the red rectangle (cold color: unchanged; warm color: changed).

4. Change Classification

Change detection between 2 dates aims at detecting a binary pattern
(change or no-change). When dealing with a multi-temporal data set (more
than 2 dates), the analysis among them is much more complex. As said in
the introduction, we will focus in this work on binary changes which means
that we will not take into account continuous changes. This is well adapted
for few time series and urban applications. This approach can also be seen as
a preliminary step of screening before improved classification of continuous
changes. For instance, the temporal behaviors of a new building usually can
be considered as a step change, which means that comparing the oldest date
with other dates, it was unchanged at the beginning but it changed since a
certain date (shown in Fig. 4.a). Similarly, we can define the boats in rivers
or cars on the roads as impulse changes (Fig. 4.b). These change information
can be used in the multi-temporal image interpretation tasks. Therefore, a
clustering-and-recognizing method is proposed to classify changes into differ-
ent types. This method consists of two steps, clustering using normalized cut
on a change criterion matrix (to assign a same label to similar or unchanged
temporal pixels) and classification according to their temporal behaviors.
The following subsections detail the proposed approach.
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4.1. Change Criterion Matrix (CCM)

At position i of a multi-temporal SAR series {yt1 , . . . , ytN}, we have the
two pixel series {yt1(i), . . . , ytN (i)} (original noisy data), {ût1(i), ..., ûtN (i)}
(denoised data by multi-temporal filter of section 2) and associated equivalent
number of looks {Lt1(i), ..., LtN (i)}. The change criterion matrix (CCM) at
position i is defined as:

M(i) =









R(y1, y1) R(y1, y2) ... R(y1, yN)
R(y2, y1) R(y2, y2) ... R(y2, yN)

... ... ... ...

R(yN , y1) R(yN , y2) ... R(yN , yN)









(17)

where R(yn, ym) shorts for R [ytn(i), ytm(i)] and denotes the change criterion
(RALRT or RGLRT) between pixel ytn(i) and ytm(i). Note that R(yn, ym) = 1
when n = m. Contrary to the multi-date divergence matrix in (Atto et al.,
2013) performing at the image or sub-image level, the CCM presents the
change information at pixel level. Each CCM M(i) denotes the temporal
behavior of the pixel series at position i.

4.2. Clustering by Normalized Cut

Spectral clustering techniques make use of the similarity matrix of the
data to perform clustering. Since the CCM can be considered as a similarity
matrix of the time series, spectral clustering method has been applied on
CCM to cluster the temporal pixels. In this case, no more similarity mea-
surements is needed compared with other clustering methods (like K-Means
algorithm for which new similarity to cluster center has to be computed).

Normalized spectral clustering proposed by Shi and Malik (2000) is em-
ployed in this work, which can be summarized in Algorithm 2. In this algo-
rithm, the normalized Laplacian matrix Mu(i) is computed by:

Mu(i) = Ms(i)−M(i) (18)

Ms(i) =









∑

R(y1, yn) 0 ... 0
0

∑R(y2, yn) ... 0
... ... ... ...

0 0 ...
∑R(yN , yn)









∑

R(ym, yn) =
∑

n=1,...,N

R(ym, yn)
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The only parameter in Algorithm 2 is the number of clusters p. Choos-
ing the number of clusters p is a general problem for all clustering algo-
rithms, and a variety of successful methods have been devised (more details
in (Von Luxburg, 2007)). Eigengap heuristic is one of them and particularly
designed for spectral clustering. The main idea is to choose the number p
such that all eigenvalues λ1, ..., λp are very small, but λp+1 is relatively larger
(all eigenvalues are sorted in ascending order). However, this heuristic fails
when the clusters of the data are overlapping (because of noise). To solve this
problem, we binarize the CCM M(i) using the change detection threshold.

Mb(i) =









Rb(y1, y1) ... Rb(y1, yN)
Rb(y2, y1) ... Rb(y2, yN)

... ... ...

Rb(yN , y1) ... Rb(yN , yN)









(19)

Rb(ym, yn) =

{

0 if R(ym, yn) < τ

1 if R(ym, yn) > τ

The Eigengap heuristic performed on the binary change criterion matrix
Mb(i) can easily be used to estimate the number of clusters p (see the ex-
ample shown in Fig. 5). The toy model in Fig. 5.a has 2 clusters. Using
CCM M(i) in 5.b, the difference between eigenvalues λ2 and λ3 is not large
enough compared with the one between λ1 and λ2. It is very easy to find
the best estimation of p using the binary CCM Mb(i) in 5.c because of the
large gap between λ2 and λ3. It is obvious that this estimation of p highly
depends on the choice of the thresholds. However, the robustness of the pro-
posed change criteria (especially RGLRT shown in Fig.3) can guaranty the
estimation accuracy of p.

4.3. Recognizing
After clustering, each pixel series {yt1(i), . . . , ytN (i)} has a cluster label

series {lt1(i), ..., ltN (i)}, in which ltn(i) ∈ {1, ..., p}. We can identify different
types of change according to the transformation in the cluster label series
{lt1(i), ..., ltN (i)}. For example, if p = 1, there is no change among this
pixel series. If p = 2 with cluster label series {1, 1, ..., 1, 2, 2, ..., 2}, it is a
step change. Impulse change usually has p = 2 and cluster label series is
{1, 1, ..., 1, 2, 2, ..., 2, 1, 1, ..., 1}. When p > 3, the transformation is complex
and changes are defined as complex case. According to these identifications
(details in Table 2), changes can be classified into several classes.
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(a) A pixel series {yt1(i), ..., yt12(i)} which should be clustered
into 2 groups (red and blue).
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(b) CCM M(i) and its eigenvalues.
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(c) Binary CCM Mb(i) and its eigenvalues.

Figure 5: Estimation of number of clusters. (a). a pixel series {yt1(i), ..., yt12(i)} which
should be clustered into 2 groups; (b). Estimation of the number of clusters using CCM
M(i), the gap between λ2 and λ3 is not obvious; (b). Estimation of the number of clusters
using binary CCM Mb(i), the gap between λ2 and λ3 is larger.
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Algorithm 2 Clustering of the pixel series (Normalized spectral clustering
(Shi and Malik, 2000))

Input:
A change criterion matrix M(i) of pixel series {yt1(i), . . . , ytN (i)}, num-
ber p of clusters to construct.

Output:
The clustering labels {lt1(i), ..., ltN (i)} for pixel series {yt1(i), ..., ytN (i)}

1: Compute the normalized Laplacian matrix Mu(i) using Eq.18.
2: Compute the first p generalized eigenvectors v1, ..., vp of Mu(i)

(Mu(i)v = λIv).
3: Let v′ be the matrix containing the vectors v1, ..., vp as columns.
4: Consider each row of v′ as a sample, v′ = {v′

1, ..., v
′

N}.
5: Cluster the samples v

′

1, ..., v
′

N with the k-means algorithm into clusters
with K = p as the number of clusters. The cluster labels of v′

1, ..., v
′

N are
lt1(i), . . . , ltN (i) (ltn(i) ∈ {1, ..., p}).

6: return Cluster labels lt1(i), . . . , ltN (i)

Types p Label series {lt1(i), ..., ltN (i)}
Unchanged 1 {1, 1, ...}
Step 2 {1, 1, ..., 2, 2, ...}
Impulse 2 {1, 1, ..., 2, 2, ..., 1, 1, ...}
Cycle 2 {1, 1, ..., 2, 2, ...1, 1, ...2, 2, ...}
Complex > 3 {1, 1, ..., 2, 2..., 3, 3...4, 4...}

Table 2: The identifications of different types of change.

5. Experiments

The proposed methods are evaluated on both synthetic images and real
multi-temporal SAR images.

5.1. Experiments of Change Detection

5.1.1. Data Set

Synthetic images: Fig.6.a shows the noisy synthetic images yt and
yt′ corrupted by single-look multiplicative speckle noise respectively and the
ground truth of changes between them. The four squares are 32×32 pixels
with true value 128. The darker frame is 8 pixels width with 32 as true value
and the true value of background is 64.
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Realistic SAR synthetic images: A denoised image of 21 single-look
TerraSAR X-band images in Paris (France) sensed in 2011 is considered as
the noise-free image (multi-temporal denoising approach in section 2), as
shown in Fig.6.b. Two single-look noisy images yt and yt′ are generated with
changes added in yt′. These changed regions are about 15-25 pixels width
and length, for instance a 20×20 pixels patch of vegetation is replaced by a
same size patch of building and so on. The right of Fig.6.b shows the ground
truth of changes.

Real SAR images 1: 26 single-look TerraSAR images in Saint-Gervais-
les-Bains (France) (13 images are sensed in 2009 and the other 13 images in
2011) are shown in Fig.7.a, identified as Saint-Gervais-les-Bains. Reference
Ground truth of changes is labeled manually in the right of Fig.7.a.

Real SAR images 2: Experiment in Fig.7.b uses 21 single-look Ter-
raSAR X-band images identified as Paris in Paris (France) sensed in 2011.
We label the ground truth of changes manually, as shown in right of Fig.7.b.

Real SAR images 3: Experiment in Fig.9 uses 24 CARABAS-II mag-
nitude images acquired in Vidsel, Sweden 2002, identified as CARABAS
(Sensor Data Management System (SDMS) Public web site, 2008). We only
detect the changes between image v02 2 1 1 and image v02 4 1 1, while all
the 24 images are used in the multi-temporal denoising process.

Real SAR images 4: Experiment in Fig.10 uses 9 single-look TerraSAR
X-band images identified as Sendai in Sendai Harbor (Japan) sensed in 2011.
Fig.10.a and b show the images acquired respectively on May 6, 2011 and
June 8, 2011. All the 9 images are used in the multi-temporal denoising step.

5.1.2. Change detection methods

The proposed change criteria approximate likelihood ratio test RALRT

and generalized likelihood ratio test RGLRT are compared with some state-
of-the-art methods, such as Log-Ratio operator (Rignot and van Zyl, 1993),
the generalized likelihood ratio test (GLRT) proposed in (Lombardo and
Oliver, 2001), Wilcoxon Test based change criterion (Krylov et al., 2012)
and Method for generalIzed Means Ordered Series Analysis (Quin et al.,
2013), summarized in Tab.3.

5.1.3. Results

The change detection results are assessed by the True-Positive versus
False-Positive curves using the reference map of changes as shown in Fig.6.c
and Fig.7.c. The proposed methods RALRT and RGLRT can generally obtain
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Name Reference Description

Log-Ratio Rignot and van Zyl (1993) Log-Ratio operator

GLRT
Lombardo and Oliver
(2001)

Generalized likelihood ratio test

Wilcoxon Krylov et al. (2012)
Change detection using a Wilcoxon
Test

MIMOSA Quin et al. (2013)
Method for generalIzed Means Or-
dered Series Analysis

RALRT -
The proposed approximate likeli-
hood ratio test

RGLRT -
The proposed generalized likelihood
ratio test

Table 3: The change detection methods used in the comparison experiments.

higher receiver operating characteristic (ROC) curves than others. The ex-
periments on CARABAS and Sendai data in Fig.9 and 10 show that the pro-
posed GLRT change detection has comparable performance with MIMOSA
(Quin et al., 2013). RALRT and RGLRT outperform other change criteria, but
the latter is more reliable than the former (the ROC curves of RGLRT are
higher than RALRT in Fig.6 and 11).

In Saint-Gervais-les-Bains data set, there are only 1817 changed pixels
according to the reference map. While, the synthetic data set and the Paris
data set have 8116 and 28941 changed pixels respectively (according to the
reference map). Too less changed pixels cause the ’noise’ in the ROC curves
(and all the change detection methods on the Saint-Gervais-les-Bains data
set have this ’noise’ phenomenon).

5.2. Experiments of Change Classification

5.2.1. Test on realistic SAR synthetic images

This experiment uses one denoised image of 21 single-look TerraSAR X-
band images of Paris (France) sensed in 2011 as the noise-free image (multi-
temporal denoising approach in section 2), as shown in Fig.6.a. 6 single-look
images are generated with different changes added in them. As shown in
Fig.6.c, different kinds of changes have been introduced, such as step change
(in red), impulse change (in green) and cycle change (in blue). Fig.6.d shows
the change classification result by RGLRT with confusion matrix shown in
Tab.4.
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(a) Synthetic images. From left to right: synthetic image yt , Synthetic image yt′ and
the reference map of changes.

(b) Realistic SAR synthetic images. From left to right: synthetic image yt , Synthetic
image yt′ and the reference map of changes.
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(c) False positive alarm vs true positive curves of synthetic images and realistic SAR
synthetic images

Figure 6: Change detection results for synthetic SAR images.
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(a) Saint-Gervais-les-Bains data set. From left to right: noisy image yt1 , noisy image
yt26 and the reference map of changes.

(b) Paris data set. From left to right: noisy image yt1 , noisy image yt26 and the
reference map of changes.
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(c) False positive alarm vs true positive curves of Saint-Gervais-les-Bains and Paris

data set.

Figure 7: Change detection results for real SAR images Saint-Gervais-les-Bains and Paris

data set.
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Reference log-ratio GLRT Wilcoxon RALRT RGLRT

(a) Change detection results of Fig.6.a with True Positive rate 95%.

(b) Change detection results of Fig.6.b with True Positive rate 90%.

(c) Change detection results of Fig.6.b with True Positive rate 90%.

(d) Change detection results of Saint-Gervais-les-Bains data set with True Positive
rate 80%.

(e) Change detection results of Paris data set with True Positive rate 75%.

(f) Change detection results of Paris data set with True Positive rate 75%.

Figure 8: Change detection results.
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(a) Image v02 2 1 1 in CARABAS. (b) Image v02 4 1 1in CARABAS.

(c) The proposed change criterion RGLRT. (d) Results using a threshold τ with α =
0.1%.

Figure 9: Change detection results of real SAR images CARABAS (Sensor Data Manage-
ment System (SDMS) Public web site, 2008).
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(a) Image on 06/05/2011 in Sendai data. (b) Image on 08/06/2011 in Sendai data.

(c) The RGB composition between a and b
by MIMOSA (Quin et al., 2013).

(d) The change detection results by MI-
MOSA (a prior FAR is 1%) (Quin et al.,
2013).

(e) The proposed change criterion RGLRT. (f) Results using a threshold τ with α =
0.1%.

Figure 10: Change detection results of real SAR images Sendai.
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(a) ”Noise-free” image with synthetic
changes (only 1 image has been shown).

(b) Ground-truth map of changes (c) Change classification results by RGLRT

Figure 11: Change classification of synthetic SAR images (6 single-look SAR images). (a)
”noise-free” image with synthetic changes (only 1 image has been shown); (b) Ground-
truth map of changes; (c) Change classification results by RGLRT (black: no change, red:
step change, green: impulse change, blue: cycle change and yellow: complex change.
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Confusion Classification results
Matrix (%) Unch. Step Impl. Cyc. Comp.

A
ct
u
al

cl
as
s Unch 99.42 0.17 0.12 0.17 0.11

Step 11.52 78.71 3.12 4.05 2.60
Impl. 6.25 4.50 80.25 5.63 3.38
Cyc. 17.50 2.92 1.58 75.58 2.42

Comp. 4.27 5.52 2.85 6.23 81.14

Table 4: Confusion matrix of change classification results. Unch.: unchanged, Step: step
change, Impl.:impulse change, Cyc.: cycle change and Comp.: complex change.

5.2.2. Test on real SAR images

We have 21 single-look TerraSAR X-band images identified as Paris in
Paris (France) sensed in 2011 and 6 single-look TerraSAR X-band images
identified as San-Francisco sensed in San-Francisco, U.S.A. 2007 and 2011.
These images have been accurately registered using the sensor parameters.
Fig.12.a and b only show the first noisy image and its denoising result.
Fig.12.c shows the results of the change classification approach by RGLRT,
in which red regions denote step changes, green are impulse changes and
blue are cycle changes. We can observe that many boats in river have been
classified as impulse change. Fig.13 gives an illustration of examples of step
change, impulse change; cycle change and complex change with the corre-
sponding optical images c©Google (but the dates of the optical images are
not exactly the same as the SAR images). We can see that the step changes
probably corresponds to the presence of some facilities in the stadium, im-
pulse and complex changes corresponds to boats that are moored at piers,
while cycle changes might correspond to the river bank.

6. Conclusion

In this work, a global framework NORmalized Cut on chAnge criterion
MAtrix (NORCAMA) for change classification of multi-temporal SAR time
series has been presented. To reduce the effect of speckle, a multi-temporal
denoising approach is applied in the pre-processing step. Using both noisy
data and denoised data, the approximate likelihood ratio and the generalized
likelihood ratio are computed as change criteria. The change classification is
performed by clustering on change criterion matrix and classifying of label
transformation. Different types of change, like step changes, impulse changes
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(a) Paris, 21 single-look TerraSAR-X images

(b) San-Francisco, 6 single-look TerraSAR-X images

Figure 12: Change classification on Real SAR images. From top to bottom: Paris, 21
single-look TerraSAR-X images and San-Francisco, 6 single-look TerraSAR-X images.
From left to right: noisy image yt1 , multi-temporal denoising result of yt1 and change
classification results by criterion RGLRT. (black: no change, red: step change, green:
impulse change, blue: cycle change yellow: complex change.)
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(a) The AT&T park in San-Francisco. Example of step change in San-Francisco. From
left to right, the change classification results, the noisy image from date t1 to t6.

(b) The Pier 48 in San-Francisco. Example of impulse change in San-Francisco. From
left to right, the change classification results, the noisy image from date t1 to t6.

(c) The bank of the river in the Mission Creek Garden. Example of cycle change in
San-Francisco. From left to right, the change classification results, the noisy image from
date t1 to t6.

(d) The Pier 50 in San-Francisco. Example of complex change in San-Francisco. From
left to right, the change classification results, the noisy image from date t1 to t6.

(e) (f) (g) (h)

Figure 13: Details of change classification results of San-Francisco data set. (a-d) from
top to bottom: from left to right: the AT&T park, the Pier 48, the bank of the river in
the Mission Creek Garden and the Pier 50. They are step change, impulse change; cycle
change and complex change. (black: no change, red: step change, green: impulse change,
blue: cycle change and yellow: complex change). (e-h) the optical images (imagery data
2014.02.24) corresponding to images (a-d).
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and cycle changes, have been defined by the proposed method, which can be
used for multi-temporal SAR image interpretation. Our proposed framework
is flexible enough to consider alternative methods during the three steps, for
instance other denoising approaches for the pre-processing step and other
change criteria for the change detection step.

The future work will be focused in introducing spatial information into
change analysis such as combining types of change and shapes to identify
objects and developing a temporal-spatial SAR image analysis framework.
The spatial information should allow us to extend this approach to multi-
incidence images. Extension of our method for the classification of complex
changes with more than three clusters constitutes another perspective. This
would require a more detailed analysis for the complex change and more
information on the application context.
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