Blind estimation of room acoustic
parameters using kernel regression

Arthur Belhomme!*2, Yves Grenier!, Roland Badeau' and Eric Humbert?

Unstitut Mines-Télécom; Télécom ParisTech; CNRS LTCI, Paris, 75013, France

2Invoxia, Issy-les-Moulineaux, 92130, France

Correspondence should be addressed to Arthur Belhomme (arthur.belhomme@telecom-paristech.fr)

ABSTRACT

Room acoustic parameters are key information for dereverberation or speech recognition. Usually, when
one needs to assess the level of reverberation, only the reverberation time RT¢y or a direct to reverberant
sounds index Dy is estimated. Yet, methods which blindly estimate the reverberation time from reverberant
recorded speech do not always differentiate the RT¢y from the D; to evaluate the level of reverberation. That
is why we propose a method to jointly blindly estimate these parameters, from the signal energy decay rate
distribution, by means of kernel regression. Evaluation is carried out with real and simulated room impulse
responses to generate noise-free reverberant speech signals. The results show this new method outperforms

baseline approaches in our evaluation.

1. INTRODUCTION

When a sound is emitted in an enclosed space, the mi-
crophone does not only capture the output of the source:
all the paths the sound may follow, from the source to
the microphone, are added to the direct one and produce
reverberation. These paths depend on the different re-
flections of the acoustic wave on the walls and surfaces
it meets, that can be viewed by means of the room im-
pulse response (RIR). This transfer function of the room
would be the record of an impulse played from a spheri-
cal source and depends both on the room characteristics
and the source-microphone distance.

Many parameters can be extracted from the RIR, how-
ever the reverberation time (RTg¢g) is the most common
to describe the reverberation of the room. That is why
one can find a large amount of methods in the literature
to compute it from a measured RIR ([1], [2]) or estimate
it blindly from a recording in a room. Among them, a
major stream uses a maximum-likelihood procedure to
estimate the time-constant of the signal energy decay, di-
rectly related to the RT¢o ([3], [4], [5], [6], [7]). Other
methods use a machine learning approach by training
deep neural networks in order to map the spectrum en-
velopes of reverberant signals to the corresponding room
acoustic parameters ([8], [9], [10]). Finally, a bench of
methods use the statistical distribution of the decay rate

of the energy envelope, in order to link some statistical
moments with the reverberation time ([11], [12], [13],
[14]); this stream is the most similar to our approach.

However the reverberation time is specific to the char-
acteristics of the room, its dimensions and material, but
independent of the source-receiver distance. Yet this dis-
tance has a great impact on the amount of reverberation
[15], characterized by the ratio of direct to reverberant
sounds. Even if the direct-to-reverberant ratio (DRR) is
the most straightforward index to assess the level of re-
verberation [16] many variants of this measure exist, in-
cluding the clarity and definition indexes, well-suited for
syllable and music intelligibility [17]. Thus, for a given
room (i.e. for a given RTgp) one can obtain a certain
range of clarity or definition index, according to the dis-
tance between the source and the microphone. Thereby,
methods such as [12] and [11] which aim to link the RTg
to a single feature of the energy decay rate distribution,
through a fixed n"*-order polynomial, will not distinguish
a low RT¢p and a high source-microphone distance from
a high RTgg and a short source-microphone distance. To
fully characterize reverberation, one thus needs to esti-
mate the RT¢o and an index related to the DRR.

On that account, we propose a method to jointly esti-
mate the reverberation time and a clarity (or definition)
index, from the energy decay rate distribution of a re-
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verberant signal. We use kernel regression, specifically
the Nadaraya-Watson estimator [18], on a database of
energy rate distributions obtained from a wide range of
synthetic and real RIRs. The paper is organised as fol-
lows: Section 2 presents the room acoustic parameters
to be estimated and the used features. In Section 3 we
derive the estimator and present our method. The evalu-
ation database is detailed in Section 4 and the results are
compared to state of the art methods ([19],[15]) in Sec-
tion 5. Finally, in Section 6 some conclusions are drawn.

2. FEATURE EXTRACTION AND ROOM
ACOUSTIC PARAMETERS

2.1. Room acoustic parameters

As claimed in Section 1, our goal is to jointly estimate
the reverberation time and an index of the reverberation
level. We define in this section the different expressions
of these parameters.

Reverberation time

Defined as the time interval to measure an energy decay
of 60 dB, the RTgy can be computed with the Schroeder
backward integration method [2] via the Energy Decay
Curve (EDC):

N,
EDC(n) = i h(k)*, ¥ n>0 1)
k=n

where £ is the room impulse response of length N;,. Then,
the RTg is the required time for the EDC to decrease by
60 dB.

Level of reverberation

Two close indexes to assess the balance between the di-
rect and reverberant sounds are the clarity index, defined
in [16]

o
C: = 10log,, (M) dB, )

and the definition index, defined in [16]

Nz h2
D; = 10log, (M) dB, A3)

where N; is the number of samples corresponding to the
time 7 ranging from 0.1 ms to 1 s, and k(n) is the room

impulse response. Two widely adopted values of 7T are
50 ms or 80 ms, since they correspond to the duration
splitting the (useful) early reflections to the (disturbing)
late reverberation [20]. As explained in [17], the Dsg
is an objective criterion to measure the speech intelligi-
bility, while de Cgo is more designed for music trans-
parency. However Parada et al. showed in [15] that the
Csg is more correlated with the Perceptual Evaluation of
Speech Quality (PESQ) and the phoneme accuracy rate
than the Dsg. Even if the performance of our method is
quite the same for the Cs5y and Dsg, we focus on the Cs
in order to later compare our results, as there is no other
method for D5 estimation to our knowledge.

2.2. Feature extraction

2.2.1. Decay rate distribution

The statistical reverberation model developed by Polack
in [21] is often used to describe RIRs in a diffuse field.
The RIR is represented as one realization of a non-
stationary stochastic process, a Gaussian white noise of
variance 6> damped by a decreasing exponential enve-
lope, linked to a room parameter J:

h(n) = b(n)e % (4)
3In10

i ~Y 2 =
with b(n) ~ A4(0,0°), & Rl

rate. This model has been generalized by Habets to the
entire RIR in [20], using a different noise (Gaussian with
another variance) for the direct path. The energy enve-
lope of the RIR can be expressed as:

and f, the sampling

e(n) =E[h(n)’] = 6% % =g2Mic  (5)

with E[-] the expectation operator and A, = —2§ the
energy decay of the room.

However, we aim to analyze a reverberant speech, which
can be viewed as the convolution of a RIR and an ane-
choic speech. Wen et al. derived in [11] an expression of
the energy envelope of a reverberant signal d.(n), after
a speech endpoint according to the energy decay rates of
the anechoic signal and the room, A; and A, respectively:

Apn Ash . .
(SN LA

nelhn

As the sum of two exponential terms will be dominated
by the exponential term with the largest value A, the en-
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ergy decay rate of the reverberant signal A, can be ap-
proximated as:

Ax & max|[Ay, A] @)

If we process a short term analysis of the signal, with
frames of N, samples and a hop size of R samples,
we can compute the total energy over the m’” frame as
E, = Z?i"ofl dy(mR+1) and then estimate the decay rate
by computing the logarithmic ratio between two succes-
sive frames:

pm) —tog (22 ). ®)

Emfl

Thereby, the energy decay rates distribution in equa-
tion (8) provides information about the decay rate of the
room and thus the RTgy. We now see how to use the
distribution to build an estimator of the (RTgy, Csg) or
(RT60,Ds0) pair.

2.2.2. Characteristic function

The methods developed in [11] and [12] use the negative-
side variance of the distribution (i.e. the variance where
the negative values of p have been symmetrized) to esti-
mate the RTg, with a polynomial model built on a train-
ing dataset. In [13], the authors prefer to use the tem-
poral differential of cepstral coefficients and collect the
variance, skewness, kurtosis, median absolute deviation
of the obtained distribution as input features for support
vector regression.

Therefore, the relevance of some statistical moments of
the reverberant energy rate distribution, for room acous-
tic parameters estimation, is clear. However the choice of
the statistical moments to be used is unclear, nor shared
between the authors. This is why we choose to use the
characteristic function of the energy decay rate distribu-
tion, as it conveys the global information of the distri-
bution, and indirectly contains all the statistical ordinary
moments. As presented in [22], the characteristic func-
tion of a real random variable X is defined as:

ox(f) = / ¢ dFy (x) = Eé/X] )

where Fx(x) is the cumulative distribution of X and f
is the angular frequency. As the characteristic function
behaves simply under shift, scale changes and summa-
tion of independent variables, it is a convenient tool for
parameters estimation [22]. Moreover, the different sta-
tistical ordinary moments, related to the room acoustic

parameters, can be extracted from this function. If a ran-
dom variable has ordinary moments up to the k&’ order,
the characteristic function has a k" derivative at the zero
frequency and:

E[X*] = (—i)*¢x“(0) (10)

where d)X(k) is the k" derivative of ¢x. This is why we
decide to represent the distribution of the energy decay
rate of reverberant speech by its characteristic function.
It will constitute the observation feature in a kernel re-
gression approach.

3. BLIND ESTIMATION OF ACOUSTIC ROOM
PARAMETERS

3.1. The Nadaraya-Watson estimator

Consider a random input vector X and a random output
vector Y, with joint probability density function (JPDF)
Px y(x,y). We seek a function f which best predicts Y
given X, by minimizing the expected prediction error
(EPE) E {(Y —f(X ))2] . The solution is given by the re-
gression function [18]:

) =B =+ = [yPorOlodye D

A way to estimate this regression function is to use a
kernel to approximate the JPDF. As defined in [23], a
kernel K is a similarity measure of the form

K: | 2ZxZ — R
(x,x) — < (x),0(x) >

where ¢ is a mapping function from the input space 2~
to a dot product space ¥

0. |z — ¥
X o)

In regression applications, kernels are parameterized by a
constant A that dictates the width of the neighborhood to
be considered, and are denoted K, . With N realizations
(xi,yi) of the random variables (X,Y), and a kernel K,
one can estimate the JPDF Py y (x,y) [18] as:

1
N i

M=

Pyy(x,y) = K, (x,x:) Ky (v, yi)- (12)

1
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Let us recall (11), noticing Py y (y|x) = Px.y (x,y)/Px(x)

and Px (x) = [ Py y(x,y)dy, we obtain:

_ JyPyy(x,y)dy
J Py (x,y)dy

If we use the estimator (12) we can approximate the re-
gression function by:

f(x) (13)

N
2. (%, x:) Ky (v, yi)dy

2=

Iy

=

K
1 N
I~ ‘):1 Ky, (x, 1)Ky (v, yi )dy
i=

~

~—~

=
I

Ky (x,x;) [ YKy, (y,yi)dy

(14)
Ky (x,x:) [ Ky, (v,yi)dy

™= EMZ

1

1

With the properties of kernel functions proposed in [23],
JyK; (v,yi)dy = y; and [ K),(y,y;)dy = 1, which leads to
the Nadaraya-Watson estimator:

N
A X viKy (x,x;)
fo =0 (15)

N
Z KZ ()C,Xi)

i=1

3.2. Features and output vectors

Thus, our method needs a dataset of N pairs (x;,y;) €
R? x R? where each x; is the characteristic function
¢p, (f) of energy decay rate distribution of a reverberant
speech, and y; is the corresponding room acoustic param-
eters: (RTg0,Cs) or (RTgp,Ds0). Actually, the character-
istic function is computed for 5 frequencies and stored
in a vector of R” where the first % components are the
real parts of ¢, (f) and the last % components are their
imaginary parts. The range of the frequencies and their
sampling are chosen such that |, (f)| lies between al-
most 0.1 and 1.

When a reverberant signal is recorded, we compute its
energy decay rate distribution and the corresponding
characteristic function, which is the feature vector. The
output vector y, which carries the room acoustic param-
eters, is estimated with the Nadaraya-Watson estimator
(15).

4. PERFORMANCE EVALUATION
To evaluate our method we use anechoic speech sig-
nals of 25 english speakers (12 males, 12 females, one

v v Real RIRs
3 Synthetic RIRs

s
10+

50 (dB)

C

-10
0

Reverberation time (s)

Fig. 1: Room distribution in the (RT¢p,Csg) plane

child; around 5 min each) from the TSP Speech database
[24]. Our RIR database is composed of 1015 responses;
among them 455 synthetic responses generated from the
Fast Image-Source Method [25], with the RTgo ranging
from 0.1 s to 2.0 s and the source-microphone distance
ranging from 0.1 m to 10 m. We add 560 real RIRs,
from different open-access databases (Aachen Impulse
Response [26], MARDY [27], OpenAIR [28], Queen-
Mary [29]) with reverberation times ranging from 0.3 s
to 8 s and Csp from -10 dB to 25 dB. They can be ob-
served in the (RTg(,Cso) plane in Figure 1.

Reverberant speech signals are obtained by convolving
each RIR with each anechoic speech and the energy de-
cay rates are computed using frames of 32 ms with 50 %
overlap. The obtained distributions are centered and re-
duced, then the characteristic functions are computed for
angular frequencies from 0 to 0.4 with 0.001 increments.
Finally, we compute the average over the 25 different
speakers, for each RIR.

We test our method in a 7-fold approach; we randomly
split our corpus of characteristic functions in 7 subcor-
pora (fold) and successively estimate the room acoustic
parameters of a fold, using the remaining 6 as dataset.
The prediction error is then the average of errors obtained
over the 7 tests. We use a Gaussian kernel with a band-
widthof A = 5-107*:
1 —lexl?

K), (x,x;) = IET' (16)
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Fig. 2: Joint estimation of RT¢y and D5, for a random
fold

Schroeder’s method (described in Section 2.1) is used to
compute the reference RTg; the reference reverberation
level indexes are directly computed from the RIR, using
the definitions in Section 2.1.

5. RESULTS
We compute two kinds of errors, the relative error ey
(%) and the root mean square error e;ys (same unit as the
data):

Xi— )2,'

1 N
€rel — 1OO*NZ

i=1

Xi

o B )
rms N

with £; the estimation of x; in a fold of N tests. However,
we will not use the relative errors when dealing with the
Cs since some are equals to zero.

5.1. Synthetic and real RIRs

We tested our method on a corpus made of both synthetic
and real RIRs. The errors are then averaged over the 7
folds and presented in Table 1.

Figures 2 and 3 show the deviation between true and es-
timated parameters, for two different folds. The relative
errors are around 10 % and 15 %, on a corpus including
high reverberation times (up to 8 s).

However, the other methods found in the literature are
tested for RTgo up to 1 s or 2 s. Then, if we reduce our
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Fig. 3: Joint estimation of RTgy and Csp, for a random
fold

corpus to RIRs whose reverberation time does not exceed
2 s (usual reverberant environments) we obtain better re-
sults, summarized in Table 2.

RTgy < 2s RTg < 1s
€rms €rel €rms €rel
RT¢o | 180ms 9.3% | 75ms 7.8%
Dsg 0.11dB 9.8% | 0.07dB 11.8%
Cso 0.97dB 0.90dB

Table 2: Estimation error on the low RTg( corpus, syn-
thetic and real RIRs

With these lower reverberant environments estimation er-
rors are lower, less than 10 % relative error for RTgg and
D5, less than 1 dB of root mean square error for Csg
(which varies between 0 dB and 25 dB). Then we can
compare our results to the performance of state of the art
methods [19].

5.2. Comparison

We compare our results for RTgy estimation to the
ones provided in [19], which tests three methods of the
literature (Modulation Energy Ratio (MER), Maximum
Likelihood (ML), Spectral Decay Distributions (SDD))
on a database made of simulated and real RIRs. Even if
we use the same simulation method for synthetic RIRs,
and include the same real RIR database (AIR) in our
corpus, we do not use the same corpus and then this
comparison is intended to give an idea of the relative
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All RIRs Synth. Real
€rms €rel €rms €rel €rms €rel
RTg | 496ms 104 % | 143ms 98% | 716 ms 109 %
Dso 042dB 143% | 0.09dB 94 % | 0.55dB 17.1 %
Cso 1.07 dB 0.73 dB 2.17dB
Table 1: Estimation errors
MER [13] | ML [7] | SDD [11] | Our method | ergy decay rates of a reverberant speech, described by its
€rel 20 % 15 % 10 % 7.8 % characteristic function, serves to perform kernel regres-

Table 3: Comparison for RTg( prediction

Baseline [8]
9.05 dB

NIRA [15]
5.52dB

Our method
4.81 dB

€rms

Table 4: Comparison for Cs prediction

performance scores. The reverberation times in [19] vary
up to 1 s every 100 ms, and the relative errors for noise-
free reverberant speech are approximately 20 %, 15 %
and 10 % for [13], [7], [11] respectively. In our 7-fold
approach we obtain a mean of 7.8 % relative error, which
is close to the magnitude of [11] as we can see in Table 3.

We found in [15] a way of comparing the Csq values. In
this paper, the authors test their method (called NIRA) on
the real RIRs database MARDY [27] and give the cor-
responding root mean square error. They also confront
their results to the one obtained with their implementa-
tion of [8], used as a baseline. We then set a training cor-
pus with all the characteristic functions obtained from
our simulated and real RIRs, excluding the ones corre-
sponding to the MARDY database. Then, we estimate
the Csg9 of the MARDY database with our method and
this training dataset. For noise-free reverberant speech,
the baseline obtains 9.05 dB RMS error, NIRA obtains
5.52 dB and our method 4.81 dB as we can see in Ta-
ble 4.

6. CONCLUSION

As reverberation is determined by static properties of the
room (resulting in the reverberation time) and the source-
microphone distance (resulting in the clarity or definition
index), we have presented a method to blindly jointly
estimate these parameters. The distribution of the en-

sion on a training dataset, with a Gaussian kernel and a
low bandwidth. We tested our method in a 7-fold ap-
proach, with simulated and real room impulse responses
and obtained a mean of 10.4 % relative error for RTg es-
timation, 14.3 % for D5 estimation, 1.07 dB root mean
square error for Cso estimation. Compared to the avail-
able results from the literature, our method slightly out-
performs the reverberation time estimation. There is no
other method to blindly estimate the D5y so we only com-
pared the Csq estimator to two state of the art methods,
that were outperformed.

Future work will focus on the estimation of these param-
eters in noisy environments and introduce sparsity con-
straints in the feature vector, selecting the best frequen-
cies of the characteristic function to be used.
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