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Abstract—This paper proposes a fully digital calibration of
timing mismatch for undersampling Time Interleaved Analog-to-
Digital Converter (TI-ADC) employed in Software Defined Radio
(SDR) receivers. The proposed calibration scheme employs an
ideal differentiator filter, a Hilbert transform filter and a scaling
factor to compute the derivative of the input in any Nyquist
Band (NB). The efficiency of the proposed technique is shown
using a four-channel undersampling 60 dB SNR TI-ADC clocked
at 2.7 GHz. Monte Carlo simulations show SNDR and SFDR
improvements of respectively, 18 dB and 21 dB over the first
three NBs.

I. INTRODUCTION

The need for low power, low implementation cost, high resolution
and especially very high speed data conversion has created very rich
research activity for TI-ADCs for the last decade. Time-interleaved
ADCs, which are formed by several slow but accurate ADCs in
parallel, is not only a mean of increasing the conversion speed, but
also can relax their power-speed tradeoffs, reduce their metastability
error rate while increasing the input capacitance [1]. However,
offset, gain and timing mismatches among the sub-ADCs reduce the
achievable linearity and significantly degrade the performance of TI-
ADC [2]. Among these aforementioned errors, the sample-time error
is the most critical, due to its frequency depending detection. The
impact of timing skew rises with input frequency. For these reasons,
we will mainly focus in this paper on the timing mismatches for the
input signals located in any Nyquist band.

An all-digital background calibration technique to mitigate the
errors caused by timing mismatch is preferred in order to take the
advantages of technology scaling, the flexibility of digital circuits and
the ease of portability from one technology node to the following.
Most of the existing digital sample-time error correction mechanisms
work only for bandlimited input signal at the first NB. Such methods
are either based on digital fractional delay filter as reported in [3]–[6]
or canceling structure formed by derivative filter and real modulators
[7]–[9]. Most of them are not able to directly perform timing
skew calibration for undersampling TI-ADCs, which are however an
interesting solution to remove the last mixing stages for all-digital
receivers such as SDR receivers. The work presented in [4] deals
with the calibration of sample-time errors in undersampling TI-ADC,
but under the assumption of narrow-band signals and for only two
channels. The calibration scheme presented in [10] copes directly
with timing skews in the undersampling TI-ADCs, but at the price
of an additional channel. Another approach reported in [3] requires a
pilot input signal and adds constraints on the useful signal bandwidth.

This paper extends the work of J. Matsuno et al. presented in [9]
to all NBs with relaxed constraints on input. The paper is organized
as follows. Section II describes the system model of TI-ADC and the
error signal due to timing skews as a function of input’s derivative.
Section III is dedicated to the description of limitations of the
correction circuit using a fixed derivative filter for input outside the

first NB. After that proposed digital background calibration scheme
for the input signals in any NB is presented. Simulation results and
conclusion are presented in Section IV and V, respectively.

II. SYSTEM MODEL

Figure 1 shows a model of a M -channel time-interleaved ADC
without quantization noise. The analog input signal x(t) is fed into
M -channel frequency responses, and then downsampled with the
same sampling rate of fs

M
. The overall sampling frequency of TI-ADC

fs is M times higher than that of individual ADCs. The downsampled
outputs zm[n] are time-aligned by upsamplers and delay elements
z−m,m = 0, 1, · · · ,M−1. The sum of channel outputs is the digital
output of the TI-ADC. In this section, offset and gain mismatches are
assumed to be calibrated. The sample-time error values are defined
relatively to the average value. Thus, the sum of timing mismatch of
individual channel is equal to zero. The channel response can then
be expressed by:

Hm(jω) = ejω(m+τm),m = 0, 1, · · · ,M − 1, (1)

where τm is the relative time offset of the m-channel that is the ratio
between deterministic absolute time offset and sampling period Ts.
In practice, the absolute time offsets are typically small compared to
the sampling period Ts [5]. By assuming a bandlimited input signal

Fig. 1: Model of M -channel TI-ADC

X(jΩ), i.e., X(jΩ) = 0 for |ΩTs| ≥ π, ω = ΩTs, the relationship
between input and output of TI-ADC can be written by [7]:
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By exploiting the Taylor’s series approximation and neglecting the
high orders, i.e., ejωτm ≈ 1 + jωτm, with τm � 1, and then
substituting (1), (3) into (2), TI-ADC output spectrum can be written



by:
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and
Hd(jω) = jω. (6)

Hd(jω) is the frequency response of an ideal discrete-time differ-
entiator [11]. Obviously, the first term in (4) is the wanted signal,
while the second term is the error due to timing mismatches. This
error is the sum of complex constituent signals Z

′
k(jω) that are

the derivative of input signal, whose frequency is shifted, and then
modulated by the different complex modulators of e−jk

2π
M
m. These

signals are uncorrelated with the input. They will be referred to as
Pseudo Aliasing (PA) signals [9].

III. DIGITAL CALIBRATION OF TIMING SKEW FOR ANY
NYQUIST BAND

A. Limitation of the correction circuit using a fixed differen-
tiator filter for input outside the first NB

Based on (5), the authors in [7]–[9] built a digitally efficient
correction circuit of sample-time errors which is formed by real
modulators and a fixed discrete-time derivative filter with frequency
response written by (6) for the first NB. To obtain the causal
and realizable FIR filter in practice, the infinite impulse response
hd[n] that is the inverse Discrete-time Fourier Transform (DFT) of
Hd(jω), can be truncated, windowed and shifted. However, only one
differentiator filter in the correction circuit limits the efficiency of
the correction technique to the first NB. In Fig. 2, the undersampling
TI-ADC converters with sampling frequency satisfying the Nyquist
criterion, fold the original spectrum of Bandpass (BP) signal back
to base-band. According to BP sampling theory discussed in [11],

Fig. 2: Examples of undersampling process.

the baseband spectrum of undersampled signal when input signal is
in the odd-order NB, has the same shape as the original spectrum
as shown in Fig. 2(a). There is a flip in the frequency spectrum
in baseband for the even-order NB input signal in Fig. 2(b). As a
result, the derivative of the output baseband signal is not identical
to the derivative of sampled version of original BP signal that is
required to correct the sample-time errors. This leads to the common
limitation to employ the correction technique reported previously in
[7]–[9] for input signal outside the first NB. The proposed technique
in this paper overcomes this limitation. It will be elaborated in the
next section.

Fig. 3: The proposed technique for input occupied at k-th NB
for M=4 channel undersampling TI-ADC.

B. Proposed calibration for any Nyquist Band
To formulate the first-order derivative of original BP sampling

signal in even- or odd- Nyquist bands, the input signal is consid-
ered as sum of two complex signals of x+(t) and x−(t) having
the positive and negative frequency spectrum, X+(f) and X−(f),
respectively. Similarly, the TI-ADC output at baseband can be written
by Y (f) = Y +(f) +Y −(f), see Fig. 2. Intuitively, the spectrum of
original BP signal at frequency f is translated to that of baseband
output signal at f ± fs. Let us take for example the third-order
undersampling process for the first analysis. The relationship between
spectrum of a real BP signal and baseband output can be expressed
by:

X(f) = X−(f) +X+(f)

= TsY
+(f − fs) + TsY

−(f + fs). (7)

After taking the inverse DFT of (7), the original BP signal in time
domain can be expressed by:

x(t) = Tsy
+(t)ej2πfst + Tsy

−(t)e−j2πfst. (8)

In the time domain, the relationship between the lowpass signals of
y+(t) and y−(t) and y(t) is provided by [11] as follows.

2y+(t) = y(t) + jŷ(t),

2y−(t) = y(t)− jŷ(t), (9)

where ŷ(t) is the Hilbert transform of y(t). After replacing (9) into
(8), the original BP signal can be expressed by:

x(t) = Tsy(t)cos(2πfst)− Tsŷ(t)sin(2πfst). (10)

By differentiating and sampling this original BP signal, the rela-
tionship between the first-order derivative of the original BP signal,
the derivative and Hilbert transform of undersampled signal can be
expressed by:

x′[n] = y′[n]− 2πŷ[n]. (11)

With the same procedure, the first-order derivative of the BP signal
located in the second NB is derived by:

x′[n] = y′[n] + 2πŷ[n]. (12)

The general first-order derivative of BP signal located at k-th NB can
be expressed by:

x′[n] = y′[n] + (−1)k
⌊
k

2

⌋
2πŷ[n], (13)

where bxc is a nearest integer less than or equal to x. From (13),
the proposed filter block to calculate the derivative of the BP input



signal is constructed by a derivative filter, a Hilbert transform filter
and scale factor (−1)k

⌊
k
2

⌋
2π; the overall calibration structure of the

timing skew for four-channel undersampling TI-ADCs is introduced
in Fig. 3. In general, this calibration architecture can be easily
extended to M -channel.

1) Digital Correction Circuit: The digital correction circuit
consists of multipliers and the Pseudo Aliasing Generator (PAG)
formed by the proposed filter block and Hadamard modulation vectors
rFi [n mod M ] that are the cyclic repetition of the i-th row of a M -
th order Hadamard modulation matrix F, i = 2, . . . ,M , labeled in
Fig. 3. The mod is a modular arithmetic. The PA signals at PAG
outputs are multiplied with the time offset coefficients θ̂tl, l = i−1,
which are functions of timing skew of individual sub-ADC to
create the global error signal. Finally, subtracting the obtained error
signal from TI-ADC output with sample-times errors produces the
compensated signal.

2) Digital Detection Circuit: The cross-correlation-based
sample-time error detection scheme presented in [4], [6], [9], [12],
is applied in our proposed solution. A block diagram of the digital
detection circuit is shown in Fig. 4 which encompasses a PAG, a
correlator and an optional notch filter. The PAG block is the same as
that of the digital correction circuit. The correlator in [9] computes
the cross correlation between the compensated signal x̂[n] and PA
signals x̂′el[n] that are outputs of the PAG in the detection circuit. The
compensated signal still has the residual aliasing signals during the
timing mismatch coefficient convergence. Thus, the feedback loops
make the correlation close to zero. Correlator output then converges
to the expected values of timing mismatch coefficients. An adaptive
learning algorithm to update the timing mismatch coefficients can be
driven by:

θ̂tl[n+ 1] = θ̂tl[n] + µt(x̂[n]x̂′el[n]), (14)

where l = 1, 2, · · · ,M − 1 and µt is the adaptation step size. There

Fig. 4: Digital Detection Circuit of timing skew for four-
channel undersampling TI-ADC.

are two common limitations for this detection technique. Firstly,
the detection is inaccurate if the input signal contains frequency
components at l π

M
, l = 1, 2, · · · ,M − 1. A notch filter is used in

front of detector to mitigate the amplitudes at these notch frequencies
as illustrated in Fig. 4. Secondly, the detection technique does
not converge as well as the input contains at least two frequency
components satisfying ωa ± ωb = l 2π

M
, l = 1, 2, · · · ,M − 1. The

output of the correlator will converge to non zero DC value even if
there are no timing mismatches among channels [12].

IV. SIMULATION RESULTS

To verify the efficiency of the proposed technique, simulations
were carried out on an undersampling four-channel 60 dB SNR TI-
ADC clocked at fs = 2.7 GHz. The quantization is performed over
11 bit. Both the ideal differentiator and Hilbert filter have 31-taps.
The coefficients of FIR filters are obtained by multiplying the exact
coefficients with a Blackman window.

Since offset and gain mismatches are static errors, a classical
calibration scheme applied efficiently for the input in the first NB, is
employed in addition to the proposed technique in order to address all

Fig. 5: Block diagram of the adaptive calibration system.

mismatches. An overall calibration architecture for offset, gain and
timing errors is drawn in Fig. 5. In the offset calibration block, the
offset values are estimated by accumulation denoted by Acc., and
average of Ns samples of each sub-ADC: ôi =

∑Ns
n=0

zi[n], i =
0, . . . ,M − 1. These estimates of the offset errors are subtracted
from the channel output. Once the offset calibration is done, gain
and sample-time mismatches are estimated and corrected at once.
Since gain errors are frequency independent, the calibration for gain
mismatches proposed in [9] is also applied herein for the input signals
located in any NB. Block TH is the Hadamard transform which was
described in Fig. 3 of Section III. The gain mismatch coefficients of
θ̂gl[n], l = 1, . . . ,M − 1, are updated by the learning equations:

θ̂gl[n+ 1] = θ̂gl[n] + µg(x̂[n]x̂el[n]), (15)

where µg is the adaptation step size for the gain mismatches. We
model simulation with realistic values of mismatch errors from ex-
perience. This gives offset values of [0, 0.0158,−0.0014,−0.0229],
gain mismatch values of [0, 0.0171, 0.0331,−0.0009], and timing
skews of [0,−1.3055,−1.3879, 0.2378]ps. Adaptation step sizes of
µg, µt are chosen respectively 2−13, 2−18 based on simulation in
order to achieve a good compromise between the convergence speed
and the parameter estimation precision [13]. The Number of FFT
(NFFT) points used to plot the spectrum is 218 samples. Simulations
are performed with single-tone input signal located in the second
Nyquist band at fin = 0.41× fs + fs

2
.
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Fig. 6: Measured output spectrum for fin = 0.41 × fs +
fs
2

(in second Nyquist band): (a) before, and (b) after calibration.
(Due to undersampling TI-ADC, fin maps to 0.09 × fs in
baseband).

Figure 6 shows the output spectra before and after calibration. The
SFDR is improved by almost 40 dB. The SNDR value after calibra-



tion is 60 dB which is equal to its value in the no-mismatch case.
The right-hand side of Fig. 7 shows the divergence of the sample-time
error correction loop performed by the calibration described in [9],
whereas in the proposed calibration, the sample-time error coefficient
estimates converge to their expected values after 55K-samples (or
after 20µs), see in the left-hand side of Fig. 7.

Monte Carlo simulations were carried out as well to evaluate the
performance of the proposed calibration. All errors are Gaussian with
zero mean and standard deviation of 2 ps for timing skew and 0.02%
for offset and gain mismatches. NFFT points is 218. (µg, µt) are
chosen equal to (2−14, 2−15), (2−16, 2−15), and (2−15, 2−16) with
respect to the first three NBs. Figures 8 and 9 show the histograms
of SNDR and SFDR before and after calibration with one tone input
inside the k-th NB at fink = 0.405× fs + (k − 1) fs

2
, k = 1, 2, 3.

The mean (µ) and standard deviation (σ) of SNDR and SFDR are
shown in the figures. As can be seen, the SNDR and SFDR without
calibration decrease when the NB order increases. This is due to the
higher impact of the timing skew with the input frequency increase
[1]. After calibration, the SNDR and SFDR remain smaller for higher
NBs. As a matter of fact, in (5), the PA signals are generated from the
input signal x[n]. However, since it is not available, the PA signals are
generated using the TI-ADC output y[n] as illustrated in Fig. 3. This
approximation becomes less accurate when the input frequency is
increased because the distortion level rises. Nevertheless, the achieved
SFDR improvement remains significant which proves the efficiency
and interest of the proposed technique.
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Fig. 7: Convergence of the gain and timing mismatch coefficients of
θt with single-tone input signal in 2nd NB for the proposed calibration
(left-hand side) and the calibration proposed in [9] (right-hand side).
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Fig. 8: Histograms of SNDR before and after calibration in the first
three NBs: k = 1, 2, 3.

V. CONCLUSION

This paper proposes a digital background calibration technique of
sample-time error for undersampling TI-ADCs with input signals at
any NB. The technique does not require a pilot input nor additional
reference channel. It just requires a differentiator, a FIR Hilbert filter
and a scaling factor to determine the first-order derivative of the
input in different NBs. Simulations have shown the efficiency of the
proposed calibration which leads to SNDR and SFDR improvement
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Fig. 9: Histograms of SFDR before and after calibration in the first
three NBs: k = 1, 2, 3.

of 18 dB and 21 dB respectively for four-channel undersampling
60 dB SNR TI-ADC clocked at 2.7 GHz over the first three NBs.
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