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Notations

SAR Fundamentals:
z = |z|ejθ Complex value of SAR image;
z† Complex conjugate of z;
j Imaginary number such that j2 = −1;
θ Phase of z;
φ Difference of phase between θ1 and θ2 (corresponding

to the argument of z1z
†
2);

y = |z|2 Intensity of SAR image;√
y or |z| Amplitude of SAR image;

yM-L Multi-looking result of y (averging of intensity sam-
ples);

z {z1, z2, · · · }
Σ Covariance matrix;
Σ̂ Estimator of covariance matrix;
C Empirical covariance matrix of z

D Coherence (Di,j =
ziz

†
j

E(|zi|)E(|zj |)
);

G(0, σ2) Gaussian (normal) distribution with with mean 0 and
variance σ2

Images:
yt Noisy intensity image acquired at time t;
{yt1 , yt2 , . . . , ytN } Noisy multi-temporal intensity images;
ut Noise-free image of yt (estimation of ut);
ût Denoised image of yt ;
ûPPB
t Denoised image of yt by PPB filter (estimation of ut

by PPB filter);
y1st
t Output of the first (temporal) step in the proposed

filter;

Pixels:
yt(i) Intensity of pixel at position i in image yt ;
yt(i+ k) Intensity of pixel at position i + k, the k-th neighbor

of pixel yt(i) in patch yt(i) (in image yt) with k =
{1, 2, . . . ,K};

ut(i) Noise-free pixel at position i in image ut ;
ût(i) Denoised pixel at position i in image ût ;
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ût(i+ k) Denoised pixel at position i + k, the k-th neighbor
of pixel ût(i) in patch ût(i + k) (in image ût) with
k = {1, 2, . . . ,K};

ym, yn Abbreviations of ytm(i) and ytn(i);

Patches:

yt(i) Patch of size
√
K ×

√
K of intensities with pixel i as

center in image yt ;
ut(i) Noise-free patch of size

√
K ×

√
K with pixel ut(i) as

center in image ut ;
ût(i) Denoised Patch of size

√
K ×

√
K with pixel ût(i) as

center in image ût (estimation of ut(i));

Number of looks:
Lt Map of number of looks associated to image yt ;
Lt(i) Number of looks associated to pixel yt(i);
Lt(i) Patch of number of looks associated to patch yt(i);
L̂t(i) Patch of (equivalent) number of looks associated to

patch ût(i);
L̂t Map of (equivalent) number of looks associated to im-

age ût ;

Examples:
y(1) An example of intensity of pixel (it can be any pixel

in the multi-temporal images);
y(2) Another example of pixel;
u(1) Noise-free value of pixel y(1);
û(1) Denoised value of y(1);
L(1) Number of looks associated to pixel (1);
L̂(1) Equivalent number of looks associated to û(1).

Operators:
Dpixel Difference between two pixels;
Rpixel Ratio between two pixels;
E(y) Expectation of variable y;
Var(y) Variance of variable y;
f(·) Kernel function to map weights;
S(y(i), y(j)) Similarity of pixel y(i) and pixel y(j);
SGLR(y(i),y(j)) Generalized likelihood ratio similarity between patch

y(i) and y(j);
SKL(û(i), û(j)) Kullback-Leibler divergence similarity between patch

û(i) and û(j);
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Chapter 1

Introduction

Remote sensing is the collection of information about the Earth features without making
physical contact. Synthetic aperture radar (SAR), one of the remote sensing techniques, is
well known as an all-weather and all-time operational active sensor. It has been used for a
variety of applications ranging from urban monitoring to biomass study. A large number
of methodologies for SAR have been developed in the community of remote sensing.

Nowadays more and more SAR sensors have been launched, which provide us a huge
quantity of SAR images. For the same geographic areas, there are many SAR images
acquired at different times with different sensor parameters (e.g. band, resolution, incidence
angle etc.). They provide multi-temporal SAR images. This new availability of SAR data
brings us new challenges. The main objective of this thesis is to fully exploit the information
provided by the multi-temporal SAR images. This chapter presents the background and
the main questions addressed by this thesis.

1.1 Context of the PhD

1.1.1 Development of SAR systems

The development of radar imaging systems dates back to the beginning of the 1950s. To
balance the effect of ground permittivity and roughness, the wavelengths are usually in
bands L, S, C or X (corresponding to 0.39∼1.55GHz, 1.55∼4.20GHz, 4.20∼5.75GHz or
5.75∼10.90GHz). Real aperture radar can not reach a spatial resolution of meters, since
the length of the antenna is impracticable to be several kilometers for any spaceborne
or airborne sensors. Synthetic aperture radar (SAR) invented by Carl A. Wiley in 1951
addresses this problem by a coherent registration and processing of the received radar
echoes during the motion of the sensor. Since then, SAR systems have experienced a fast
growth with drastic improvement of the spatial resolution and numerous launched sensors
are now acquiring a huge amount of data.

SEASAT satellite was the first spaceborne platform of SAR sensors [Jordan, 1980].
After the success of SEASAT, more effort was made to develop spaceborne (including
shuttleborne) SAR platforms, e.g. SIR-A SAR [Granger, 1983], SIR-B SAR [Cimino et al.,
1986], ERS-1 SAR [Attema, 1991] etc. The SIR missions continued and more complex
systems were equipped. SIR-C SAR could operate at multi-wavelength, X, C, L bands
with full polarimetric mode [Jordan et al., 1995]. More recently, an increasing number of
spaceborne SAR systems have been launched, e.g. ALOS-PALSAR by JAXA [Shimada,
2006], RADARSAT-1/2 by CSA [Moon et al., 2010], TerraSAR-X and TanDEM-X by DLR



10 1. Introduction

[Krieger et al., 2010], ENVISAT-ASAR and Sentinel-1A by ESA, Cosmo-SkyMed by ASI
etc.

The airborne SAR systems, meanwhile, have been well developed, for example AIR-
SAR by NASA, E-SAR [Horn, 1996] and F-SAR [Horn et al., 2008] by DLR, RAMSES by
ONERA [Dubois-Fernandez et al.], Pi-SAR by JAXA and so on. Compared with space-
borne SAR systems, airborne SAR systems usually operate at multi-frequency and full
polarization mode with higher spatial resolution.

1.1.2 Challenges when dealing with multi-temporal SAR images

At the beginning of SAR image interpretation, various processors mainly dealt with the am-
plitude or intensity images. With the development of SAR systems and the interferometric
and polarimetric modes, the additional potential information in phase and polarization has
been exploited in the complex SAR images. More recently, multi-temporal images provide
a considerable number of images of the same area by repeat passing of SAR sensors. Con-
sequently, new challenges for the efficient use of these multi-temporal images have been
raised. Let us precise here that we will not consider the differential interferometric case
(D-InSAR) in this PhD, thus focusing on the general case of intensity or amplitude images
combination. For D-InSAR, many approaches specially relaying on permanent scatters
have been proposed exploiting lying multi-temporal interferometric series.

Improved performance

Since multi-temporal images observe the objects many times, it is expected to exploit this
increasing information to improve SAR image interpretation tasks. For example, it can
be used to improve the performance of SAR image denoising, classification, segmentation,
object recognition and tracking. Of course, appropriate approaches should be used to
extract and utilize this information, otherwise no better or even worse performance might
be obtained compared with using single-temporal image. Therefore, much effort has been
made to develop and experiment new effective ways of extracting and fusing the information
from different dates (images).

Exploitation of change information

Change detection is defined as “a process of identifying differences in the state of an object
or phenomenon by observing it at different times” [Singh, 1989]. It is usually applied
between two dates (two images). Change detection is helpful in locating and monitoring
regions of interest, like urban growth, disaster evaluations etc. However, if we have multi-
temporal SAR images with more than two dates/images, how can we get use of these
images to improve the change detection between only two dates (any pair of images in the
multi-temporal data set)?

To avoid confusion, we denote bi-temporal images as images at two dates only and
multi-temporal images as images with more than two dates. Compared with the bi -
temporal images, multi-temporal images provide us more information over the time about
the objects. This temporal information has to be used to monitor and analyze the changing
trend of natural objects, e.g. the vegetation change, the movements of the earth’s surface
etc. However for changes in urban areas caused by human activities, people may need to
define and recognize these long term changes (e.g. change classification etc.) and how it
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can be used for further interpretation.

Big data challenges

SAR imagery is “big data“ from the day of its birth, since its size is much larger than
usual natural images or pictures. Nowadays, multi-temporal SAR images with high spatial
and temporal resolution make this be especially true. Like other big data problems, the
data compression and storage of multi-temporal SAR images should be considered. In
addition, how to quickly, efficiently and better interpret the new acquired images with the
former multi-temporal images is also a challenge for SAR image interpretation. Although
the problem of SAR compression will not be fully addressed in this thesis, some of the
proposed methods will find applications for compression purposes.

Combination of various types of multi-temporal images

Fig.1.1 gives an illustration of the family of the available multi-temporal remote sensing
images or data. It consists of a large number of different kinds of images. Even when
only SAR images are concerned, multi-temporal images can be images acquired by dif-
ferent sensors, with different resolution, different polarimetric mode, different incidence
angle, different ascending/descending mode etc. The challenges of using various types of
multi-temporal images in a uniform framework is how to combine or fuse the information
extracted from these images, which is a hot topic in the remote sensing community.

1.2 Purposes and contributions of this thesis

Our main objective in this PhD work is to fully exploit the available information provided
by multi-temporal SAR images. In this thesis, we will focus on SAR images acquired
from the same sensor with the same spatial resolution, the same incidence angle, the same
ascending/descending mode and the same polarimetric mode, as shown in the red part of
Fig.1.1. Although the data can be in interferometric configuration, differential interfere is
out of the scope of our work. The three following subjects have been handled in the PhD.

Multi-temporal SAR images denoising

We will first address the problem of SAR image denoising, or more precisely SAR physical
parameters estimation (like the reflectivity). The intensity of SAR data suffers from mul-
tiplicative noise called speckle. Denoising/despeckling is usually a pre-processing for many
automatic interpretation tasks. When dealing with single SAR image, much effort has
already been made in this community to limit the fluctuations. For multi-temporal SAR
images with more images and more (redundant) information, the denoising/despeckling re-
sults are supposed to be better than using single SAR image. and multi-temporal averaging
is used since the beginning of SAR. The first purpose of this thesis is to efficiently denoise
multi-temporal SAR images using both spatial and temporal redundant information.

Non local means (NLM), a simple but efficient method, proposed by Buades et al.
[2005a] has been successfully used in image denoising field. Inspired by the theory of NLM
and its extension to single SAR image denoising (the probabilistic patch based method of
Deledalle et al. [2009]), we extend non-local approaches for the denoising of multi-temporal
SAR data. This approach improves single SAR image denoising while preserving the new
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Figure 1.1: The data set studied in this thesis is multi-temporal SAR images with same
sensor, same incidence angle, same resolution and same polarization. It is a small subset
of the family of multi-temporal remote sensing images.

information in the multi-temporal data set. This first contribution is described in chapter
4 (Fig.1.2).

Change detection and change classification

The second problem we will focus on is the change detection problem between two SAR
images. This problem has already been well studied but we will focus on change detection
when a SAR multi-temporal series is available. Our purpose is to exploit the useful infor-
mation of the whole multi-temporal SAR data set for change detection. We will propose
two change criteria based on likelihood ratio test. They introduce the denoised images
provided by our previously mentioned denoising filter using the whole multi-temporal data
set into the computation of the likelihood probability.

Beyond change detection with bi-temporal images, the definition of changes in multi-
temporal images is a major challenge for multi-temporal SAR data. Taking a boat in a port
as example, it may go through a process of appearance, disappearance then reappearance
over the time in the multi-temporal images. To extract and recognize this kind of long term
change information, we propose to classify the changes according to their temporal behav-
iors. The proposed method is based on the analysis of the complete matrix of changes via
a clustering approach. This change classification is the second main contribution (chapter
7).

Data compression and updating of denoised images and change information

Although compression was not the core of our work, we also investigate how the proposed
approaches could be used in an operational way, when data are sequentially available and
should be processed separately (a new data being processed using the available data base,



13

but not processing again the whole set of data). We thus develop a new compression
approach. When a new image is acquired, the compressed data can be used to process the
new image (e.g. denoising, change detection etc.), and comparable performance can be
obtained than using uncompressed data.

1.3 Organization of this thesis

Fig.1.2 gives a global view of the organization of this thesis. Chapter 2 introduces the SAR
fundamentals and the basic features of SAR images which will be used in the next chapters,
e.g. the statistical features, the (equivalent) number of looks, the coherence features etc.
Part I of this thesis presents our work on reflectivity estimation when dealing with multi-
temporal SAR series. It consists of two chapters: chapter 3 reviews the state of the art of
denoising methods and highlights the non local means approaches and their improvements;
chapter 4 presents the proposed two-steps multi-temporal non local means filter for multi-
temporal SAR images. In Part II, we first give a global review of change analysis in chapter
5. We then propose a likelihood ratio test based change criteria (chapter 6) and develop a
change classification method (chapter 7). The challenge of updating reflectivity estimation,
change detection and change classification when a new image is available is detailed in Part
III (chapter 8). Conclusions and perspectives are discussed in chapter 9.
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Figure 1.2: The organization of the manuscript
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Chapter 2

SAR Fundamentals

A radar imaging system is a form of radar system used to create images of landscape. Like
a common radar system, it emits an electromagnetic wave in a side looking way, as shown
in Fig.2.1. When arriving on the ground, the wave is diffused and only part of the wave
re-emitted in the emitting direction can be received by the sensor. The incidence angle
θ, the angle of the side looking, is the angle between the radar beam direction (usually in
the middle of the swath) and the nadir. In the range direction, the objects have different
distances to the sensor. Resolution in the range dimension of the image is accomplished
by emitting short pulses consisting of a carrier frequency and the necessary sidebands, or
by using longer chirp pulses in which frequency varies (often linearly) with time in the
bandwidth. The differing times and frequencies at which echoes return allow points at
different distances to be distinguished. Thus, the sensor receives the backscattered waves
at different times. After quantizing the time delay and applying adapted filtering, SAR
can create one line of the image (the sum of individual scatterers received at certain time
and frequency of the chirp contributes to one point on the line). Imaging system can create
the image line by line in the same way.

In the azimuth direction each acquired line corresponds first to each emitted pulse
during the sensor movement. The resolution is thus mainly linked to the size of the
antenna, given a certain spaceborne or airborne radar sensor. Increasing the size of the
antenna to obtain a fine resolution in azimuth direction is impracticable for spaceborne
or airborne sensors. Synthetic aperture radar (SAR) lengthens artificially the antenna
using digital signal processing techniques. SAR sensor is moving, thus each object can be
illuminated during a time span (which is called integration time). SAR system records
all the received signals during this time span and then integrates them by exploiting the
Doppler shifts. The synthetic aperture can be considered as a synthetic antenna whose
size is the displacement distance of the sensor during the integration time.

This chapter briefly introduces the SAR imagery and its statistical modeling.

2.1 SAR imagery

2.1.1 Single look SAR imagery

As explained in the beginning of this chapter, each point/pixel in the SAR image corre-
sponds to a region of the ground, which is called a resolution cell. In reality, this resolution
cell is larger than the wavelength, thus there are many backscattered waves in one reso-
lution cell. In other words, all the returns from the resolution cell will contribute to the
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(a) (b)

Figure 2.1: (a) The radar illuminates the scene in side looking geometry. (b) Principle of
radar imaging system.

Figure 2.2: An illustration of single-look complex (SLC) SAR image and its multi-looked
image. From left to right: the SLC SAR image, the illustration of coherence summation
in a resolution cell and the 5× 5 multi-look SAR image.

complex value of the pixel. Each backscattered wave has its own amplitude and phase.
As shown in the middle of Fig.2.2, each backscattered wave is denoted as a vector with
length (amplitude) and direction (phase). Thus, each pixel of the SAR imagery has two
coefficients, amplitude and phase, which can be represented as a complex value z = |z|ejθ
(j is the imaginary number such that j2 = −1). Single look complex (SLC) SAR image
consists of a matrix of complex values z. The modulus |z| is the amplitude, |z|2 = y is the
intensity or reflectivity and θ = argz is the phase.

As shown in the middle of Fig.2.2, all the backscattered echoes contribute to the final
z in an interferential way. It can be shown that the intensity images have very strong
multiplicative noise, called speckle. The simplest way to reduce the speckle is spatially
averaging in a small window, which is similar to the locally smoothing operator of the
boxcar filter. This averaging operator is given by:

y =
1

L

L
∑

i=1

|z(i)|2, (2.1)
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where L is referred to the number of looks. This operator is also known as the multi-looking
operator. The right of Fig.2.2 presents the multi-looking result of the SAR image using a
5× 5 smoothing window. Multi-looking operator (filter) indeed reduces the fluctuation of
speckle, but with a loss of spatial resolution since there is a blurring of edges.

2.1.2 Interferometric SAR imagery

Interferometric SAR (InSAR) imagery is a SAR remote sensing technique using two SAR
images to collect ground information using intensity, coherence and phase differences of the
backscattered echoes. InSAR images are acquired using either single-pass interferometry
or repeat-pass interferometry. They must have very close incidence angles such that the
backscattered signals of the two images are almost the same. The time interval may vary
from 0.1s to years. Moreover, when N (N > 2) co-registered SAR images are available in
interferometric configuration, any pair of them can be used to build an interferogram. The
quality of the interferogram is linked to the temporal delay between the two acquisitions,
to the difference of incidence angles and possibly to ground changes. Lots of literature call
them multi-interferometric SAR images. As mentioned in chapter 1, the multi-temporal
SAR images studied in the thesis are from the same sensor, same incidence angle, same-
resolution co-registered SAR images. They are usually in interferometric configuration,
which is a special case (and favorable) of multi-temporal images. InSAR imagery can
be used to generate maps of surface deformation or digital elevation using differences in
the phase of the waves returning to the sensors [Zebker et al., 1997]. The minor changes
(like centimeter-scale changes) in deformation can be detected. This technique has been
applied to geophysical monitoring of natural disasters, for example earthquakes [Simons
et al., 2002], volcanoes [Hooper et al., 2004], landslides [Riedel and Walther, 2008] and so
on.

Interferometric SAR images

Taking zt and zt′ a pair of co-registered InSAR images, a pair of pixels zt(i) and zt′(i)
are located at the same position i. Without loss of generality, we replace zt(i) and zt′(i)
by a pair of pixels z(1) and z(2) to simplify the expressions. The covariance matrix is:

Σ = E

[(

z(1)
z(2)

)

(

z(1)† z(2)†
)

]

=

[

E(|z(1)|2) E(z(1)z(2)†)
E(z(1)†z(2)) E(|z(2)|2)

]

=

[

R(1)
√

R(1)R(2)D exp(jφ)
√

R(1)R(2)D exp(−jφ) R(2)

]

(2.2)

with

R(1) = E(|z(1)|2), R(2) = E(|z(2)|2), (2.3)

φ = arg(z(1)z(2)†) (2.4)

and

D =
|E(z(1)z(2)†)|

√

E(|z(1)|2)E(|z(2)|2)
. (2.5)
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z(1)† is the complex conjugate of z(1). D is called the coherence between the two pixels,
φ is the actual interferometric phase. From a physical point of view, φ depends on the
difference of the two propagation times (wave from the target to the sensor) [Graham,
1974] and is thus related to the elevation of the point. However, φ is known modulo 2π
and contains some orbital fringes [Gens and Van Genderen, 1996], which make it difficult
to recover the unwrapped phase. Many methods for phase unwrapping and orbital fringes
removal have been proposed, for instance Goldstein et al. [1988], Rosen et al. [2000].

The simplest way to estimate Σ is to compute the empirical covariance matrix by
averaging in a local square window (which is closely similar to the multi-looking operator
but with complex values):

C =
1

L

L
∑

i=1

[(

z(1, i)
z(2, i)

)

(

z(1, i)† z(2, i)†
)

]

=
1

L

[∑

i z(1, i)z(1, i)
†
∑

i z(1, i)z(2, i)
†

∑

i z(2, i)z(1, i)
†
∑

i z(2, i)z(2, i)
†

]

,

(2.6)

where z(1, i) is i-th neighbor of z(1), and this average is performed in a square window
with L pixels (L is also called the number of looks for interferometric estimation). C is
the empirical matrix which can be considered as the respective sample estimation of the
covariance matrix Σ. Then, we can get:

D̂ exp(jφ̂) =

∑

i z(1, i)z(2, i)
†

√
∑

i z(1, i)z(1, i)
†
√
∑

i z(2, i)z(2, i)
†
,

D̂ =

∣

∣

∑

i z(1, i)z(2, i)
†
∣

∣

√
∑

i z(1, i)z(1, i)
†
√
∑

i z(2, i)z(2, i)
†
,

φ̂ = arg

(

∑

i

z(1, i)z(2, i)†

)

.

(2.7)

The quantity D̂ ∈ [0, 1] denotes the similarity between z(1) and z(2) (and it is an estimation
of the true coherence D). The larger D̂ the stronger correlation between z(1) and z(2),
and it also denotes a higher reliability of the estimated interferometric phase φ̂ ∈ [−π, π].
D̂ can also be considered as a criterion for similarity measurement (which will be discussed
in section 4.1) and a change detection criterion (which will be discussed in section 5.1).
Fig.2.3 shows an example of InSAR data.

Multi-interferometric SAR

We denote a multi-interferometric SAR series as {zt1 , zt2 , . . . , ztN }. A pixel se-
ries z(i) = {zt1(i), zt2(i), . . . , ztN (i)} is located at position i. Similarly, we take z =
{z(1), z(2), . . . , z(N)} as a generic notation, the covariance matrix of this pixel series is:

Σ = E
(

zz‡
)

= E

















z(1)
z(2)
. . .
z(N)









(

z(1)† z(2)† . . . z(N)†
)









= E

















z(1)z(1)† z(1)z(2)† . . . z(1)z(N)†

z(2)z(1)† z(2)z(2)† . . . z(2)z(N)†

. . . . . . . . . . . .
z(N)z(1)† z(N)z(2)† . . . z(N)z(N)†

















,

(2.8)
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(a) yt (b) yt′ (c) D̂ ∈ [0, 1] (d) φ̂ ∈ [−π, π]

Figure 2.3: An example of InSAR imagery. ( c©DLR project LAN1746) (a) SAR image
zt, (b) SAR image zt′ , (c) The estimation D̂ ∈ [0, 1] using Eq.(2.7), (d) The estimation
φ̂ ∈ [−π, π] using Eq.(2.7). The coherence D̂ indicates the reliability of the estimated
phase φ̂. When D̂ is close to 1 (bright in figure c), the phase difference φ̂ is highly reliable.

where E
(

z(m)z(n)†
)

=
√

E(|z(m)|2)E(|z(n)|2)Dm,n exp(jφm,n) and ‡ indicates the her-
mitian transpose. Dm,n and φm,n are the coherence and interferometric phase between
pixel z(m) and z(n). The empirical matrix C of the pixel series can be obtained by the
similar expression of Eq.(2.6):

C =
1

L

L
∑

i=1

z(i)z(i)‡ . (2.9)

The term in the m-th row and n-th column of can be represented as 1
L

∑

i z(m, i)z(n, i)
†.

The multi-look estimation of Dm,n and φm,n can also be obtained using the same expression
as in Eq.(2.7). Multi-interferometric SAR images can be used to reduce the uncertainty in
estimation of surface elevation [Homer et al., 1996], and recover fine ground movement.

2.1.3 Polarimetric SAR and polarimetric interferometric SAR imagery

Polarimetric SAR (PolSAR) images provide more complete information on the imaged
scene. They are obtained by sending and receiving waves with different polarization com-
ponents (horizontal or vertical polarization). For example, zhv denotes an echo emit-
ted using horizontal polarization mode and received using vertical polarization mode. A
pixel at position i in the full-polarization PolSAR imagery consists of a vector z(i) =
{zhh(i), zhv(i), zvv(i)}, in which zvh has been discarded because of the assumption of
zhv = zvh using mono-static polarimetry. The empirical matrix C of PolSAR is given
by the same expression as Eq.(2.9). It presents the complex hermitian product between
each pair of different polarizations, which indicates the polarimetric information of the
targets. Many works have been done to exploit the physical features of the targets from
the empirical matrix C.

For instance, Pauli decomposition [Cloude and Pottier, 1996] provides an interpretation
of targets using single bounce (or odd bounces), double bounces (or even bounces) and
orthogonal polarization, and more polarimetric decompositions like Krogager [Krogager,
1990], Freeman [Freeman and Durden, 1998], Huynen [Huynen, 1970], Barnes [Holm and
Barnes, 1988], Cloude (also known as H/A/a and asymmetry) [Cloude and Pottier, 1997]
have been proposed.
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Polarimetric interferometric SAR (PolInSAR) imagery consists of a pair of polari-
metric SAR imagery, which can provides both the interferometric and polarimetric in-
formation of the scene. The complex vector of each pixel can be represented as z(i) =
{zc−hh(i), zc−hv(i), zc−vv(i), zc′−hh(i), zc′−hv(i), zc′−vv(i)}, which can be considered as an
extension of the PolSAR vector. The covariance matrix Σ and empirical matrix C (the
multi-looking estimation of Σ) can also be obtained using Eq.(2.8) and Eq.(2.9). These
notations can be extended to multi-temporal data.

2.2 Statistics of SAR data

2.2.1 Single SAR data

As explained in section 2.1.1, SAR imagery suffers from the speckle noise since z is the
coherence summation of echoes in a resolution cell. To statistically model the speckle,
Goodman [1976] proposed some assumptions in each resolution cell: 1) the phase and
amplitude of each scatterer are independent and identically distributed (i.i.d.), 2) each
echo is independent of the others; 3) the phases of echoes are uniformly distributed (rough
surface). Under the central limit theorem, the probability of z follows a 2-dimensional
multivariate normal distribution or a zero-mean circular complex Gaussian distribution:

p(z|σ2) = p
(

[Re(z) Im(z)]|σ2
)

=
1

2πσ2
exp

(

−|z|2
2σ2

)

. (2.10)

Besides, 2σ2 represents the reflectivity of the imaged surface, which is the physical param-
eter related to the radar cross section (RCS). When the complex variable z changes to
intensity value y (y = |z|2), the probability density function (pdf) turns to be an exponen-
tial distribution given by:

p(y|u) = 1

u
exp

(

−y
u

)

, with y > 0 , (2.11)

where u = 2σ2 and in the following of this thesis u denotes the expectation of y (E(|z|2) =
E(y) = u). Further more, the multi-looking result (L looks) using Eq.(2.1) can be modeled
by the Gamma distribution, which is given by:

p(y|u,L) = LLyL−1

Γ(L)uL
exp

(−Ly
u

)

, (2.12)

where Γ(·) is the Gamma function. Note that the exponential distribution given by
Eq.(2.11) can be deduced from the Gamma distribution in Eq.(2.12) by setting L = 1.
Fig.2.4.a gives an illustration of Gamma distributions with different parameters. The dis-
tribution marked in blue is Gamma distribution with L = 1 and also the exponential
distribution. Eq.2.12 is obtained when the averaged values are i.i.d. in Eq.2.1. In practice,
these values can be correlated. In this case the Gamma distribution still holds, but L has
to be replaced by an equivalent number of looks.

The amplitude data |z| can also be modeled. It follows a Nakagami-Rayleigh distribu-
tion given by:

p(|z||u) = 2LL|z|2L−1

Γ(L)uL
exp

(−L|z|2
u

)

. (2.13)

Figure 2.4.b shows the Nakagami-Rayleigh distributions with u = 1 and L = {0.5, 1, 2, 3, 5}.
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(a) Gamma distributions
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(b) Nakagami-Rayleigh distributions

Figure 2.4: The distributions of intensity y and amplitude |z| with different parameters.
(a) Gamma distributions modeling y with u = 1 and different L = {1, 2, 3, 5, 10}, Gamma
distribution with L = 1 is also the exponential distribution. (b) Nakagami-Rayleigh dis-
tributions modeling |z| with u = 1 and different L = {0.5, 1, 2, 3, 5}.

Gamma distribution plays an important role in the SAR image processing, since it can
model the intensity of SAR imagery. In this thesis, we will use this Gamma distribution
in the denoising and change detection of the intensity of SAR images. Let us mention
that other models exist like Weibull, log-normal, Fisher, Generalized Gamma distribution.
They are more adapted for non-homogeneous areas and take into account some texture
distribution representing the variations of the scene. More parameters are necessary, like
the shape parameter of the scene, to define them.

2.2.2 Scattering vector z of SAR imagery

Without loss of generality, we can denote all the previous types of SAR images introduced
in section 2.1 by z(i) = {z1(i), z2(i), . . . , zN (i)}, with N = 1 for SLC images, N = 2 for
InSAR images, N = 3 for PolSAR images, N = 6 for PolInSAR images and N ∈ N

∗

for multi-channel SAR images. The N × N complex covariance matrix Σ can computed
using Eq.(2.8). Under Goodman’s model, the distribution of z is a N -dimensional circular
complex Gaussian distribution given by:

p(z|Σ) =
1

πN |Σ| exp
(

−z‡Σ−1z
)

, (2.14)

where |Σ| is the the determinant of matrix Σ. Note that the exponential distribution given
by Eq.(2.11) can deduced from the circular complex Gaussian distribution in Eq.(2.14) by
setting N = 1.

2.2.3 Empirical matrix C of SAR imagery

The empirical matrix C of scattering vector z computed by multi-looking operator in
Eq.(2.9) (including Eq.(2.1) with N = 1 and Eq.(2.6) with N = 2) is usually used in
SAR image processing. When N = 1 and L = 1, the distribution of C simplifies to the
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exponential distribution given by Eq.(2.11). When N = 1 and L > 1, the distribution will
be the Gamma distribution given by Eq.(2.12).

When N > 1 and L < N , the matrix C is singular and matrix Σ = E(C) is also
singular. Its distribution cannot be modeled by a pdf with inverse matrix of Σ. However,
modeling each term of C respectively, instead of modeling C in a united way, is one of the
solutions. When N > 1 and L > N , matrix C follows a complex Wishart distribution:

p(C|Σ) =
LNL|C|L−N

ΓN (L)|Σ|L exp
[

−Ltr
(

Σ−1C
)]

, (2.15)

where ΓN (L) is the multivariate gamma function.

2.3 Summary of SAR image

This chapter has briefly introduced the principles of SAR imagery and its main statistical
models. The intensity of SAR images and its associated Gamma distribution have been
highlighted. However, with the development of SAR sensors, the spatial resolution of SAR
images has raised to meters or even centimeters. SAR images are full of edges, textures,
which cannot be modeled by Gamma distributions anymore. But in the following chapters
we will show that our proposed methods focus on local features (i.e. patches), to select
samples following the same distribution, thus boiling down to the Gamma distribution of
homogeneous area. In the following chapters, this Gamma distribution will be used to
drive the proposed methods of denoising and change detection for multi-temporal SAR
images.
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Part I

Information Enhancement:
Multi-Temporal Denoising (2S-PPB)
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Chapter 3

State of the Art of Denoising

Both denoising of natural images and despeckling of SAR images have been well studied in
the literature. The main purpose of denoising and despeckling is providing better estima-
tion of physical parameters and better performance of automatic tools. Most algorithms
of denoising consider the statistical models of noise, for example Gaussian distribution
of noise in natural images and Gamma distribution of speckle in SAR intensity images.
Thus, both the statistical models of noise and the denoising principles are discussed in this
chapter.

Although this thesis focuses on multi-temporal SAR despeckling, the state of art of
natural images denoising (usually with Gaussian noise) and single SAR image despeckling is
worthy of review. This chapter begins with the review of noise models, including Gaussian
and Gamma noise distributions. Following the brief introduction of main ideas of denoising
(and despeckling), the non local means (NLM) theory [Buades et al., 2005a] is highlighted
and various improvements and extensions of it are reviewed. Since the (patch) similarity
plays an important role in the NLM theory, some similarity measurements are discussed
and extended to a more general case: comparing patches with different noise level, which
will be used in the proposed method in chapter 4.

3.1 Noise models

Image noise is random variation of brightness (color information, reflectivity or other phys-
ical quantity) in images. It can be produced by the imaging sensor or during the trans-
mission. Different imaging systems produce different types of noise. Due to its irregular
characteristic in both spatial and temporal spaces, image noises are usually represented by
their statistical characteristics. In this section, we describe the most common statistical
models used for different types of acquisition systems.

3.1.1 Independent additive Gaussian noise

In optical images, a typical model of image noise is a Gaussian, additive, independent (at
each pixel) noise. Major causes of Gaussian noise in digital images arise during acqui-
sition (sensor noise) caused by poor illumination or high temperature, and transmission
(electronic circuit noise). Given an underlying true value u, the observed variable y can
be considered as the sum of u (considered as a deterministic value here) and a Gaussian
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independent random variable (noise) n:

y = u+ n (3.1)

where n is a zero-mean Gaussian random variable following the pdf G(0, σ2):

p(n) =
1√
2πσ

exp

(

− n2

2σ2

)

, (3.2)

with variance Var(n) = σ2. Figure 3.1.a shows some zero-mean Gaussian distributions
with different σ. Given a Gaussian noise model for n, the pdf, expectation and variance of
the observed variable y can be represented as:

p(y|u) = p(n = y − u) =
1√
2πσ

exp

(

−(y − u)2

2σ2

)

,

E(y) = E(u+ n) = u,

Var(y) = Var(u+ n) = σ2 .

(3.3)

In this model, no texture for u is taken into account. Figure 3.1.a and b show Gaussian
distributions with different u and σ. σ can be considered as the noise level, as shown in
Figure 3.1.c-e the larger σ denotes stronger noise in images.

3.1.2 Multiplicative (signal-dependent) speckle noise

As introduced in chapter 2, speckle universally exists in the coherent imagery systems, e.g.
SAR, sonar and ultrasound images. The common model of multiplicative noise is given
by:

y = u · n , (3.4)

where n is a Gamma random variable following a Gamma distribution Γ(L, 1) when con-
sidering intensity data. The pdf of y is given by Eq.(2.12) in chapter 2. In SAR images, L
is the number of looks and denotes the noise level of images. Fig.3.2 shows synthetic SAR
images based on Lena with different number of looks.

3.1.3 Other noise models

There are other types of noise which exist in real images or just appear in the academic
researches. For instance Poisson noise, it is caused by the variation in the number of
photons sensed at a given exposure level. This noise is also known as photon shot noise.
It follows a Poisson distortion with a root-mean-square value proportional to the square
root of the image intensity. The pdf of Poisson noise is:

p(y|u) = uye−u

y!
(3.5)

Its expectation and variance are E(y) = u and Var(y) = u. Besides, impulse noise,
salt-and-pepper noise and so on have also been studied in the image processing field. In
reality, the noise existing in images could be more complicated. Poisson-Gaussian noise is
an example in optical systems that can be described by the sum of two random variables
(a Poisson noise and a Gaussian noise). However, in this thesis only Gamma noise in SAR
images is considered.
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Figure 3.1: The additive Gaussian noise model. (a) Zero-mean Gaussian distributions
with different σ = 1, 2, 3. (b) Gaussian distributions with different σ = 1, 2, 3 and different
u = 0, 2, 4. (c) Lena picture with Gaussian noise σ = 10. (d) Lena picture with Gaussian
noise σ = 20. (e) Lena picture with Gaussian noise σ = 30. σ can be considered as the
noise level, larger σ means stronger noise.

3.2 Main approaches of denoising

Depending on the statistical features of noise, various noise removing methods have been
proposed. This section will introduce the main approaches of denoising for a single im-
age. Among these denoising approaches, the non local means based methods have been
highlighted and deeply reviewed in section 3.3. Multi-temporal image denoising will be
introduced in section 3.4.

3.2.1 Spatial domain approaches

Spatial averaging methods

When having a distribution linking independent and identically distributed observa-
tions {y(1), y(2), . . .} and the searched for parameter u, a powerful framework is given by
maximum likelihood (ML) estimation. The estimation û is given by:

ûML = argmax
u

log p(y(1), y(2), . . . |u) , (3.6)
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(a) L = 1 (b) L = 3 (c) L = 5

Figure 3.2: The synthetic noisy image with multiplicative (Gamma) noise (showing the
amplitude values

√
y). (a) Lena picture with Gamma noise L = 1. (b) Lena picture with

Gamma noise L = 3. (c) Lena picture with Gamma noise L = 5. L can be considered as
the noise level, smaller L means stronger noise.

where p(y(1), y(2), . . . |u) is the joint density function for all observations, given by:

p(y(1), y(2), . . . |u) =
∏

j

p(y(j)|u) . (3.7)

In the case of Gaussian distribution, the pdf p(y(j)|u) is computed by Eq.(3.2). In the
case of Gamma distribution, p(y(j)|u) is given by Eq.(2.12).

When the observation are no longer identically distributed, weights can be introduced to
select observations that are likely to be identically distributed. This leads to the weighted
maximum likelihood (WML) estimate [Polzehl and Spokoiny, 2006]:

ûWML = argmax
u

∑

j

w(j) log p(y(j)|u) . (3.8)

In the case of Gaussian and Gamma noise, we have a formula linking the observation y
and the real u value:

û(i) =
1

Z

∑

j∈Ω(i)

w(i, j)y(j)

Z =
∑

j∈Ω(i)

w(i, j) ,
(3.9)

where w(i, j) is the weight of candidate y(j). The simplest case is to select the closer
neighbors in a local region Ω(i), e.g. a square window. This will define the Box filter, as
shown in Fig.3.3.a. A more adapted approach is to weight the neighbors depending on the
distance from the processed pixel. This will be the Gaussian filter, as shown in Fig.3.3.b.
Box filter is defined by constant weights and Gaussian filter is defined by weights depending
on the distance between pixel i and j, as shown in the following:

Box filter: w(i, j) = 1 ,

Gaussian filter: w(i, j) = exp

(−|i− j|2
2h2

)

.
(3.10)
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(a) (b) (c) (d)

Figure 3.3: Illustration of averaging operators. (a) Averaging with a square window (Box
filter). (b) Averaging with linear Gaussian weights in a pie (Gaussian filter). (c) Averaging
with a shape-adaptive window. (d) Averaging with non-local principle.

Note that these filters reduce noise by averaging neighbor pixels given by Eq.(3.8),
always with a loss of resolution (or details) of images, e.g. box-car filter, Gaussian filter.
To restrict such loss, the selection could be performed only over similar pixels. Smith and
Brady [1997] and Tomasi and Manduchi [1998] proposed a data adaptive weight definition,
given by:

Data adaptive weight: w(i, j) = exp

(−|i− j|2
2h2

)

exp

(−|y(i)− y(j)|2
2h′2

)

. (3.11)

This weight function combining geometric and radiometric distances ensures that only the
similar pixels in the neighborhood are contributing to the averaging and details like edges
can be preserved. However, it may fail when the noise is strong.

To solve the same issue, adaptive windows instead of windows with fixed size are
introduced, e.g. an example shown in the Fig.3.3.c. Lee [1981] used eight oriented windows
which are of fixed size but with different orientations. In homogeneous areas the larger
window would be used, however on the edges the windows whose orientation is along the
edges are used. Park et al. [1999] applied windows with adaptive size (square windows
but with different sizes). Moreover, Katkovnik et al. [2002] modified both the shape and
the size of the windows. Vasile et al. [2006] suggest to build an intensity driven adaptive
neighborhood.

More recently, the non local selection of pixels has been proposed, as shown in Fig.3.3.d.
The selected pixels could be from non local areas and do not need to be connected to each
other, thus this kind of approach is named non local means (NLM) [Buades et al., 2005a].
The estimation is computed again by the weighted average of the selected pixels. The
main idea of this approach is to compute the similarity of two pixels by comparing two
small patches around them. This patch comparison is very robust to noise and allow a
very efficient selection. The weights are thus controlled by a similarity which is given by:

Non local means: w(i, j) = f(S[y(i),y(j)]) , (3.12)

where S[y(i),y(j)] is computed on patches y(i) and y(j) around pixel i and j. f(·) is a
kernel function transforming the similarity to weight. Due to its simplicity and efficiency
in denoising, NLM has became one of the powerful approach in image denoising. For this
reason, we will focus on this approach which is described in details in section 3.3.
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For SAR images, homomorphic approach consisting of applying a logarithmic trans-
form can convert the multiplicative speckle noise in an additive one. In this case, most
available filtering algorithms developed for additive white Gaussian noise can be used to
denoise SAR images. However, due to the non linearity of the logarithmic transform, the
statistical features of SAR images are changed (non-Gaussian distribution). Moreover, the
log-transformed speckle is non-zero mean especially for images with high noise level. Thus,
during the denoising process a post-processing step to remove the biased mean is needed.

Except homomorphic approach based methods, there are many state of the art ap-
proaches exploiting the multiplicative noise model to develop denoising algorithms, for
instance stationary multiplicative speckle model (SMSM) filters e.g. Lee filter [Lee, 1980],
Forst filter [Frost et al., 1982] and Kuan filter [Kuan et al., 1985], and non-stationary mul-
tiplicative speckle model (NSMSM) filters proposed in Lopes et al. [1990] and [Kuan et al.,
1987]. Based on the stationarity assumption of the multiplicative speckle model, SMSM
filters operate under a minimum mean-square error (MMSE) theory and can be described
by a linear function of the covariance matrix of the signal and noise. On the contrary,
NSMSM filters reduce speckle under the non stationarity multiplicative speckle model as-
sumption. And the MMSE estimation is replaced by the maximum a posteriori (MAP)
theory which, however, raises the problem of providing an accurate statistical description
of the SAR image.

More recently, Alonso-González et al. [2012] denoised the PolSAR image with the use
of binary partition trees, which represents the multi-scale homogeneous regions of the
images. NLM theory has been introduced to SAR image denoising by probability patch-
based filter [Deledalle et al., 2009] which considers the statistical distribution of speckle in
the definition of weights in Eq.(3.12). The details about this NLM based approach can be
found in section 3.3.

Regularization based approaches

Regularization methods deal with the denoising problem as solving an optimization
problem. Their main principle is to introduce some spatial regularity for detail enhance-
ment, i.e. edges, point targets. The optimization problem can be formalized with:

û = argmin
u

∑

i

D (y(i), u(i)) + λReg(u) , (3.13)

where D (y(i), u(i)) is the data fidelity term which could be the L1, L2 distance for Gaussian
noise assumption or ratio based distance for speckle model, and Reg(u) is the regularization
term with λ controlling the contribution of regularity. To preserve details like edges and
objects, a regularization term based on the gradient of u is proposed in the total-variation
(TV) minimization method [Rudin et al., 1992]. Other norms of the regularization terms
with different image priors can also be introduced to Reg(u), e.g. a local TV model [Louchet
and Moisan, 2011]. Methods have been developed to solve the minimization problem given
by Eq.(3.13), such as [Chambolle, 2004, Chambolle and Pock, 2011]. More recently, the
TV regularization has been combined with the NLM approach to improve the drawback
of NLM in dealing with rare patches in Louchet and Moisan [2011], Sutour et al. [2013].

3.2.2 Transform domain approaches

The basic idea of denoising in transform domain is that the signal and the noise could
be separated in the transform domain, and thus it is easier to reduce the noise. For
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Figure 3.4: Principle of the processing chain in transform-based denoising methods.

instance, the noise in images generally presents itself as rapid changes in a smooth area
and it has uniform power across the whole frequency band, while the signal changes slowly
and usually only has power on lower frequencies. Then, the noise can be reduced by a
processing chain: 1) transforming the noisy data to the transform domain; 2) shrinking the
transform coefficients by hard-thresholding or soft-thresholding to suppress the effects of
noise; 3) performing an inverse transform on the shrunk coefficients to the spatial domain.
As shown in Fig.3.4, this processing chain is also the basic principle of most transform-
domain denoising methods. The key issue of denoising in transform domain is the choice
of the transform domain and suitable shrinking way without smoothing the details in the
image.

Due to the space-frequency localization property and a large number of transform
bases, wavelet has been the most popular choice for denoising methods. Portilla et al.
[2003] proposed to model the wavelet coefficients by a scale mixture of Gaussian (GSM)
model. Like the common processing of transform based filter, the noisy image is first
decomposed into multiple sub-bands in the wavelet domain and the wavelet coefficients in
each sub-band are modeled as a Gaussian scale mixture. For the shrinking step, Wiener
filter is used to denoise the wavelet coefficients in a Bayesian least squares framework. In
the final step, the denoised coefficients across sub-bands are then inversely transformed
to form the denoised image. Lyu and Simoncelli [2009] improved the filter proposed in
[Portilla et al., 2003] by using a global Gaussian Markov random field to model the local
GSM models. However, the edges and textures in the images may be smoothed since they
have similar characteristics with the noise in transform domain (for instance, both edges
and noise correspond to the rapid changes in spatial domain and have uniform power in
frequency domain). To solve this problem, some techniques of detail preservation and
enhancement are proposed. For instance, geometric constraints added into the shrinking
step are applied to preserve edges in [Rosito Jung and Scharcanski, 2003]. More recently,
some high-level transformation methods, such as Principal Component Analysis [Zhang
et al., 2010], K-SVD dictionary based methods [Elad and Aharon, 2006], have also been
introduced to image denoising tasks. Dabov et al. [2007b] recently proposed a block-match
in 3D transform-domain filter (BM3D), which combined the NLM theory and the wavelet
transform based denoising (more details can be found in the introduction of NLM theory
in section 3.3).

For SAR images, homomorphic approach with a logarithmic transform could also be
used to develop these transform based denoising approaches to deal with speckle noise,
such as the filters in [Guo et al., 1994] and [Gagnon and Jouan, 1997]. Considering the
heavy-tailed feature of speckle distribution, a heavy-tailed model under Bayesian wavelet
shrinkage is proposed in [Achim et al., 2003]. Recently, Ranjani and Thiruvengadam [2010]
and Gleich et al. [2010] use spatial information to better preserve the edges and textures
of SAR images based on spatially adaptive Wavelet analysis, Parrilli et al. [2012] extended
the BM3D filter to SAR data (namely SAR-BM3D filter), Xu et al. [2014] introduced Prin-
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cipal Component Analysis theory to SAR despeckling, and dictionary based despeckling
approach has also been proposed in Tabti et al. [2014].

3.3 Non local means methods

Following the main approaches of denoising presented in section 3.2, this section deeply
introduces the NLM based methods.

Given by Eq.(3.9), basic NLM filter exploits image redundancy by searching similar
pixels and combines these similar pixels with different weights. As shown in Fig.3.5, to
filter the center pixel y(i) marked in red, the pixels in the search window (marked in yellow)
are weighted averaged by:

û(i) =
1

Z

∑

j∈Ω(i)

w(i, j)y(j) , (3.14)

w(i, j) = f(S[y(i),y(j)]) , (3.15)

Z =
∑

j∈Ω(i)

w(i, j) . (3.16)

The weight w(i, j) depends on the similarity between patches y(i) (marked in red) and
y(j) (marked in blue). NLM has been proved powerful in image denoising, however the
challenges of applying NLM lie in selecting filter parameters, such as:

• S[y(i),y(j)]: the similarity between patch y(i) and y(j). The common similarity is
defined as a value negatively related to the distance between y(i) and y(j). Different
similarity measurements will be discussed in section 3.3.1;

• f(·): the kernel function transforming the similarity to weight. It was selected as
an exponential function and other choices have also been proposed, which will be
reviewed in section 3.3.2;

• the size of patches y(i) and y(j). Too small patch size may make NLM find wrong
(dissimilar) patches, while too large patch size may lead to few or no similar patches
found by NLM; the selection of patch and search window sizes will be discussed in
section 3.3.4;

• the size and shape of search window Ω(i). In the original NLM theory, Ωi should
be the whole image, while in reality Ωi is usually a square window to balance the
algorithm time consumption and the denoising performance.

This section will discuss these issues and review the improvements and extensions of NLM.

3.3.1 The choice of similarity

Pixel similarity
The similarity between two pixels y(1) and y(2) can be measured by the negative value

of the euclidean distance (i.e. under the additive Gaussian noise) or ratio operator (i.e.
under the multiplicative speckle noise), as defined in the following:

Dpixel (y(1), y(2)) = −(y(1)− y(2))2, Dpixel ∈ [ −∞, 0 )

Rpixel [y(1), y(2)] = min

[

y(1)

y(2)
,
y(2)

y(1)

]

, Rpixel ∈ (0, 1]
(3.17)
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Figure 3.5: The non local means approach denoises each pixel y(i) by weighted averaging
these pixels (i.e. y(j)) in the search window Ω(i). The weights are calculated based on the
similarity between patch y(i) and y(j).

where Dpixel denotes the similarity which is inversely proportional to the distance, while
the Rpixel is proportional to the ratio. The higher similarity values, y(1) and y(2) are
more similar. In reality, this measure is corrupted by noise data. For example, if y(1) =
u(1)+n(1) (y(2) = u(2)+n(2)) is the sum of noise-free value u(1) (u(2)) and a zero-mean,
σ2-variance Gaussian noise n(1) (n(2)), the similarity of y(1) and y(2) will be:

−(y(1)− y(2))2 = −(u(1)− u(2) + n(1)− n(2))2

= −(∆u+∆n)2
(3.18)

where ∆n is a zero-mean and 4σ2-variance Gaussian noise. The ratio operator of two pixels
is also affected by the Gamma distribution.

To reduce the effect of noise, the patch difference is usually used instead of pixel differ-
ence. Given the noisy patch y(1) with y(1) = u(1) + n(1), the patch difference between
y(1) and y(2) is:

− 1

K

∑

k

[y(1, k) − y(1, k)]2 = − 1

K

∑

k

[u(1, k) − u(2, k) + n(1, k)− n(2, k)]2

= −
∑

k(∆u+∆n)2

K

(3.19)

where K is the number of pixels in patch y(1). Assuming that ∆u is constant, this patch
difference is the expectation of pixel difference given by Eq.(3.18), which will have less
variance.

Obviously, the patch similarity is not the same as the pixel similarity since the noise-free
value u is not constant in the patch. However it is a more robust approximation and the
similarity of the central pixels is strongly correlated to the similarity of the patches. Fig.3.6
shows the two-dimensional histogram of the Euclidean distance between noise-free pixels
|u(1) − u(2)| and the Euclidean distance between noise-free patches ‖u(1)−u(2)‖ measured
from the house image. From this histogram, an approximate proportional relation between
|u(i) − u(j)| and ‖u(i) − u(j)‖ can be found. A discussion on patch similarity measures
is presented in the following section.

Observed patch similarity
As explained in the former section, patch similarity is more robust than pixel similar-

ity. Seven patch similarity criteria were presented in [Deledalle et al., 2012a] based on the
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(a) Test image house
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Figure 3.6: The two dimensional histogram of the Euclidean distance between noise-free
patches K and noise-free pixels. The ideal case (the assumption that similar patches have
similar central pixels [Duval et al., 2010]) is shown on the white line.

detection theory. As suggested in their works, for the despeckling application, the gen-
eralized likelihood ratio (GLR) criterion outperforms the other similarity measurements,
especially in the strong noise cases. This similarity criterion has been successfully used
in probability patch-based (PPB) filter [Deledalle et al., 2009]. Taking a pair of observed
patches y(1) and y(2) as examples, they are similar when they have the same underlying
noise-free patch u(1) = u(2) = u(12). The measurement of the similarity between y(1)
and y(2) can be considered as a hypothesis test:

H0 : u(1) = u(2) = u(12) Similar (null) hypothesis

H1 : u(1) 6= u(2) Dissimilar (alternative) hypothesis .

Given the observed data y(1) and y(2), the optimal criterion which detects whether u(1)
and u(2) are identical is the likelihood ratio:

R(y(1),y(2)) =
p (y(1),y(2)|u(12),H0)

p (y(1),y(2)|u(1),u(2),H1)
. (3.20)

This likelihood ratio can not be directly used since we do not have any knowledge about the
noise-free value u. The generalized likelihood ratio (GLR) solves this problem by replacing
the u values by their ML maximum likelihood estimates. The ratio with estimates is:

RGLR(y(1),y(2)) =
p
(

y(1),y(2)|ûML(12),H0

)

p (y(1),y(2)|ûML(1), ûML(2),H1)

=
∏

k=1,...,K

p
(

y(1, k), y(2, k)|ûML(12, k),H0

)

p (y(1, k), y(2, k))|ûML(1, k), ûML(2, k),H1)

(3.21)

where y(1, k) is the k-th pixel in patch y(1) (k is the index of pixel in patch, y(2, k),
û(1, k), û(2, k) and û(12, k) have the same case). The ML estimates for Gaussian or
Gamma distributions are given by:

ûML(1, k) = y(1, k) and ûML(2, k) = y(2, k) (3.22)
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under the H1 hypothesis. Under the H0 hypothesis, the ML estimate of u(12) is given by:

Gaussian distribution case: ûML(12, k) =
σ(2, k)y(1, k) + σ(1, k)y(2, k)

σ(1, k) + σ(2, k)
,

Gamma distribution case: ûML(12, k) =
L(1, k)y(1, k) + L(2, k)y(2, k)

L(1, k) + L(2, k)
.

(3.23)

σ(1, k) or L(1, k) is the variance or the number of looks associated to k-th pixel of y(1, k)
(for full generality we suppose that σ could be spatially varying).

Then, combined with the multiplicative speckle noise model in (2.12) and the additive
Gaussian noise model in (3.3), the GLR turns to be:

Gaussian distribution case:

RGLR(y1,y2)

=
∏

k=1,...,K

exp






−

[

σ(1,k)y(1,k)+σ(2,k)y(2,k)
σ(1,k)+σ(2,k) − y(1, k)

]2

2σ(1, k)2
−

[

σ(1,k)y(1,k)+σ(2,k)y(2,k)
σ(1,k)+σ(2,k) − y(2, k)

]2

2σ(2, k)2






,

(3.24)
Gamma distribution case:

RGLR(y1,y2) =
∏

k=1,...,K

[

L(1, k)y(1, k) + L(2, k)y(2, k)

L(1, k) + L(2, k)

]−L(1,k)−L(2,k) y(1, k)L(1,k)

y(2, k)−L(2,k)
,

(3.25)
where RGLR(y1,y2) ∈ (0, 1] in both Gaussian and Gamma distribution cases. The GLR
based patch similarity is the log operation of Eq.(3.21):

SGLR(y(1),y(2)) = log
[

RGLR(y(1),y(2))
]

. (3.26)

SGLR(y(1),y(2)) ∈] −∞, 0], in which the larger values (close to 0) denote y(1) and y(2)
are more similar. Note that, when the noise level of two patches are the same, the patch
similarity boils down to the similarity used in [Deledalle et al., 2009]. Taking Gamma
distribution as example when L(1) = L(2) = L (L(1, k) = L(2, k) = L|k=1,...,K), this GLR
similarity criterion in Eq.(3.26) turns to be:

SGLR(y(1),y(2)) | L(1)=L(2) = −
∑

k

[

2L log

(
√

y(1, k)

y(2, k)
+

√

y(2, k)

y(1, k)

)

− 2L log 2

]

,

(3.27)
which is the same as the GLR criterion in [Deledalle et al., 2009]. And in the case of
Gaussian distributions with constant σ, RGLR boils down to the euclidean distance in
[Buades et al., 2005a].

Noise-free (denoised) patch similarity
In [Brox et al., 2008, Kervrann and Boulanger, 2006], the denoised patch similarity is

used to improve the denoising performance especially for high noise level images. Deledalle
et al. [2009] and Deledalle [2011] also proposed similar strategy for SAR images. In their
work, the Kullback-Leibler (KL) divergence based patch similarity had better performance
then simple Euclidean distance based similarity in selecting similar patches, and it also has
been applied in the PPB filter Deledalle et al. [2009]. We thus recall the KL divergence
similarity here and extend it to different noise levels cases.
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For distributions p(y|u(1),Θ(1)) and p(y|u(2),Θ(2)) of a continuous random variable
(where Θ is the distribution parameter, e.g. Θ = σ2 in Gaussian distribution and Θ = L
in Gamma distribution), KL-divergence is defined to be the integral:

DKL,1 =

∫ +∞

−∞
p(y|u(1),Θ(1)) ln

[

p(y|u(1),Θ(1))

p(y|u(2),Θ(2))

]

dy (3.28)

The analytical expression can be derived in the case of Gamma distribution. We extend
here the result of [Deledalle et al., 2009], when considering different number of looks for
each pixels. Substituting the Gamma distribution p(y|u,Θ = L) given by Eq.(2.12) in the
KL criterion with y ≤ 0:

DKL,1 =

∫ +∞

0
p(y|u(1), L(1)) ln [A ·B · C] dy (3.29)

where

A =

1
Γ(L(1))

L(1)
u(1)

1
Γ(L(2))

L(2)
u(2)

, B =

(

L(1)y

u(1)

)L(1)−1 (L(2)y

u(2)

)1−L(2)

and C = exp

[

L(2)y

u(2)
− L(1)y

u(1)

]

.

(3.30)

Then,

DKL,1 = lnA

∫ +∞

0
p(y|u(1), L(1))dy

+

∫ +∞

0
p(y|u(1), L(1)) lnBdy

+

∫ +∞

0
p(y|u(1), L(1)) ln Cdy .

(3.31)

Since,
∫ +∞

0
p(y|u,L)dy = 1 ,

∫ +∞

0
p(y|u,L) ln ydy = E(ln y) = ψ(L) + ln(u) ,

∫ +∞

0
p(y|u,L)ydy = E(y) = u ,

(3.32)

where ψ(L) is the digamma function. Thus,

DKL,1 =lnA+ (L(1)− 1) ln
L(1)

u(1)
+ (1− L(2)) ln

L(2)

u(2)

+[L(1) − L(2)] [ψ(L(1)) + ln(u(1))] + L(2)
u(1)

u(2)
− L1 ,

(3.33)

with

DKL,2 =

∫ +∞

−∞
p(y|u(2), L(2)) ln

[

p(y|u(2), L(2))
p(y|u(1), L(1))

]

dy . (3.34)
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The KL-divergence criterion between two pixels is:

DKL(u(1), u(2)) =DKL,1 +DKL,2

=L(1)
u(2)

u(1)
+ L(2)

u(1)

u(2)
− L(1) − L(2)

+[L(1)− L(2)]

[

ψ(L(1)) − ψ(L(2)) + ln
u(1)

u(2)

]

.

(3.35)

Finally, the KL-divergence criterion between two patches is:

DKL(u(1),u(2)) =
∑

k

L(1, k)
u(2, k)

u(1, k)
+ L(2, k)

u(1, k)

u(2, k)
− L(1, k) − L(2, k)

+[L(1, k) − L(2, k)]

[

ψ(L(1, k)) − ψ(L(2, k)) + ln
u(1, k)

u(2, k)

]

,

(3.36)

where DKL(u(1),u(2)) ∈ [0,∞[.
For patches u(1) and u(2), the KL divergence similarity between them is:

SKL(u(1),u(2)) = −DKL(u(1),u(2)) , (3.37)

where SKL(u(1),u(2)) ∈] −∞, 0]. The higher value means patches y(1) and y(2) are
more similar.

When L(1) = L(2) = L,

SKL(u(1),u(2))|L(1)=L(2) =
∑

k

L(, k)

[

2− u(1, k)

u(2, k)
− u(2, k)

u(1, k)

]

, (3.38)

which corresponds to the same expression as in [Deledalle et al., 2009].
When considering additive Gaussian noise, we can substitute the Gaussian distribution

p(y|u,Θ = σ2) given by Eq.(3.3) in the KL divergence given by Eq.(3.28), then we can get:

DKL,1 =

∫ +∞

+∞
p(y|u(1),Θ = σ(1)2)

[

ln
σ(2)

σ(1)
+

|y − u(1)|2
2σ(1)2

− |y − u(2)|2
2σ(2)2

]

dy . (3.39)

Then, the final KL divergence similarity can be computed by:

SKL(u(1),u(2)) = −
∑

k

DKL,1 +DKL,2

= −
∑

k

|u(1, k) − u(2, k)|2 + σ(2, k)2

2σ(1, k)2
+

|u(1, k) − u(2, k)|2 + σ(1, k)2

2σ(2, k)2
− 1

(3.40)

with SKL(u(1),u(2)) ∈]−∞, 0].

Coherence based similarity for SAR imagery We could wonder if the interferometric
coherence could be used for image comparison. We show through a simple experiment that
this information does not correspond to our objectives. As introduced in chapter 2, the
interferometric coherence is a key indicator of the relation between two multi-temporal SAR
images, which is usually used to detect the changes between two dates. When comparing
two patches of SAR image, the coherence given by Eq.(2.7) can be used to measure the
similarity since highly interrelated patches are similar to each other. To compare with the
patch similarity given by Eq.(3.26), we calculate both the GLR patch similarity and the
coherence on a pair of real SAR images (two single-look TerraSAR X-band images of Paris,
France, as shown in Fig.3.7):
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• The GLR patch similarity: Eq.(3.26) with L = 1, K is a 7×7 pixels patch;

• The coherence: Eq.(2.7) performed in a 7×7 pixels square window.

Fig.3.7 gives an illustration of the two similarity measurements. The coherence has good
performance at buildings areas as well as the GLR criterion. However, it fails when the
reflectivity is lower, for instance in the river and the public square etc. (as shown in
Fig.3.8), since it will rely mostly on the phase information. We see that this indicator,
although very useful for interferometric purposes, could not be applied for the combination
of amplitude of images.

(a) Noisy image yt (b) Noisy image yt′

(c) Coherence map of yt and yt′ (d) GLR similarity map between yt and yt′

Figure 3.7: The coherence and GLR similarity of a pair of interferometric SAR images
c©DLR project LAN1746.
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(a) Boat

(b) Buildings and a public square (Champ de Mars)

(c) The tour Eiffel

Figure 3.8: The coherence and GLR similarity of a pair of interferometric SAR images.
From left to right: noisy image yt and yt′ , the coherence map, the GLR similarity map.
(Note that figure (a) is not of the same size as (b) and (c)).

In this section, we have developed the noisy/denoised patch similarity used in the PPB
filter Deledalle et al. [2009]. They have been extended to a more general case (patches
with different noise level), which will be useful for the proposed filter in chapter 4.

3.3.2 Kernel functions f(·)
One of the key ingredients is the definition of the weights from the similarity. An expo-
nential kernel is used to compute weights in [Buades et al., 2005a]:

w(i, j) = f (S[y(i),y(j)]) = exp

(

S[y(i),y(j)]

h2

)

, (3.41)

where h controls the decay of the weights. People usually select a single h as a general rule
of thumb for the whole image denoising [Buades et al., 2005a,b]. As shown in figure 3.9,
weights with higher h (h 7→ ∞) tend to the same value, which is suitable for homogeneous
region denoising. In the edge or texture regions, smaller h (h 7→ 0) can keep more details.
Kervrann and Boulanger [2006] proposed to choose h by considering the distribution of
the similarity. Stein’s unbiased risk estimate (SURE) is used in [Van De Ville and Kocher,
2009] to select h. For further improvement, Van De Ville and Kocher [2011] proposed an
estimation by a linear combination of NLMs with different parameters and SURE is also



40 3. State of the Art of Denoising

−7 −6 −5 −4 −3 −2 −1 0

0

0.2

0.4

0.6

0.8

1

1.2

Patch Similarity

W
ei

gh
ts

 w
ith

 d
iff

er
en

t h

 

 

h=0.05

h=1

h=2

h=10

Figure 3.9: Exponential weights with different parameter h When h 7→ 0, the denoising
results will be the noisy data itself. When h 7→ ∞, the denoising will smooth all the pixels
in the searching window.
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Figure 3.10: Different kernels for weights.

used to optimize the combination. More generally, local selection of h has been proposed
by Duval et al. [2011] using SURE for Gaussian noise. For PolSAR denoising, Hondt et al.
[2014] selected the filter parameters by comparing a guess of the filtering error under the
theory of unbiased risk estimation.

Compared with the exponential kernel, Buades et al. [2011] and Salmon and Strozecki
[2010] show that flat kernels or trapezoidal kernels can provide better or competitive results.
Figure 3.10 gives an illustration of different kernels for weights. Flat kernels weights are
binary (1 and 0, or other values) which reduce the computational cost. Cosine function is
also used to define the weights [Salih et al., 2013]. Tracey et al. [2014] used a combined
kernel by the weighted sum of the individual NLM kernels.

Salmon [2010] claimed that the NLM is semi-local rather than non local since a large
searching window size (such as using the whole image as the searching window) would not
provide a better denoising results. In fact, one of the reason is that the larger searching
window will introduce more incorrect pixels to the averaging and cause more bias, since by
Eq.(3.41) the dissimilar pixels also have non-zero weights (no mater how dissimilar they
are, they can still contribute to the averaging). To avoid the contribution of the dissimilar
pixels, Duval et al. [2011] proposed a truncation on the exponential weights:

w(i, j) =

{

exp
(

S(y(i),y(j))
h2

)

if |y(i) − y(j)| ≤ τ,

0 else.
(3.42)
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When τ = maximum, the algorithm is equivalent to the usual NLM. Eq.(3.42) can reduce
the bias of the estimation by removing the pixels with high patch similarity but very
different central values. Thus, the truncated weights are insensitive to the increase of the
search window. Based on the same motivation, Zhang et al. [2014] proposed to combine
the patch and pixel similarity to preserve the high-contrast particle details in magnetic
resonance image denoising. Deledalle et al. [2014] introduced a new way to define weights
with a learned kernel that impose the distribution of weights in homogeneous regions. This
distribution model is learned from a homogeneous area.

3.3.3 Weight of the center pixel

In Eq.(3.26), the similarity between y(i) and itself is maximum. Thus the weight of pixel
y(i) in Eq.(3.41) will also be maximum (w(i, i) = 1). This may let the center pixel bring
strong noise in the denoising. Thus, w(i, i) is replaced by the maximal weight in the
searching window (except w(i, i)) in [Salmon, 2010]:

w(i, i) = max

[

max
j∈Ωi,j 6=i

w(i, j)

]

. (3.43)

In most methods, the weight of the center pixel is linked to the selection of the kernel
function. Given w(i, j) defined by Eq.(3.26), Salmon [2010] considered the noise level
when setting w(i, i):

w(i, i) = max

[

max
j∈Ωi,j 6=i

w(i, j) , ϕ

(

−σ
2

h

)]

. (3.44)

In the comparison experiments in [Salmon, 2010], w(i, i) in Eq.(3.43) should be used in
higher noise level images and Eq.(3.44) is suggested being used in more moderate noise
level. In [Deledalle et al., 2014], the center weight is w(i, i) = 1.

3.3.4 Selection of searching window and patch size

The searching window Ω(i) in Eq.(3.9) is usually selected as a
√

|Ω(i)| ×
√

|Ω(i)| square
region with pixel y(i) as center. The size of Ω(i) has been discussed in [Salmon, 2010, Duval
et al., 2010, Kervrann and Boulanger, 2006]. Salmon [2010] suggested that an appropriate
size of Ω(i) is 21×21 [Buades et al., 2005a], since larger or smaller searching window would
not get better results in his experiments. Rather than searching in a square window, a
spiral searching path (a disk searching region) is used in [Deledalle et al., 2014] to deal
with different window size. Kervrann and Boulanger [2006] proposed to locally select
the size of Ω(i) based on a point-wise rule. Moreover, Berkovich et al. [2013] proposed
a content-based search region for NLM, which is defined by a pixel based classification
(segmentation). Chan et al. [2013] search the similar pixels in the whole image but with
a Monte Carlo sampling. Duval et al. [2010] chose to overcome the selection of Ω(i) size
by using a larger size combined with a local h setting algorithm, insensitive to the size of
Ω(i).

As explained in section 3.3.1, the patch similarity can be used to represent the similarity
of pixels if the similarity between two patches is strongly related to the similarity between
their center pixels. Small patch size

√

|K|×
√

|K| tends to increase the correlation between
the similarity of patches and the similarity of central pixels. However it is very sensitive
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to noise and more dissimilar pixels are selected to denoise. Large patch size will exactly
find similar pixels but few (or even no) similar pixels will be found. Generally, a patch is
a small square window and its size depends on the size of objects in the images (or on the
spatial resolution of images). To improve the performance in strong noise cases, Deledalle
et al. [2009] proposed to use an increasing size of patch in an iterative denoising. Moreover,
locally adaptive shape and size of patch is proposed in [Deledalle et al., 2012b].

3.3.5 NLMs with iteration strategy

Kervrann and Boulanger [2006] proposed an iterative framework which renews the weights
with pre-estimated images. The same idea has been used in [Brox et al., 2008, Dabov
et al., 2007b]. Goossens et al. [2008] proposed a post-processing filter after the NLM to
remove remaining noise in regions with non-repetitive structures. Deledalle et al. [2009]
defined the weights using both noisy image and pre-denoised image:

w(i, j) = exp

[

SGLR(y(i),y(j))

h2
+
SKL(û(i), û(j))

h′2

]

, (3.45)

SKL(û(i), û(j)) is computed using denoised patches û(i) and û(j), which is given by
Eq.(3.37). This approach has been extended to SAR images [Deledalle et al., 2011] and
Poisson noise images [Deledalle et al., 2010a].

3.3.6 NLMs in non-spatial domains

The basic NLMs find similar pixels and average them in spatial domain for estimation.
This processing can also be done or considered in transformed domains.

Patch domain
Rather than the center pixel of patches, Coupé et al. [2008] proposed to estimate the

noise-free patches. This estimator has similar expression as Eq.(3.9):

û(i) =
1

Z

∑

j∈Ωi

w(i, j)y(j) , (3.46)

Weight w(i, j) can also be calculated by Eq.(3.41) or Eq.(3.45). This patch/block-wise
idea has been investigated more clearly in [Tschumperlé and Brun, 2011]. Then the value
û(i) in pixel i is defined by combining the most significant patches together.

Transform domains
Block Matching 3-D (BM3D) algorithm [Dabov et al., 2007b] considers that an image

has a locally sparse representation in the transform domain. Fig.3.11 shows the filtering
processing of BM3D. The first step of BM3D (the first line in Fig.3.11) groups similar
noisy patches (2D) into 3D groups. Then, a collaborative filtering produced individual
estimates of all the grouped patches by filtering them jointly (through hard-thresholding
in transform-domain). The second step (the second line in Fig.3.11) has the same stages like
in step one, but it is performed on the basic estimation obtained by the step one instead of
the noisy image. Both steps need an aggregation stage to reconstruct the estimated image,
which transforms patches to image (the invert-grouping stage). Many extensions of BM3D
have been proposed, such as BM3D with shape-adaptive PCA [Dabov et al., 2009], BM3D
with PCA local pixel grouping [Zhang et al., 2010], video-BM3D [Dabov et al., 2007a]
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Figure 3.11: The sketch map of BM3D algorithm [Dabov et al., 2007b].

and BM4D [Maggioni et al., 2011] for video denoising, SAR-BM3D [Parrilli et al., 2012]
and SAR-BM3D with a variable-size search area [Cozzolino et al., 2014] for SAR image
denoising.

Image neighborhood (patches) used in the non-local means algorithm are projected
onto a lower-dimensional subspace using principal component analysis (PCA) [Tasdizen,
2009, Zhang et al., 2010]. Consequently, patch similarity weights for NLM are computed
using distances in this PCA subspace rather than the full (original) space. And this idea
has been extended to Poisson noise reduction (photon-limited image reconstruction) by
Salmon et al. [2014] and Gamma noise (speckle noise in SAR images) by Xu et al. [2014].

Mairal et al. [2009] further developed the locally sparse representation idea using un-
fixed dictionaries (compared with various types of wavelets which can be considered as
fixed dictionaries). These unfixed dictionaries are over-complete and learned in the train-
ing data by K-SVD [Elad and Aharon, 2006], PCA [Tasdizen, 2009] or clustering method
[Chatterjee and Milanfar, 2009, Dong et al., 2011].

3.4 Multi-temporal images denoising

Following the introduction of the denoising approaches dealing with single image in sec-
tion 3.2 and 3.3, this section reviews some main approaches of multi images denoising,
for instance video data, multi-temporal images and multi-channel images. Most of these
methods are extended from the filters introduced in section 3.2 and 3.3.

According to the ways of extension, this section classifies the multi-image denoising
methods into two groups:

• extension of denoising range, for instance extending the 2D searching window to a
3D searching cube may entitle NLM to deal with multi-image denoising;

• extension of denoising model, for instance Deledalle et al. [2011, 2014] developed the
patch similarity from Gamma distributed noise model to complex Wishart distributed
noise model for multi-channel SAR images.

Some state-of-the-art algorithms, including video denoising, multi-channel image (i.e. in-
terferometric/polarimetric SAR images) denoising and multi-temporal images (i.e. SAR



44 3. State of the Art of Denoising

(a) V-NLM (b) 3D-ANF Ciuc et al. [2001]

Figure 3.12: The illustration of extension of denoising range of NLM and the sketch map
of 3D-ANF. NLM finds non local similar pixels/patches, while 3D-ANF only uses the
connected pixels for estimation.

images) denoising, are introduced in this section.

3.4.1 Extension of denoising range

3D-ANF

Ciuc et al. [2001] proposed a 3D adaptive-neighborhood filter (3D-ANF) based on
sigma-filter idea [Lee, 1983]. It uses both spatial and temporal neighbors of the current
pixel for estimation. However, unlike the non local principle, this approach adaptively
finds neighboring regions (only neighbors whose value is within a range is selected and this
range depends on the current pixel value), as shown in Fig.3.12.b. These neighborhood
pixels connected to each other should be involved in the denoising.

Video NLM

Buades [2006] extended the NLM from single image to multi-image (video) case by
enlarging the spatial searching window to a spatial and temporal searching zone:

ût(i) =
1

Z

∑

t′

∑

jt′∈Ω(it′ )

w(it, jt′) · yt′(j),

where, w(it, jt′) = f
[

S(yt(i),yt′ (j))
]

.

(3.47)

yt(i) denotes the pixel located at i in image yt (at time t). S(yt(i),yt′ (j)) is the similarity
between patch yt(i) and yt′(j). Video NLM takes a spatial searching window at position
i in each image and looks for all similar blocks in temporal searching windows, as shown
in Fig.3.12.a. Note that no motion estimate or optical flow estimate has been performed
in Buades [2006], since the NLM finds the similar pixels for denoising instead of the same
pixels, there is no need to have the explicit estimation of motions. Following the idea in
[Buades, 2006, Cheung et al., 2008] that there is no need for the NLM framework to have
motion estimation, Mahmoudi and Sapiro [2005] applied a pre-classifying processing to
video denoising. They firstly classified the image blocks according to fundamental char-
acteristics (average gray values and gradient orientation). Then, only blocks with similar
characteristics are used in the denoising (with non-zero weights). This pre-processing can



45

reduce the computational complexity and diminish the influence of dissimilar pixels in the
denoising.

Most videos are highly temporally consistent. That is why the NLM without motion
estimation between two frames can get satisfying results. However, many real noisy videos
have structured noise that makes NLM failing. In contrast with [Buades, 2006, Cheung
et al., 2008], Liu and Freeman [2010] claimed that high-quality video denoising, especially
when structured noise is taken into account, needs reliable motion estimation. An opti-
cal flow algorithm with spatial regularity was used to estimate temporal correspondence
between two frames. To reduce the computational complexity of NLM, an approximate
K-nearest neighbor patch matching algorithm is used to search for similar patches in the
entire image.

V-BM3D

BM3D has also been developed to denoise video by Dabov et al. [2007a], named video-
BM3D (V-BM3D). A predictive-search block-matching is used to group similar patches
both in the spatial and temporal domain of the video. It is similar to the techniques used
for grouping in BM3D, but also has the facility to estimate the motion between two frames.

Others

Alonso-González et al. [2014] also extended the binary partition trees based PolSAR
filter [Alonso-González et al., 2012] to PolSAR temporal series. It constructs the PolSAR
series as a set of spatio-temporal homogeneous regions and estimates the polarimetric
parameters within them. Le et al. [2014] proposed an adaptive filter based on a change
detection matrix for SAR time series. Coefficient of variation is used to determine the
change/un-change, which is the ratio of standard deviation to the mean of noisy image.
The unchanged pixels in temporal domain have been averaged, however no spatial filtering
process follows this temporal averaging.

3.4.2 Extension of denoising model

BM4D

Contrary to V-BM3D, BM4D does not group blocks, but mutually similar spatiotempo-
ral volumes according to a non local search procedure. As shown in Fig.3.13, the V-BM3D
groups patches, while the BM4D searches similar volumes (a series of patches). More re-
cently, Sutour et al. [2014] adapted their method to video denoising by using 3D patches
instead of 2D patches.

Spatial-temporal filters for SAR amplitude images

Quegan and Le Toan [1998], Quegan et al. [2000] denoised the multi-temporal SAR
images by a weighted sum based on the covariance matrix. Quegan and Yu [2001] pro-
posed a texture compensation multi-channel filter based on Kuan filter [Kuan et al., 1985].
Kuan filter is firstly applied on each image and obtained the texture compensation. It
considers the estimation of each pixel as the linear combination of its temporal neighbors,
and the weights of this combination (or summation) depend on the ratio of the texture
compensations. The main idea of the time-space filter in Coltuc et al. [2000] is to apply a
DCT transform along temporal domain to separate the signal from the noise and remove
the noise in the transform domain.
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(a) V-BM3D [Dabov et al., 2007a] (b) BM4D Maggioni et al. [2012]

Figure 3.13: The sketch map of grouping steps in V-BM3D and BM4D. V-BM3D: grouping
2D patches, BM4D: grouping series of patches (spatiotemporal volumes, 3D patches).

Non-local means for InSAR, PolSAR and PolInSAR images
Non local means have also been applied to InSAR [Deledalle et al., 2011], PolSAR

[Deledalle et al., 2010b, Liu and Zhong, 2014] and PolInSAR images Deledalle et al. [2014].
Deledalle et al. [2014] proposed an unified non-Local framework for multi SAR images,
including InSAR, PolSAR and PolInSAR images by developing the weighted maximum
likelihood estimation from Gamma distribution to complex Wishart distribution.

Similarly to Eq.(3.9), the estimation Σ̂ can be calculated by:

Σ̂(i) =
1

Z

∑

j∈Ω(i)

w(i, j)C(j). (3.48)

The weight w(i, j) is the averaging weight based on the similarity between C(i) and C(j).
Deledalle et al. [2012a] defined this similarity according to the comparison between two
patches with i and j as center respectively. Like the computation of similarity in the
PPB algorithm, the comparison of two patches is also based on the detection theory, the
generalized likelihood ratio (GLR), given by:

SGLR (C(i),C(j)) =
∑

k

− log

∣

∣

1
2 [C(i, k) −C(j, k)]

∣

∣

2L

|C(i, k)|L|C(j, k)|L (3.49)

where C(i + k) is the k-th neighbor of C(i) (in spatial domain). This averaging operator
is performed on a square patch with size of

√
K ×

√
K pixels. When M = 1, this GLR

similarity turns to be the expression given in Eq.(3.27). Then, the weight based on the
similarity can also be given by Eq.(3.41).

3.5 Evaluation of denoising

This section presents some common approaches of evaluating the denoising methods.
Mean squared error (MSE) related evaluations
Mean squared error (MSE) measures the Euclidean distance between the "true" signals

and the estimated signals. The expression of MSE is:

MSE(û, u) =
∑

i

(û(i) − u(i))2 . (3.50)

The lower the MSE, the better the estimation.
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Signal-to-noise ratio (often abbreviated SNR or S/N) is a measure comparing the level
of a desired signal to the level of background noise. It is defined as the power ratio between
the signals and the noise. Since the signals usually have a very wide dynamic range, SNR
is often expressed using the logarithmic decibel scale. For images, SNR measures the
difference between the noise-free image u and the estimated image û:

SNR(û, u) = 10 log10
V ar(u)

1
N

MSE(û, u)
, (3.51)

where V ar(u) is the variance pixel values in image u. N is the number of pixels of image
u. For the seek of simplicity, the peak signal-to-noise ratio can be used to measure the
denoising quality:

pSNR(û, u) = 10 log10
[max(u)− min(u)]2

1
N

MSE(û, u)
(3.52)

where max(u) and min(u) are the maximum and minimum pixel value of image u.
MSE-related evaluations can accurately measure the difference between noise-free u

and the estimation û. However, they can only measure the performance when the noise-
free u is available, which is impossible in reality (for instance, the real SAR images have
no noise-free data available).

Difference/ratio map

When the noise-free images are not available, the evaluation of denoising quality can
be done by analyzing the difference map û− y between the estimation û and the observed
data y (for multiplicative noise like speckle, the ratio map y

û
should be used). Obviously,

in the ideal case (û = u), the difference/ratio map will be pure noise. Thus the better
denoising results have purer noise in the difference/ratio maps. In other words, the less
structured information is left in the difference/ratio map, the better is the performance
the denoising technique. Fig.3.14 and Fig.3.15 respectively show the difference and ratio
maps of denoising results.

Equivalent number of looks for denoised SAR images

As explained in chapter 2, the number of looks L can denote the speckle noise level of
SAR images. The higher the number of looks, the less speckle noise will exist. In other
words, the reduction of speckle is equivalent to increasing the number of looks. Thus, the
estimation of number of looks L of denoised SAR images can be considered as an evaluation
of SAR denoising. This estimation is named equivalent number of looks (ENL), which can
be calculated by the square ratio of mean and variance:

ENL =
E(û)2

V ar(û)
(3.53)

where the mean E(û) and variance V ar(û) are calculated in an homogeneous square win-
dow. ENL is usually used to evaluate SAR image quality and needs no noise free images.

3.6 Summary of image denoising

We have reviewed some state of the art methods for the image and multi-image denoising
tasks. Among these approaches, the non local means (NLM) have been highlighted and will
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(a) (b) (c)

(d) (e)

Figure 3.14: Difference maps of denoising results (additive Gaussian noise). (a) The noisy
image Lena with additive Gaussian noise σ = 30. (b) The denoising result by a linear
Gaussian filter. (c) The difference map between a and b. (d) The denoising result by the
non local means filter [Buades et al., 2005a]. (e) The difference map between a and d.
There are less structures left in e, thus the non local means filter has better performance
than the linear Gaussian filter.

be applied to our multi-temporal SAR image denoising task due to its efficiency. Various
improvements and extensions of NLM have been proposed, especially for the SAR image
denoising, for instance the generalized likelihood ratio (GLR) similarity of noisy patches
and the Kullback-Leibler (KL) divergence similarity of denoised patches are introduced.
In this chapter we have proposed some extensions of both GLR and KL similarities by
considering patches with different noise levels, and full expressions of the improved GLR
and KL have been given. Based on these works on NLM, we will present in the next
chapter how these approaches can be used for multi-temporal SAR intensity estimation.
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(a) (b) (c)

(d) (e)

Figure 3.15: Difference maps of denoising results (multiplicative speckle noise). (a) The
noisy image Lena with multiplicative speckle noise L = 1. (b) The denoising result by a
linear Gaussian filter. (c) The difference map between a and b. (d) The denoising result
by the PPB filter [Deledalle et al., 2009]. (e) The difference map between a and d. There
are less structures left in e, thus the PPB filter has better performance than the linear
Gaussian filter.
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Chapter 4

Two Steps Non-Local Means for
Multi-temporal SAR images

In this chapter we will present how non local means theory can be applied to multi-temporal
SAR images. The proposed method is an extension of the probabilistic patch-based (PPB)
filter by Deledalle et al. [2009] presented in details in the previous chapter. The main
idea of the proposed approach is to deal with the spatial and temporal information of the
time series respectively. Inspired by the works in [Buades, 2006, Cheung et al., 2008], we
firstly present a direct extension of PPB for multi-temporal SAR images. An interesting
comparison experiment is then introduced to propose our motivation, which is followed by
the details of the proposed 2S-PPB filter. At the end of this chapter, we will present an
extension of the proposed filter to miss-registered multi-temporal SAR images.

4.1 Direct Extension of PPB

As introduced in chapter 3, the key idea of the PPB denoising in [Deledalle et al., 2009]
(and also the NLM) is to estimate actual pixel intensity with image redundancy. The
way to exploit image redundancy is the search of similar pixels in a search window and
averaging those similar pixels with different weights. For multi-temporal data, a direct
extension of PPB can be the definition of a cube search window, by aggregating all the
search windows of the different dates, like the extension of NLM to video denoising in
[Buades, 2006, Cheung et al., 2008]. Considering a SAR time series {yt1 , yt2 , . . . , ytN }, the
temporal PPB filter can be defined on a cube C(i) = Ω(i) × {t1, t2, . . . , tN} of all pixel
indexes i. Meanwhile, the direct temporal extension of PPB (we will name it T-PPB) to
estimate the true value ut(i) is:

ût(i) =
1

Z

∑

jt′∈C(i)

w(it, jt′) · yt′(j) (4.1)

where w(it, jt′) is given by Eq.(3.45).

4.1.1 Comparison of PPB method

To analyze the interest of this direct extension for the temporal case, we have tested it
on a synthetic set of multi-temporal images {yt1 , yt2 , yt3}. These images are synthesized
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(a) T-PPB denoising (b) M-PPB denoising

Figure 4.1: The sketch map of temporal PPB (T-PPB) and mean PPB (M-PPB). (a)
Denoise yt1 using the set of temporal images {yt1 , yt2 , yt3} by temporal PPB approach
(Eq.(4.1)). (b) Firstly get the mean values ȳ of the set of multi-temporal images
{yt1 , yt2 , yt3}. Then denoise this average image ȳ using PPB approach.

supposing no change in time (stable case) and temporally , therefore giving 3 realizations
of the same scene. They have been denoised using three methods:

• Method i (PPB): Denoise the single image yt1 without using images yt2 and yt3 by
PPB approach.

• Method ii (T-PPB): Denoise yt1 using the set of temporal images {yt1 , yt2 , yt3} by
temporal PPB approach (Eq.(4.1)).

• Method iii (M-PPB): Firstly get the mean values ȳ of the set of multi-temporal
images {yt1 , yt2 , yt3}. Then denoise this average image ȳ using PPB approach.

Note that method i uses only one image, while method ii uses the whole image set (3
images). Although methods ii and iii share the same input noisy images, method iii firstly
temporally averages the 3 temporal images. Because the denoising approach of the three
methods is PPB and the main difference among them is the input, one can easily predict
that method i has the poorest results and Methods ii and iii should have comparable
performances.

Fig.4.2 shows the three results. As expected, by using three 1-look noisy images, the
denoising performance of T-PPB in Fig.4.2.d has been improved compared with the result
of PPB in Fig.4.2.b (in terms of the SNR values). However, it is not sufficient, because
M-PPB Fig.4.2.f has significantly outperformed T-PPB, in spite of the same input noisy
images.

4.1.2 Analysis and motivation

In order to analyze the results, we present the map of weights w (it, jt′). Fig.4.3 shows the
weight maps of several interesting pixels for the three methods. In the noise-free image, we
can easily find the similar pixels. However, in method ii more dissimilar pixels have been
assigned large weights (bright points in the weight map) than those in method iii. More
weights are computed but they are less accurate. Thanks to the temporal average before
denoising, method iii reduces the risk when searching similar pixels.
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(a) 1-look noisy image (b) Three 1-look noisy decorre-
lated multi-temporal images

(c) Temporal mean of (b) (a 3-
look noisy image)

(d) Method i PPB result of (a),
SNR: 10.79

(e) Method ii T-PPB result of (c),
SNR: 11.62

(f) Method iii M-PPB result of
(e), SNR: 13.81

Figure 4.2: Denoising results of synthetic images with multiplicative speckle noise (top:
input noisy images; bottom: denoising results).

A first solution could be the modification of the kernel that transforms similarity in
weights. Indeed, it is shown in [Duval et al., 2011] that truncated weights for NLM (in-
stead of exponential function) could improve the selection. However for 1-look image, the
improvement is not sufficient.

Averaging in temporal domain (multi-looking) is considered as the efficient and best
unbiased estimator for the hypotheses of independent and identical distribution. Thus,
method iii naturally performs better than method i and ii in the situation of no-change
and decorrelated images. The purpose of this experiment was to illustrate the improvement
of the introduction of multi-looking into PPB. In this chapter we combine the advantages
of both approaches (multi-looking and PPB) to define a multi-temporal denoising method.

4.2 Two-steps non-local means (2S-PPB)

Let us go back to the simple comparison experiment in Section 4.1.1. Method iii (in
Fig.4.2.c and f) firstly temporally averages noisy images, which reduces the noise level and
improves the weights, as shown in Fig.4.3. Although the real SAR images or video data
may encounter changes due to miss-registration (or motion) and temporal changes, there
are still lots of cases that can be temporally combined. Taking inspire from the Method
iii, we propose to divide the denoising process into two steps, which deal with temporal
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(a) 3 1-look noisy images

(b) Temporal mean of (a)
(3-look noisy image)

Figure 4.3: Weight maps. (a) three 1-look noisy images; (b) temporal mean of (a). Right:
the corresponding weight maps. 1-look noisy images have more similar pixels found by
similarity measurement, but they are not accurately selected.
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and spatial information respectively. The main purpose of multi-temporal denoising is
exploiting all the available information for temporally stable pixels while keeping the new
information as much as possible. Note that in this part all the multi-images are considered
as well registered, and only the change detection problem is considered in this section.

In case of stable pixels (no change over time and well registered), the method iii illus-
trates the usefulness of temporal averaging. The proposed denoising framework namely
two-step (2S-PPB) approach based on NLM and PPB is to exploit similar pixels in the
temporally average image ȳ rather than in the stack {yt1 , . . . , ytN } (the premise is that
there is no change taking place among multi-images). If pixels located at the same posi-
tion but at different times (like yt(i) and yt′(i)) have not changed (in other words, they
share a same true value ut(i) = ut′(i)), they can be averaged together to estimate ut(i).
From a probability point of view, this equally weighted average can be considered as an
estimation using prior information (relative to the estimate using likelihood information in
[Deledalle et al., 2009]). This temporal average can be seen as a preliminary multi-looking
operation. However, the main problem lying in this temporal denoising is the use of only
stable pixels. We thus have to use efficient change detection, which will be detailed in the
following.

4.2.1 Criteria of change

Usually, most change detection methods are concerned about the changes between differ-
ent terrestrial objects, like rivers, buildings and other artificial objects. However in image
denoising, we theoretically combine the observed pixels from the same true value or reflec-
tivity (coming from the same distribution). Hence here the changes are defined as samples
coming from different distributions.

As mentioned in section 3.3.1, several similarity criteria for noisy patches are compared
in [Deledalle et al., 2012a]. They can also be used to detect changes. For instance, the GLR
proposed for non-Gaussian noise can be used to detect changes in times. Another criterion,
the KL divergence criterion in denoised images [Deledalle et al., 2009] can also be used to
improve the performance of the GLR criterion computed in noisy images. As shown in
the previous chapter these criteria are very efficient. Therefore, we have decided to study
both criteria, GLR on noisy images and KL divergence on denoised data for similar pixel
selection.

Fig.4.4 illustrates the performance of the GLR criterion in the noisy image and the KL
criterion in the denoised image (using PPB on each image) to find the similar pixels. The
results show that the KL criterion in denoised images is more efficient to select similar
pixels than the GLR criterion in noisy image. However, this comparison experiment is not
fair, because of the different noise level in Fig.4.4.a and c. What is more, the KL criterion
in denoised images has an inevitable drawback that the used denoising approaches have
great influence on the quality of the selections.

To balance the advantages against the disadvantages of both the GLR in noisy images
and the KL criterion in denoised images, we propose to employ both of them to detect
the changes between temporal images. This suggestion has similar consideration as in
[Deledalle et al., 2009], which proposed that the denoising weights are coming from both
the noisy images (by GLR criterion) and the previous denoised images (by KL divergence).

For the sake of simplicity, we use Eq.(4.2) as a binary criterion to define the temporal
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(a) Noisy house with a center pixel
(3-look)

(b) The 100 most similar pixels se-
lected by GLR similarity in (a)

(c) Denoised house with the same
center pixel

(d) The 100 most similar pixels se-
lected by KL divergence similarity
in (c)

Figure 4.4: Selected similar pixels by the GLR criterion and the KL divergence criterion.
(a) the 3-look noisy house image and the pixel that will be used to illustrate the distri-
butions, the red rectangle is the search window; (b) selections by GLR criterion; (c) PPB
denoising result of (a); (d) selections by KL criterion. The KL criterion in denoised images
is more efficient to select similar pixels than the GLR criterion in noisy image.

relation between the pixel values at it and the pixel value at jt′ as

fb
(

S
(

yt(i), yt′(j)
))

=

{

1, if S
(

yt(i), yt′(j)
)

> −2
0, otherwise

(4.2)

S
(

yt(i), yt′(j)
)

=
SGLR

(

yt(i),yt′ (j)
)

hb
+
SKL

(

ûPPB
t (i), ûPPB

t′ (j)
)

h′b
(4.3)

where, S
(

yt(i), yt′(j)
)

∈] − ∞, 0], ûPPB
t (i) and ûPPB

t′ (i) are patches extracted in the
denoised result respectively in yt and yt′ using PPB filter. In order to ensure that
both GLR and KL criterion have same contribution on the change detection, we nor-
malize the GLR and KL terms in Eq.(4.2) by parameters hb = |quantile(SGLR, α)| and
h′b = |quantile(SKL, α)| respectively, where for any similarity measure S, quantile(S, α)
denotes the α-quantile of the pure distribution of S (i.e., the distribution when patches
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(a) Noisy house with 1-look
speckle noise

(b) Noisy house with 1-look
speckle noise

(c) Change detection by Eq.(4.2)

(d) Noisy SAR image (e) Noisy SAR image (f) Change detection by Eq.(4.2)

Figure 4.5: Change detection by the KL divergence and the GLR criterion. (a, b) the
noisy house images with 1-look speckle noise; (c) change detection results between (a) and
(b); (d, e) the noisy SAR images, the red rectangles denote the changes between (d) and
(e); (f) change detection results between (d) and (e). Changes in red rectangles have been
found out in detection results.

have the same underlying reflectivity). More discussion about the α-quantile based thresh-
old can be found in section 5.4. In practice, here we have chosen α = 0.99, such that
a binary weight fb

(

S
(

yt(i), yt′(j)
))

= 1 means that pixel yt(i) and yt′(j) have a high
probability to be realizations coming from the same underlying reflectivity. If α is kept
constant, thresholds lower than ’-2’ will add more changed pixels in the temporal step.
On the contrary, the smaller threshold may neglect some similar (unchanged) pixels in the
temporal step.

We compare this change detection criterion with the log-ratio, a criterion widely used
in SAR images. Synthetic images and real SAR images are used in this comparison ex-
periment, 1) synthetic SAR images corrupted by a multiplicative 1-look speckle noise in
Fig.4.6.a, 2) two real SAR images (TerraSAR images of Saint-Gervais-les-Bains, France)
sensed in 2009 and 2011 respectively in Fig.4.6.b. The reference maps of changes are shown
in the middle of Fig.4.6.a and b (for the real SAR images, we manually label the changes
taking place between date 1 and date 2). The right of Fig.4.6.a and b shows log-ratio
criterion and our similarity-based change detection criterion. The similarity criterion has
higher ROC curves in the False-positive and True-positive curves in Fig.4.6.c and d.
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(a) Synthetic images. From left to right: image at date t, image at date t′, reference map of changes, log-ratio
criterion map and the proposed similarity criterion map.

(b) Saint-Gervais-les-Bains images. From left to right: image at date t, image at date t′, reference map of
changes, log-ratio criterion map and the proposed similarity criterion map.
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(c) Change detection results (True positive and
false positive curves) of synthetic images
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(d) Change detection results (True positive and
false positive curves) of Saint-Gervais-les-Bains

images

Figure 4.6: Change detection criterion comparison. a) synthetic SAR images, b) real SAR
images (TerraSAR images of Saint-Gervais-les-Bains, France). From left to right, noisy
image yt , noisy image yt′ , the reference maps of changes, the log-ratio criterion map and
our similarity-based change detection criterion map. c) and d) Change detection results
(True positive and false positive curves).
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4.2.2 Two Steps Denoising

Based on this change criterion we propose the following framework for temporal denoising
named 2S-PPB.

Temporal step. The following formula shows the temporal averaging process with the
change criterion (binary weights):

ỹt(i) =
1

Z

∑

t′∈[t1,tN ]

fb
(

S
(

yt(i), yt′(j)
))

· yt′(i) (4.4)

where Z =
∑

t′∈[t1,tN ] f
b
(

S
(

yt(i), yt′(j)
))

.
Denoising on the temporal estimate ỹt(i) is comparable to Eq.(4.1). However, different

pixels ỹt(i) may have different (equivalent) number of looks depending on the number of
averaged data. The resulting number of looks is temporally and spatially varying and is
given by:

L̃t(i) =
∑

t′∈[t1,tN ]

fb
(

S
(

yt(i), yt′(j)
))

· Lt′ (4.5)

in which Lt′ is the original spatially-invariant (equivalent) number of looks of the image
yt′ .

Discussion on the equivalent number of looks and pixel correlation. In the temporal
step, the number of looks L̃t(i) associated to the averaged pixel ỹt(i) only depends on
the number of candidate pixels in Eq.(4.4). However for interferometric images, the real
number of looks is also linked to the coherence between the concerned pixel yt(i) and
the candidate pixel yt′(i). In the ideal case, the coherence between yt(i) and yt′(i) is 0
(they are thus decorrelated), then the number of looks L̃t(i) can be given by Eq.(4.5).
However, when the coherence is non-zero, the real L̃t(i) will be lower than the value given
by Eq.(4.5), due to the coherence of noise. This case mainly takes place in the building
areas and other artifact objects, as shown in Fig.3.7.c.

Spatial step. Now working on the image ỹt, the similarity between patches ỹt(i) and
ỹt(j) has to be modified to take into account the spatially varying number of looks. For
any pair of patches in the temporal mean image ỹt, the GLR similarity is given by:

SGLR(ỹt(i), ỹt(j)) =−
∑

k∈K

[(

L̃t(i, k) + L̃t(j, k)
)

log
[

L̃t(i, k)ỹt(i, k) + L̃t(j, k)ỹt(j, k)
]

−
(

L̃t(i, k) + L̃t(j, k)
)

log
(

L̃t(i, k) + L̃t(j, k)
)

− L̃t(i, k)log [ỹt(i, k)] − L̃t(j, k)log [ỹt(j, k)]
(4.6)

which is deduced from Eq.(3.26). KL divergence similarity can also be computed by
Eq.(3.37). Then, the estimate ût(i) using ỹt will be:

ût(i) =
1

Z

∑

j∈Ω(i)

w(it, jt′)ỹt(j) . (4.7)

It is similar to NLM filtering given by Eq.(3.9), but applies on the temporally improved
image ỹt instead of original noisy image yt . The weights are also iteratively defined based
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Algorithm 1 The proposed 2S-PPB algorithm.
Input:

Well registered temporal SAR images {yt1 , yt2 , . . . , ytN }.
A date t1 of interest.

Output:
ût1 : the denoising result of image yt1 .
————Step 1 (Temporal step):———-

1: for each yt in {yt1 , yt2 , . . . , ytN } do
2: denoise yt using PPB approach; (Section 3.3)
3: obtain pre-denoised results ûPPB

t ;
4: for each pixel index i do
5: compute change criterion fb

(

S
(

yt(i), yt′(j)
))

; (Eq. 4.2)
6: end for
7: end for
8: for each pixel index i do
9: initialize ỹt1(i) = 0, L̃t1(i) = 0;

10: for each yt in {yt1 , yt2 , . . . , ytN } do
11: ỹt1(i) = ỹt1(i) + fb

(

S
(

yt(i), yt′(j)
))

yt(i); (Eq. 4.4)
12: L̃t1(i) = L̃t1(i) + fb

(

S
(

yt(i), yt′(j)
))

Lt

13: end for
14: ỹt1(i) = ỹt1(i)/L̃t1(i); (Eq. 4.4)
15: end for

——————————————————
————Step 2 (Spatial step):————–

16: denoise ỹt1(i) using Eq. (4.7) and (4.8) in Section 4.2.2. This denoising step is similar
to the PPB approach.
——————————————————

17: return Denoised result ût1 ;

on the combination of GLR similarity from ỹt and KL similarity from previous denoised
image, as given by:

w(it, jt′) = exp

(

SGLR (ỹt(i), ỹt(j))

h
+
SKL (ût(i), ût(j))

h′

)

. (4.8)

The parameters h and h′ are also selected by the α-quantile of the pure distribution of
SGLR and SKL in image ỹt. Algorithm 1 summarizes the steps to denoise temporal SAR
images by the proposed 2S-PPB method.

4.3 Experiments of denoising

For all the following experiments, we use the parameters as suggested by Deledalle et al. in
Deledalle et al. [2009]. The search window Ω and patch size K enlarge with the increase of
the number of iterations, Ω ∈ {3×3, 7×7, 11×11, 21×21} and K ∈ {1×1, 3×3, 5×5, 7×7}
for all experiments.

The experiments are taken under the MATLAB environment on an Intel(R) Core(TM)2
Quad CPU Q9550@2.83GHz 64bit computer. The consuming time of the proposed method
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is about 400s1 for a 3-date 256×256 temporal image set (PPB needs about 15s for a
256×256 image).

4.3.1 Synthetic Images

We present visual and numerical results obtained on synthetic images corrupted by mul-
tiplicative Goodman’s speckle noise. Classical noise-free images are used: house, lena,
barbara, boat and peppers. We use the same noise-free image to synthesize a temporal
image set, which means there is no temporal changes and that the pixels are fully decor-
related (no interferometric correlation). Besides the proposed 2S-PPB filter, the compar-
isons that have been tested here are PPB only on single image yt1 (Method i: PPB), 3D
adaptive neighborhood filter (3D-ANF, it is self-implemented) Ciuc et al. [2001] on the
multi-temporal image set {yt1 , ..., ytN } and Temporal PPB on the multi-temporal image
set {yt1 , ..., ytN } (Method ii: T-PPB). For the 3D-ANF filter, we use 3×3 median filter in
the first step of 3D-ANF and 50×50 as the maximum size of adaptive neighborhood in the
last step of 3D-ANF.

Fig.4.7 only shows the denoising results of the house images corrupted by L = 1
multiplicative speckle noise. There are 3 noisy images in the temporal data set. The image
obtained by the T-PPB filter are well smoothed compared with the PPB filter. However,
the edge and shape preservation has limited improvement. The proposed 2S-PPB filter
provides more details of edges as the eaves and windows of house, while smooth regions
are comparable. 3D-ANF has less loss of structural information in stable cases (shown in
the ratio map in Fig.4.7.b), while it has poor noise reduction in homogeneous regions.

To quantify the denoising qualities, Tab. 4.1 presents numerical results for images
corrupted by multiplicative speckle noise with different number of looks L = 1, 3, 5 and 10
and different number of dates (different number of images in temporal data set) N = 1, 2, 3
and 5. Note that when N = 1, there are no T-PPB and 2S-PPB denoising results. The
used performance criterion is the signal to noise ratio (SNR) given by Eq.(3.51). We
observe that the 2S-PPB filter improves on the T-PPB filter for high noise level images
(i.e. L = 1), particularly when N is large. However, for low noise level images (i.e. L > 5),
2S-PPB has only limited improvement. This is because the similarity of noisy patches in
low noise level images is efficient enough, and the improvement of patch similarity using
temporal average is relatively less important.

4.3.2 Realistic SAR Synthetic Images

This part presents denoising results of realistic SAR synthetic images. It is a 100-look SAR
acquisition identified as Toulouse of the CNES in Toulouse (France) sensed by RAMSES
and provided by the CNES. We corrupt this 100-look Toulouse image by 1-look multi-
plicative speckle noise to form 3 temporal images {yt1 , yt2 , yt3}. In order to simulate the
changes in the multi-temporal images, a dark line and a bright target are added to yt1 ,
labeled by red rectangles (Region #1 and #2) in Fig.4.9.a. yt2 and yt3 are corrupted by
different multiplicative speckle noise without the dark line and the bright target (Fig.4.9.e
and i). Note again that in this case the temporal pixels are decorrelated.

Fig.4.9 presents the obtained denoising results for the Toulouse images. The results
of the proposed 2S-PPB filter have better edge and shape preservation with comparable

1This time consumption contains the computation of parameters, such as hb, h′b, h and h′. If these
parameters have been obtained, the time consumption is about 50s.
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(a) PPB on single image (b) 3D-ANF on 3 images

(c) Temporal PPB (T-PPB) on 3 images (d) The proposed 2S-PPB on 3 images

Figure 4.7: Denoising results for the house images corrupted by multiplicative speckle noise
with L = 1. From left to right: the denoising results and the ratio of noisy image to the
denoised image. (a) PPB filter; (b) 3D-ANF, (c) T-PPB filter; (d) the proposed 2S-PPB
filter.

smoothed regions than PPB and T-PPB filters (ENL in Tab.4.2). Structural information
of new objects (changes) is also better preserved as shown in Fig.4.9.a (Region #1 and
#2). Stable objects, as the dark lines in Region #3 and #4, have been better restored in
the results of 2S-PPB than PPB and T-PPB filters.

4.3.3 Real Multi-Temporal SAR Images

(a) Toulouse (b) San Francisco (c) Saint-Gervais-les-Bains

Figure 4.8: Toulouse, San Francisco and Saint-Gervais-les-Bains noisy images (regions in
green rectangles are used to calculated the ENL values).

We also tested 2S-PPB on real multi-temporal SAR data:

• San-Francisco (well-registered) c©IGARSS: 6 single-look TerraSAR images of San
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peppers
L = 1 L = 3 L = 5 L = 10

N = 1
10.39 13.21 14.29 15.81
6.58 9.08 10.07 10.97

N = 2
8.16 10.35 10.97 11.52
10.43 13.68 14.99 16.80
11.51 13.73 14.69 16.20

N = 3
9.09 10.86 11.32 11.73
11.33 13.99 15.37 17.19
12.15 14.48 15.52 16.84

N = 5
10.03 11.32 11.62 11.90
11.87 14.45 15.74 17.73
12.99 15.20 16.25 17.62

lena
L = 1 L = 3 L = 5 L = 10

N = 1
12.37 14.83 16.05 17.60
6.89 10.64 12.32 14.18

N = 2
9.29 12.81 14.23 15.66
12.90 15.21 16.60 17.81
13.31 15.63 16.70 18.07

N = 3
10.62 13.93 15.11 16.32
13.28 15.59 16.77 18.07
14.14 16.13 17.18 18.63

N = 5
12.26 15.11 16.07 16.86
13.37 15.82 16.80 18.91
14.80 16.89 17.94 19.18

barbara
L = 1 L = 3 L = 5 L = 10

N = 1
10.71 13.47 14.89 16.69
6.58 8.88 9.68 10.39

N = 2
8.15 9.91 10.38 10.79
11.00 13.91 15.02 16.62
12.15 14.53 15.53 16.79

N = 3
8.91 10.29 10.68 10.95
11.77 14.41 15.60 17.29
13.10 15.06 15.99 17.40

N = 5
9.68 10.65 1089 11.06
12.29 14.77 15.89 18.28
13.97 15.83 16.78 18.16

boat
L = 1 L = 3 L = 5 L = 10

N = 1
9.50 11.61 12.62 14.14
6.01 9.15 10.39 11.77

N = 2
8.01 10.78 11.77 12.66
9.75 11.87 13.29 15.25

10.75 12.75 13.76 15.22

N = 3
9.12 11.59 12.32 13.00
9.99 12.62 13.89 15.67

11.05 13.39 14.34 15.78

N = 5
10.41 12.34 12.86 13.35
10.97 12.78 14.27 16.41
12.37 14.21 15.24 16.50

Table 4.1: SNR value of estimated images using PPB, 3D-ANF, T-PPB and 2S-PPB filter
for images corrupted by multiplicative speckle noise with different equivalent numbers of
looks L = 1, 3, 5, 10 and different numbers of images N = 1, 2, 3, 5 in temporal data set.

Francisco (USA) provided by IGARSS Fusion Contest 2012 (three images are sensed
in 2007 and the other three in 2011).

• Saint-Gervais-les-Bains (well-registered): 26 single-look TerraSAR images in Saint-
Gervais-les-Bains (France) Terra-SAR-X images (project MTH0232) (13 images are
sensed in 2009 and the other 13 images in 2011).

Both of them have been finely registered using the sensor parameters.
We assessed the performance of noise reduction in real SAR images by measuring the

equivalent number of looks (ENL) given by Eq.(3.53). The denoising results are shown in
Fig.4.10. Compared with PPB and T-PPB filters, 2S-PPB filter reduces the speckle effect
comparably in San-Francisco (well-registered). Moreover, dark and thin streets have been
better preserved.. We also compare the 2S-PPB filter with the classical temporal filtering
method, multi-looking approach in Saint-Gervais-les-Bains. Generally, 2S-PPB filter gets
smoother results than multi-looking„ as the Region #1 in Fig.4.10.c and d. More than
that, the changes over time can be restored by 2S-PPB, as the changes in the Region
#2 in Fig.4.10.c and d. Multi-looking ignores the temporal changes (loss of temporal
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resolution), while 2S-PPB filter can well preserve both the spatial and temporal resolution
and reduce the speckle effect. Tab.4.2 shows the ENL calculated in homogeneous regions
(green rectangles in Fig.4.8). In general, the proposed filter has higher ENL than other
filters.

4.4 Extension of 2S-PPB for miss-registered images

The two-step multi-temporal NLM proposed in previous section deals with multi-temporal
SAR images which have been finely registered. However in practice, it is not always easy to
get accurately registered images, because of the lack of accuracy of sensor parameters or of
terrain deviation. In this section, we propose an adaptation of the two-step multi-temporal
NLM to deal with miss-registered temporal SAR images. We assume that there is a coarse
registration between images, but that a residual offset for each pixel may exist 2.

4.4.1 Estimation of miss-registration

From the simple comparison experiment in section 4.1.1, we have seen that the direct
extension of 2-D denoising approaches to well-registered temporal SAR images is not op-
timal. Hence, unlike in Buades et al. [2008], we try to consider the offset caused by
miss-registration between temporal SAR images using patch similarity. This offset be-
tween remote sensing SAR images caused by miss-registration is much simpler than the
complex scenes changes in video. Besides, our aim is not accurate registration, but only
accurate detection of similar pixels to perform temporal averaging.

Let yt and yt′ denote two temporal images without registration, and yt(i) and yt′(i)
are the i-th pixel in yt and yt′ respectively. Note that yt(i) and yt′(i) are both located
at i in images, but they do not denote the same position in the geographic coordinate
system before image registration. Suppose that yt′(i + ~vtt′(i)) is the [i+ ~vtt′(i)]-th pixel
in yt′ which shares the same geographic location with yt(i) in yt, and ~vtt′(i) denotes the
offset between yt(i) and yt′(i + ~vtt′(i)). If no change takes place, yt′(i + ~vtt′(i)) should be
the most similar pixel of yt(i) in image yt′ . Consequently, the idea to estimate this offset

2As it was the case for the San Francisco data set of the data fusion contest IGARSS 2012, in section
4.3.3

Table 4.2: ENL of noisy images and estimated images using PPB, 3D-ANF, T-PPB
and 2S-PPB filters for real SAR images.

ENL Toulouse San Francisco Saint-Gervais-les-Bains

0.83 0.94 0.93
Left green Region 56.97 41.87 41.48

in Fig.4.8 13.37 10.70 10.79
89.81 52.31 54.99
66.78 65.15 497.25

0.85 0.97 0.92
Right green Region 169.90 16.44 8.79

in Fig.4.8 21.73 11.78 5.83
252.33 38.31 13.58
328.61 69.38 190.08
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(a) Image yt1 (1-look). From left to right: noisy image, PPB result, 3D-ANF result, T-PPB result and 2S-PPB
result.

(b) Ratio map of noisy images to denoised images in a. From left to right: PPB, 3D-ANF, T-PPB and
2S-PPB.

(c) Noisy image yt2 (1-look). From left to right: noisy image, PPB result, 3D-ANF result, T-PPB result and
2S-PPB result.

(d) Noisy image yt3 (1-look). From left to right: noisy image, PPB result, 3D-ANF result, T-PPB result and
2S-PPB result.

Figure 4.9: Denoising results on a zoom of Toulouse c©DGA c©ONERA. From left to
right, noisy image with 1-look multiplicative speckle noise, results by PPB on single image,
results by 3D-ANF on temporal images, results by T-PPB on temporal images, results by
2S-PPB on temporal images. From top to bottom, image yt1 with new objects (a dark line
in Region #1 and a bright target in Region #2), ratio maps of noisy images to denoised
images, image yt2 without new objects, image yt3 without new objects.
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(a) San Francisco denoising results. From left to right: PPB on single image, 3D-ANF, T-PPB and
2S-PPB

(b) Ratio map of San Francisco images. From left to right: PPB on single image, 3D-ANF, T-PPB and
2S-PPB

(c) Saint-Gervais-les-Bains images. From left to right: noisy image, denoising result by multi-looking,
denoising results by PPB on single image.

(d) Saint-Gervais-les-Bains images. From left to right: 3D-ANF, denoising result by T-PPB on temporal
images, denoising results by 2S-PPB on temporal images.

Figure 4.10: Denoising results of well-registered San Francisco c©IGARSS and Saint-
Gervais-les-Bains. (a) San Francisco denoising results. From left to right: PPB on single
image, 3D-ANF, T-PPB and 2S-PPB, (b) Ratio map of San Francisco images. From left
to right: PPB on single image, 3D-ANF, T-PPB and 2S-PPB, (c) Saint-Gervais-les-Bains
images. From left to right: noisy image, denoising result by multi-looking, denoising re-
sults by PPB on single image, (d) Saint-Gervais-les-Bains images. From left to right:
3D-ANF, denoising result by T-PPB on temporal images, denoising results by 2S-PPB on
temporal images. Stable region #1 in Saint-Gervais-les-Bains and changed region #2 in
Saint-Gervais-les-Bains.
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Figure 4.11: Assumption of image registration. In the intensity images registration, all
pixels in a small patch share a same offset to their real position.

~vtt′(i) caused by miss-registration is to use the pixel similarity, supposing that changes are
quite ’rare’ on the image.

Using the conclusion of Section 4.2.1, we combine the KL divergence and the GLR
criterion as the similarity between patches, as given by Eq. (4.3). Note that this KL
divergence criterion is computed from the PPB denoising results on each image. For each
pixel yt(i) in yt, we measure the similarity between yt(i) and pixels in region At′(i) (an
image patch with yt′(i) as center in yt′ , shown in Fig.4.12). The similarity between yt(i)
and yt′(j) is d1st (it, jt′). Each pair of pixel yt(i+ n) in yt and region At′(i+ n) in yt′ has
a similarity map Mtt′(i + n) (0 6 n 6 NA − 1, NA is the size of the region A), as shown
in the top right of Fig.4.12.

Mtt′(i) = {S(yt(i), yt′(j))}jt′∈At′(i)
, (4.9)

where S(yt(i), yt′(j)) is given by Eq.(4.3).
The offset ~vtt′(i) should be the offset between the center of map Mtt′(i) and the position

of maximum value in Mtt′(i). However, it leads to a poor performance because of noise.
Based on the assumption in Fig.4.11, we suggest that the offset ~vtt′(i) caused by miss-
registration can be estimated from an average similarity map M̄tt′(i), which is the mean
of similarity maps Mtt′(i + n) (1 6 n 6 NA). The estimation of offset ~vtt′(i) is from the
center of map M̄tt′(i) to the position of maximum value in M̄tt′(i).

M̄tt′(i) =
{

S̄(yt(i), yt′(j))
}

jt′∈At′(i)

S̄(yt(i), yt′(j)) =
∑

it∈At(i)

S(yt(i), yt′(j))
(4.10)

We test the miss-registration estimation on real SAR images. Fig.4.14.(b) is the temporal
average without fine image registration or miss-registration estimation, which is blurred.
After miss-registration estimation, the temporal average is illustrated in Fig.4.14.(c).

4.4.2 Two-steps non-local means on miss-registered images

The miss-registration estimation entitles the proposed 2S-PPB denoising approach to deal
with miss-registered multi-temporal images. The denoising process is exactly the same as
detailed in Section 4.2, except that the candidate pixels yt′(i) are replaced by yt′(i+~vtt′(i))
found out by the miss-registration estimation. Algorithm 2 summarizes the steps to denoise
miss-registered temporal SAR images by the proposed 2S-PPB method.
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Figure 4.12: The sketch map of the miss-registration estimation for miss-registered images.

4.4.3 Experiments of denoising on miss-registered images

We compare our offset estimation with the offset estimation using the intensity tracking
method. Intensity tracking with correlation has been widely used in glacier motion estima-
tion tasks on multi- temporal SAR images Gray et al. [2001], Strozzi et al. [2002]. In this
comparison experiment, we simulate a multi-temporal image set with an offset ~vtt′ = (3, 3)
pixels between them, as shown in Fig.4.13.a and b.

For the offset estimation using the intensity tracking, it is self-implemented in our com-
parison experiments and it also has a local averaging process like the one in the proposed
method to reduce the effect of speckle noise. The patch size is 7×7 pixels and the test area
is 21×21 pixels. To illustrate the performances, the estimation error is calculated using the
Euclidean distance between the true offset ~vtt′ = (3, 3) and the estimated offset. Fig.4.13.c
and d show that the proposed offset estimation has less estimation error than the log-ratio
similarity.

The real temporal SAR images provided by IGARSS (data information in section 4.3)
are tested here. The difference is that we manually coarsely register those temporal images
without using the accurate sensor parameters. The miss-registration between two images is
about 4∼7 pixels (shown in Fig4.14.b, the temporal mean of the temporal images illustrates
the un-registration). These miss-registered temporal images are identified as San-Francisco
(miss-registered). In the miss-registration estimation, the search region At(i) is a 21×21
pixels window. Patch size is 7×7 pixels, h and h′ have been chosen identical to the filtering
step. After miss-registration estimation, the proposed 2S-PPB filter is applied with the
same parameters as those used in Section 4.3.

The temporal mean after miss-registration estimation in Fig.4.14.c shows the perfor-
mance of the miss-registration estimation. Similarly, for the thin and dark streets in
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Algorithm 2 The proposed 2S-PPB algorithm (Un-registered temporal images).
Input:

Un-registered temporal SAR images {yt1 , yt2 , . . . , ytN }.
A date t1 of interest.

Output:
ût1 : the denoising results of image yt1 .
————Miss-Registration estimation:———-

1: for each yt in {yt1 , yt2 , . . . , ytN } do
2: denoise yt using PPB approach; (Section 3.3)
3: obtain pre-denoised results û′t;
4: end for
5: for each pixel index i do
6: for each image yt in {yt1 , yt2 , . . . , ytN } do
7: M̄t1t(i) = 0;
8: for each pixel index i+ n in region At1(i) do
9: compute similarity map Mt1t(i+ n); (Eq. 4.10)

10: M̄t1t(i) = M̄t1t(i) +Mt1t(i+ n);
11: end for
12: find the offset vector ~vt1t(i) in similarity map M̄t1t(i);
13: end for
14: end for

——————————————————
————Step 1 (Temporal step):———–

15: compute ỹt1 using Eq. (4.2), (4.4) by taking into account the vector field ~vt1t. This
denoising step is similar to the one in Algorithm 1 where it is substituted to it+~vt1t(i).
——————————————————
————Step 2 (Spatial step):—————

16: denoise ỹt1(i) using Eq. (4.7) and (4.8) in Section 4.2.2. This denoising step is similar
to the PPB approach.
——————————————————

17: return Denoised result ût1 ;

San-Francisco (miss-registered), the proposed 2S-PPB preserves more details than PPB
and T-PPB. However, its performance is not as good as the one on well-registered San-
Francisco (in Fig.4.14.f), because of the insufficient estimation of miss-registration. In
addition, the miss-registration estimation will fail when the offset between temporal im-
ages is too large. Indeed larger offset estimation needs larger search region At(i), but this
increases the risk of finding wrong similar pixels.

4.5 Conclusion

A spatial-temporal filter was proposed for the estimation of same-sensor, same-incidence
and same-ascending/descending multi-temporal SAR images. It is an extension of the non
local means [Buades et al., 2005a] and patch-based weighted maximum likelihood estima-
tion (PPB) [Deledalle et al., 2009]. We proposed to deal with the spatial and temporal
information respectively: 1) the first step (the temporal step) averages the similar pixels
only in the temporal domain with binary weights; 2) the second step (the spatial step) ap-
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(a) Image at date t, (b) Image at date t′,

(c) Estimation error of intensity tracking (d) Estimation error of the proposed simi-
larity

Figure 4.13: Offset estimation. a) Noisy image 1, b) Noisy image 2 (with an offset ~vtt′ =
(3, 3) with image 1), c) Estimation error of intensity tracking [Gray et al., 2001, Strozzi
et al., 2002] (the distance between intensity tracking offset estimation results and the true
offset ~vtt′ = (3, 3)), d) Estimation error of the proposed similarity (the distance between
the proposed offset estimation results and the true offset ~vtt′ = (3, 3)).

plies the PPB filter with more general expression of similarity criteria (the GLR similarity
and KL divergence). The proposed filter out-performs the state-of-the-art spatial-temporal
SAR filters. This is the first contribution of this PhD and has been published in [Su et al.,
2012, 2014b]. We have also extended the proposed framework to the case of miss-registered
images by adding an offset estimation set. In the next part of this PhD, we will focus on the
change detection and classification of multi-temporal SAR images, in which the proposed
2S-PPB filter will be used.
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(a) yt1, One of the noisy images (1-look) (b) Temporal average without miss-
registration estimation

(c) Temporal average with miss-registration
estimation

(d) Temporal PPB (T-PPB) using 6 miss-
registered SAR images

(e) The proposed 2S-PPB (with miss-
registration estimation) using 6 miss-
registered SAR images

(f) The proposed 2S-PPB using 6 well-
registered SAR images

Figure 4.14: Denoising results of miss-registered San Francisco c©IGARSS. (a) yt1, one of
the noisy images (1-look); (b) the temporal average of the multi-temporal SAR images,
which shows that the temporal images are miss-registered; (c) the temporal average of
the multi-temporal SAR images after miss-registration estimation; (d) denoising results
by T-PPB on miss-registered temporal images; (e) denoising results by 2S-PPB on miss-
registered temporal images; (f) denoising results by 2S-PPB on well-registered temporal
images.
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Part II

Information Change Analysis:
Change Detection and Change
Classification (NORCAMA)
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Chapter 5

State of the Art of Change Analysis

The second issue concerned in this thesis is change analysis of multi-temporal SAR images.
It is a processing required by many applications using SAR images, such as rapid mapping
of disaster, land-use and land-cover monitoring and so on. One of the main topics of
change analysis is change detection, which is defined as ”a process of identifying differences
in the state of an object or phenomenon by observing it at different times” [Singh, 1989].
Given different modes of images (i.e. optical images, SAR images), different algorithms of
change detection have been defined. Beyond detecting changes, other interesting research
topics, e.g. change classification, long-term series change detection and analysis, are also
introduced in this chapter.

5.1 General methods of change detection

Change detection in remote sensing images is the process of identifying differences in re-
gions of interest by observing them at different dates [Singh, 1989]. In spite of different
types of images used for change detection, a general architecture of change detection can be
built as shown in Fig.5.1. Used input images are first pre-processed, e.g. radiometric cor-

Figure 5.1: The general architecture of change detection process.

rection, geometric correction, image registration, noise reduction etc. Then, the improved
images are compared using various criteria. To get the final change detection results, the
comparison criteria usually are binarized by a threshold or machine learning methods. The
image registration in pre-processing steps can be suppressed (or reduced) when using cri-
teria robust to registration errors.In this section, we just focus on the comparison and the
thresholding parts.

Due to the difference in statistics, we divided the following section for optical and SAR
data. We suppose that the data have been finely registered 1 and from the same sensor.

1Concerning the registration of data, significant progress have been done using the accuracy of sensor
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However, change analysis using multi-modality images (especially images from different
sensors) has also been studied in the domain of data fusion. Nevertheless, difficulties lie
in the geometric and radiometric differences (or distortions), image registration and so on.
In this PhD we just focus on the data from the same sensor.

5.1.1 Change criteria for optical images

Difference operator

1) Single channel case. The most widely used comparison between two images is
difference operator, which is close to the difference similarity presented in section 3.3.1.
Let us consider two candidate pixels y(1) and y(2), which could be any pair of pixels yt(i)
and yt′(i) in two co-registered images yt and yt′ . The difference between them can be
written as following:

Dd = y(1)− y(2) + C, (5.1)

where C is a constant to produce positive results of Dd (C = −min(y(1)− y(2))). Fig.5.2
gives an illustration of the difference operator using synthetic images with Gaussian noise
and Gamma noise. [Coppin and Bauer, 1994, Gianinetto and Villa, 2011] proposed to
normalize the difference Dd to [−1, 1]. They calculate the difference as following:

DNd =
y(1) − y(2)

y(1) + y(2)
, (5.2)

where value 0 denotes unchanged case, value -1 or 1 indicates the changed case (increase
and decrease of reflectivity respectively).

In the regression methods of change detection, value y(2) is assumed to be a linear
function of y(1). y(1) is also considered as reference pixel and y(2) is a subject pixel. The
least-squares regression, one of the popular regression methods, estimates y(2) by:

ŷ(2) = ay(1) + b , (5.3)

where a and b are estimation parameters, which can be learned from the un-changed areas
and constant in the whole image. Then, the change index DRd is calculated by subtracting
regressed pixel ŷ(2) from the observed pixel y(2) [Lunetta et al., 1999]:

DRd = y(2) − ŷ(2) . (5.4)

This criterion will be useful to reduce the impact of atmospheric, sensor and environmental
differences.

2) Multi-channel case. When dealing with multi-temporal or hyperspectral data, a
vector is available. A first category of approaches, especially dealing with vegetation, first
converts this vector in a useful scalar and then applies the previous one-channel criteria.
In particular, vegetation indices are designed to evaluate the impact of vegetation in multi-
spectral images {yb1

t , y
b2
t , . . .} at time t and {yb1

t′ , y
b2
t′ , . . .} at time t′ (b is the index of band).

Usually, only two bands in the multi-spectral images are used, which are the red band the

parameters. For the same sensor like TerraSAR-X, very accurate registrations can be obtained.
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(a) Gaussian noise examples (Noise level σ = 10)

(b) Speckle noise examples (Noise level L = 1)

Figure 5.2: The difference operator and the ratio operator. From left to right, the noisy
image yt and yt′ with σ = 10 Gaussian noise or L = 1 speckle noise, the difference map
using Eq.(5.1) between yt and yt′ , the ratio map using Eq.(5.8) between yt and yt′ . There
is no change between yt and yt′ , thus the change criteria map should reflect only the noise
contribution.

near-infrared band (denoted as yred
t and ynear

t ). Vegetation indices yVI
t are calculated from

yred
t and ynear

t given by (taking the images at time t as example):

yVI
t (i) =

ynear
t (i)

yred
t (i)

Ratio vegetation index,

yVI
t (i) =

ynear
t (i)− yred

t (i)

ynear
t (i) + yred

t (i)
Normalized vegetation index,

yVI
t (i) =

√

ynear
t (i)− yred

t (i)

ynear
t (i) + yred

t (i)
+ 0.5 Transformed vegetation index.

(5.5)

Then, the changes can be detected on the difference of vegetation indices yVI
t and yVI

t′ :

DVId = yVI
t (i)− yVI

t′ (i) , (5.6)

or other comparison methods such as Eq.(5.2) and Eq.(5.4). Based on the ratio vegetation
index and normalized vegetation index, Unsalan [2007] recently proposed a bi-temporal
time-dependent vegetation indices.

More generally, the second family of approaches exploits all the bands in the multi-
spectral images for change detection. For instance Malila [1980] proposed a change vector
criterion which calculates the magnitude and direction of changes. Bovolo and Bruzzone
[2007] improved this idea and introduced a more theoretical definition of changes in the
polar domain to describe the change information. Given two multi-spectral pixel stacks
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(a) (b)

Figure 5.3: Representation of change information in the polar domain. (a) y1 and y2 in
the rectangular coordinate system (K = 2); (b) the difference {ρ, θ} between y1 and y2 in
polar domain.

{yb1
t (i), yb2

t (i), . . .} and {yb1
t′ (i), y

b2
t′ (i), . . .} acquired at different time, the change vector

criterion can be calculated as:

ρ =

√

√

√

√

K
∑

k=1

(

ybk
t (i)− ybk

t′ (i)
)2

θ = arccos

∑K
k=1 y

bk
t (i)ybk

t′ (i)
√

∑K
k=1 y

bk
t (i)2

√

∑K
k=1 y

bk
t′ (i)

2

(5.7)

ρ is defined by the euclidean distance between both vectors. By analyzing the distribution
of changed and unchanged pixels in the polar domain, they propose the disk with {ρ, θ :
0 ≤ ρ < ρt and 0 ≤ θ < 2π} as unchanged pixels and the annulus with {ρ, θ : ρt ≤
ρ < ρmax and 0 ≤ θ < 2π} as changed pixels. The quantity of θ denotes the direction
information of changes which has been used to classify the changes. In other works, only
ρ is computed in some works e.g. [Xian et al., 2009, Xian and Homer, 2010, Demir et al.,
2013].

Instead of using accurate angle to present the direction of the changes, Michalek et al.
[1993] used a binary array {θb1, θb2, . . .} to denote direction (sector coding), where θbk =
−1 when ybk

t (i) < ybk
t′ (i) and θbk = 1 when ybk

t (i) > ybk
t′ (i). Thus {θb1, θb2, . . .} has 2K

possible types of directions. Chen et al. [2003] presented the direction of change vector in

the cosine space, given by {yb1
t −yb1

t′

ρ
,
yb2
t −yb2

t′

ρ
, . . .} (since

ybk
t −ybk

t′

ρ
is the cosine value of the

angle between the change vector and the k-th axis).

5.1.2 Change criteria for SAR images

Ratio and log-ratio operators

The difference operator has been proved effective in optical images, because of the
assumption of additive noise model. However due to the multiplicative noise in SAR
images, the ratio operator demonstrates to outperform the difference one in SAR images
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[Singh, 1989]:

RR =
y(1)

y(2)
,

RL-R = logRR = log y(1) − log y(2) .

(5.8)

Fig.5.2 gives an illustration of the ratio operator using synthetic noisy images with Gaus-
sian noise and Gamma noise. Transforming the ratio into a subtraction by the logarithmic
operation, the log-ratio comparison has also been widely used in SAR image change detec-
tion [Rignot and van Zyl, 1993, Bovolo and Bruzzone, 2005, Bazi et al., 2005]. In order to
reduce the effect of speckle noise, the ratio or log-ratio of local means in a patch is usually
performed instead of the ratio of single pixels. The ratio operator can be normalized by
RR = min

{

y(1)
y(2) ,

y(2)
y(1)

}

to gather increase and decrease of radiometric value.

Hypothesis tests
Hypothesis tests have been presented in section 3.3.1 to measure the similarity between

patches. However, they can also be used in the change detection task. Let us recall
the hypotheses to describe a change detection problem between two observed data Y(1)
and Y(2) (note that the observed data Y could just be the noisy pixel value y, or the
data set consisting of y and other observed data, i.e. denoised data û acquired by our
filter): 1) hypothesis of un-changed case, these observed pixels share the same reflectivity
u(1) = u(2) = u(12) (underlying noise-free value), 2) hypothesis of changed case, these
observed pixels have different underlying reflectivities. They can be given by:

H0 : u(1) = u(2) = u(12) Unchanged (null) hypothesis;

H1 : u(1) 6= u(2) Changed (alternative) hypothesis.
(5.9)

Eq.(5.9) has the same expression as the Eq.(3.20) but with different meanings. To decide
between the changed and unchanged hypotheses, the likelihood ratio test (LRT) can be
used, which is given by:

RLR =
p (Y(1),Y(2)|u(12),H0)

p (Y(1),Y(2)|u(1), u(2),H1)
. (5.10)

Compared with the expression given by Eq.(3.20) used for patch comparison in section
3.3.1, Eq.(5.10) is a more general form of likelihood ratio which considers the observed
data beyond noisy pixel values. However, when noisy pixel value is the only observed data,
the likelihood ratio given by Eq.(5.10) is the same as Eq.(3.20).

As explained in section 3.3.1, due to the lack of knowledge about the noise-free value
u, some estimations have to be used instead of the original likelihood ratio. For instance
the generalized likelihood ratio is used in [Lombardo and Oliver, 2001], the unknown u
being replaced by its maximum likelihood (ML) estimate. Taking a pair of pixels y(1)
and y(2) as example, the ML estimate of u(1) is computed in a patch y(1) (supposing
the homogeneity in the patch) and given by ûML(1) = 1

K

∑

k y(1, k), while under the
unchanged hypothesis, the noise-free value u(12) is estimated using both y(1) and y(2)
and given by ûML(12) = 1

2K

∑

k y(1, k) +
1
2K

∑

k y(2, k). In this work, it is supposed that
the used patches for ML estimation are homogeneous. Combined with the gamma noise
assumption in Eq.(2.12), the generalized likelihood ratio can be extended by:

RgLR =
p
(

Y(1),Y(2)|ûML(12),H0

)

p (Y(1),Y(2)|ûML(1), ûML(2),H1)
(5.11)
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Eq.(5.11) can be computed by Eq.(3.25), which is given by:

RgLR =

∑

k y(1, k) ·
∑

k y(2, k)

(
∑

k y(1, k) +
∑

k y(2, k))
2 , (5.12)

However, RgLR is usually computed by the ratio between the geometric and arithmetic
means [Lombardo and Oliver, 2001], which is given by:

RgLR =
2
√
∑

k y(1, k) ·
∑

k y(2, k)
∑

k y(1, k) +
∑

k y(2, k)
. (5.13)

Given multi-temporal SAR images, RgLR can be calculated by:

RgLR =
N N
√
∏

n (
∑

k ytn(i, k))
∑

n

∑

k ytn(i, k)
. (5.14)

When the patch y(1) is reduced to one pixel (patch size K = 1), RgLR|K=1 =
N N

√∏
n ytn(i)∑

n ytn(i)
.

RgLR ∈ [0, 1], value 1 denotes the unchanged case and value 0 is the changed case. The
logarithmic version of this generalized likelihood ratio is given by:

RL-gLR|K=1 = logRgLR|K=1 =
1

N

tN
∑

t=t1

ln yt(i)− ln

(

1

N

tN
∑

t=t1

yt(i)

)

, (5.15)

which has been used in [Bujor et al., 2004] to detect changes. Except using amplitude or
intensity values of SAR, PolSAR data also has been used to detect changes with hypothesis
test, e.g. Conradsen et al. [2003]. To reduce the speckle noise, Liu et al. [2014] applied a
NLM based filter in PolSAR change detection.

Instead of the ratio of the geometric and arithmetic means, Quin et al. [2013] proposed
to calculate the ratio of the geometric and quadratic means named MIMOSA, which can
be given by (for two pixels):

RMIMOSA =

√

y(1)y(2)
√

y(1)2+y(2)2

2

, (5.16)

This ratio has also been extended to multi-temporal SAR images (more than 2 images):

RMIMOSA =

N

√

∏tN
t=t1

yt(i)
√

1
N

∑tN
t=t1

yt(i)2
. (5.17)

if N = 2 (the bi-temporal images case), Eq.(5.17) boils down to Eq.(5.16).

Beyond the likelihood ratio test computed directly on the image pixels, Krylov et al.
[2012] proposed to construct a likelihood ratio test on a Wilcoxon statistic W of pixels
values, which is calculated from the Wilcoxon rank-sum test [Lehmann and Romano, 2006].
Given two independent pixel values y(1) and y(2), the Wilcoxon rank-sum test verifies two
hypotheses:

H0 : p(y(1) < y(2)) =
1

2
Unchanged (null) hypothesis

H1 : p(y(1) < y(2)) 6= 1

2
Changed (alternative) hypothesis .

(5.18)
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This test is applied in two patches y(1) and y(2). All the pixels in patches y(1) and y(2)
are sorted in ascending or descending order (according to their values). Each pixel y(1, k)
in patch y(1) has a rank number in this ascending order, for instance r(1, k) is the rank
number of pixel y(1, k) in patch y(1) with 1 6 r(1, k) 6 2K. The Wilcoxon statistic W is
given by:

W =

∑

k r(1, k) −
K(2K+1)

2
√

K2(2K+1)
12

. (5.19)

W converges to the standard normal distribution when the patch size K → ∞ [Lehmann
and Romano, 2006]. Thus W is called as the rank-sum (W can also be computed in
patch y(2)). To compare y(1) and y(2), a likelihood ratio test on W verifies the null
hypothesis (unchanged case) W ∼ N(µ0, σ

2
0) with an alternative hypothesis (changed

case) W ∼ N(µ1, σ
2
1), where µ0, σ20 are estimated using the whole images and µ1, σ

2
1 are

estimated using the local windows.

Kullback-Leibler divergence

As introduced in section 3.3.1, Kullback-Leibler (KL) divergence has been applied to
measure the similarity between two denoised patch in our multi-temporal filter. In proba-
bility theory and information theory, KL divergence however is a non-symmetric measure
of the difference between two probability distributions. Thus it can also be applied to de-
cide whether two noisy pixels y(1) and y(2) come from the same distribution, which can be
considered as a change detection problem. Given the pdfs p1(y) and p2(y) describing the
probabilities of y(1) and y(2) respectively, the Kullback-Leibler (KL) divergence between
pdfs p1(y) and p2(y) is given by:

DKL =

∫

log
p1(y)

p2(y)
p1(y)dy +

∫

log
p2(y)

p1(y)
p2(y)dy , (5.20)

which has the same expression as the (denoised) patch similarity given by Eq.(3.28) and
Eq.(3.35), but dealing with change detection problem. To calculate the divergence DKL,
the pdfs p1(y) or p2(y) must be known, while they are not in the real situation (because of
the unknown model and/or the unknown parameters). When the pdfs are known to belong
to a given parametric model, parameters are usually estimated using a moving window.
In [Inglada and Mercier, 2007], an analytical expression of the KL divergence is estimated
using a fourth-order Taylor-like series Gaussian models. KL divergence criterion has also
been applied to the optical images in [Tian et al., 2014]’s work, in which combined with
height difference measured by digital surface models, the KL divergence is used to detect
building changes in urban areas.

Coherence change detection

Most change detection algorithms with SAR images aims at identifying changes in the
mean backscatter power (intensity value of images). Since SAR is a coherent imaging
system as explained in chapter 2, the changes may take place not only in the intensity
values but also the phase values. Coherent changes are defined as the changes in both
intensity and phase of SAR images (incoherent changes are the changes only in intensity)
[Preiss and Stacy, 2006]. According to this definition, coherent change detection can detect
more subtle changes than incoherent change detection. These approaches can be used only
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when dealing with interferometric data where the phase of each pixel can be supposed
when computing the hermitian product.

The true underlying complex cross correlation coefficient D exp(jφ) of two complex
SAR images is given by Eq.(2.2) in chapter 2. The interferometric phase φ is determined
by the baseline between the repeat-pass sensors and the terrain topography and possible
displacement during the two dates. Changes in the phase caused by the terrain topography
displacement can be used to monitor the subsidence and deformations of surface that com-
monly take place in the earthquakes [Zebker, 2000, Preiss and Stacy, 2006]. Changes can
also be detected according to the coherence coefficient D, which denotes the correlation
between two images. The value of D is in the range 0 to 1 and is sensitive to relatively
small changes within a resolution cell [Preiss and Stacy, 2006]. Moreover, Cha et al. [2014]
proposed to detect changes in SAR using a processing chain which combines an incoher-
ent change detection of SAR intensity and a coherent change detection of interferometric
coherence D.

In this work we will mostly deal with amplitude images, therefore not exploiting the
phase information for change detection.

5.1.3 General criteria for change detection

Structure based criteria

Contrary to most change criteria measuring the difference between pixel values as
introduced in section 5.1.1 and 5.1.2, Marin and Bruzzone [2013] detected the changes with
the help of 3D models of buildings. The expected backscattering properties of buildings
simulated using the 3D models are combined with the log-ratio criterion from SAR images
to detect the changes of buildings (the new and fully destroyed buildings). Similarly,
Tao et al. [2013] applied SAR 3D simulation based on the LiDAR data to detect changes
between two SAR images with different incidence angles. Dellinger et al. [2014] proposed
to describe the structures of buildings by scale-invariant feature transform (SIFT) [Lowe,
2004] for optical images or SAR-SIFT [Dellinger et al., 2012] for SAR images. The changes
can be detected locally by comparing the number of detected keypoints and the number
of the matched keypoints of two images using a contrario approach (they could be optical
or SAR images).

Change detection in transform domain

Kauth-Thomas transformation [Kauth and Thomas, 1976] is a fixed linear transfor-
mation of multi-spectral (or multi-band) images. Its output represents the greenness,
brightness and wetness of the images. The change can be measured based on these values
[Crist, 1985].

Principal component analysis (PCA) differs from Kauth-Thomas transformation in
terms that it is an unfixed transformation. The output are the eigenvectors usually sorted
in decreasing order. From the first eigenvector (or principal component) to the last one,
each eigenvector expresses the next largest amount of information of the data. When
dealing with change detection problem, principal components are learned from two dates
separately then applied to some comparison techniques [Byrne et al., 1980] (such as image
differencing in Eq.(2.5)). Another approach based on PCA is to merge the input images
into one set then principal components are learned from this merged set [Ingebritsen and
Lyon, 1985]. The principal components with negative correlation correspond to change.
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Wiemker [1997] improved this idea by an iterative PCA to reduce the influence of changed
pixels. Other transformation theories, such as dual-tree complex wavelet transform [Celik
and Ma, 2010], curvelet transform [Schmitt et al., 2009] etc. are also applied to detect
changes.

Instead of transformation of the input images, Celik and Ma [2011] proposed to apply
an undecimated discrete wavelet transform on the difference map (for optical images) or
log-ratio map (for SAR images). Similarly, in [Jha and Unni, 1994]’s work, the PCA was
used as a preliminary step to reduce the dimensionality before change extraction.

Regularization for change detection

In the last years, spatial contextual information and multi-scale information have been
taken into account in the change detection methods. For example a changed pixel is likely
to be surrounded by changed pixels. This context information is widely modeled by Markov
random fields [Bruzzone and Prieto, 2000b]. Bruzzone et al. [2004b], Bruzzone and Prieto
[2000a], Bovolo [2009] model the context information by multi-temporal parcels. Hazel
[2001], Brunner et al. [2010], Molinier et al. [2007], Carlotto [2005], Yamamoto et al. [2001]
consider the context information at the object level. For very high resolution images,
low resolution level leads to introduce global information more easily, such as multi-level
or multi-scale approaches in [Bovolo, 2009, Dalla Mura et al., 2008, 2010, Bovolo and
Bruzzone, 2009]. Gong et al. [2014] also applied the Markov model with a regularization
taking into account the number of neighborhood pixels with the same class.

5.1.4 Thresholds for change detection

Section 5.1.1 and 5.1.2 mainly reviewed the change criteria used in change detection of
optical and SAR images. However, these criteria are usually followed by thresholding
methods or decision techniques to detect regions of change. The threshold value is critical,
since a low (or high) value will cause too much false alarm, while too high (or low) value
may suppress significant changes. This section thus reviews and discusses some main
thresholding methods.

Global thresholds

The most common approach to carry out the change detection results from a change
criterion (it could be any one of these introduced in section 5.1.1 and 5.1.2) is to find a global
threshold to differentiate change from no-change. The values associated to the changed
pixels can be identified on the right (or left) side of the criterion histogram [Bruzzone
and Prieto, 2002] with the assumption that the values associated to unchanged pixels
gather together on one side of the histogram, while the values of changed pixels gather
together on the other side or are evenly distributed in the histogram. However, selecting
an appropriate threshold in this way is generally not easy since the real distribution of
the analyzed criterion is unknown. Therefore, thresholds are usually selected according to
empirical strategies [Fung and LeDrew, 1988] or manual trial-and-error procedures.

Another common way to select thresholds is based on the assumption that only a
few changes occurred in the studied area between the two considered dates [Bruzzone
and Prieto, 2000b]. Under this assumption, the distribution of the criterion associated
to unchanged pixels can be confused with the histogram of the values in the computed
criterion map. The values located far away from the mean in this histogram are defined
as change, in particular the threshold is set at nσ from the mean value of the criterion
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map (n: a real number derived by a trial-and-error procedure; σ: the standard deviation
of the criterion map). Bruzzone and Prieto [1999] have experimentally studied the effects
of different n values on the accuracy of detection results. Neagoe et al. [2014] selected the
threshold based on the clustering of the spectral change vectors (derived according to the
standard change vector analysis).

More generally, the criteria images are modeled by Gaussian distributions in [Bruzzone
and Prieto, 2000b] and generalized Gaussian distributions in [Bazi et al., 2007], in which
the Expectation-Maximization algorithm is applied to estimate the statistical parameters
of the distributions. Then, the thresholding processing turns to be a decision of each
criterion value between the unchanged distribution and the changed distribution under a
Bayesian decision rule (e.g., minimum error, minimum cost, etc.).

In [Kervrann and Boulanger, 2006], the authors proposed to set the threshold according
to the quantiles of the criterion value when it is subject to identical and independent
distributed random variables. Although this thresholding method is used to select filter
parameter for NLM (as explained in section 3.3), it can also be applied to select thresholds
for change detection. Pursuing this idea, the change detection threshold can be set by:

τ = quantile(R, α) , (5.21)

where R is a change criterion (or a similarity criterion in NLM algorithms). Since it is not
easy to obtain the distribution of R, it can be simulated using synthetic data (or real data
with known groundtruth data). For instance, any noise-free picture can be used to generate
multi-temporal images using the expected statistical distribution for the noise. Note that
all the synthetic multi-temporal noisy images use the same true image, which guarantees
no changes among them. Then, the criterion is computed using these synthetic images.
The histogram of the criterion from the synthetic images is considered as an estimation
of the distribution of R. Finally, the threshold τ can be obtained by Eq.(5.21) with the
simulated distribution of R. Compared with modeling the real distribution of the criterion
by Gaussian or other distributions, this quantiles method can be easily extended to various
change criteria since it is highly data dependent (or data driven) and can simply control
the false alarm rate by setting the value of α. Nevertheless the former method may fail
when the real noise distribution is complex and departs from the assumed distributions.

Local thresholds and machine learning based decision

Quin et al. [2013] proposed to select the threshold for the criterion given by Eq.(5.17)
in a scatterplot plane (horizontal axis: the geometric mean m0 =

√

y(1)y(2), vertical axis:

the quadratic mean m2 =
√

1
2 (y(1)

2 + y(2)2)). The joint probability p(m0,m2) combined
with the conditional probability p(m2|m0) is used to describe the 2D distribution of pair
{m0,m2} in the scatterplot plane. Thus, given a rate α (false alarm rate) i.e. α = 0.01, a
boundary can be found in the scatterplot plane, inside which the probabilities are higher
than α and outside the probabilities are lower than α. This boundary can be considered
as the threshold and {m0,m2} pairs located outside it are defined as changes. Since this
threshold is spatially variable depending on different m0 values, it can be seen as a local
thresholding method.

Instead of thresholding the change criteria, lots of methods apply the machine learning
approaches to make decision, i.e. artificial neural networks (ANN) [Dai and Khorram, 1997,
Nemmour and Chibani, 2006a], support vector machine (SVM) [Nemmour and Chibani,
2006b, Volpi et al., 2013]. Bovolo et al. [2008] performed transductive SVM for change
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detection with a Bayesian selective thresholding method [Bruzzone and Prieto, 2000b] that
allows the unsupervised application of this classifier. The one-class SVM is also applied
to detect changes [Bovolo et al., 2010, Li et al., 2011]. In [Huo et al., 2012]’s work, the
SVM was applied on the SIFT features extracted from the input images instead of the
pixel values to detect changes.

5.1.5 Change detection Evaluations

To evaluate the change detection results, both qualitative/visual and quantitative methods
can be used.

Visual evaluation

When dealing with radiometrically calibrated data, the main visual evaluation used
for change detection corresponds to the display of a flicker animation [Berger et al., 2000,
Radke et al., 2005]. It is a short movie file that has only two frames (the analyzed two
images yt and yt′). Because of the persistence of vision, people see a steady scene in the
unchanged areas, and the changed areas appear to flicker. The visual comparison of the
flicker areas and the detection results is a reliable approach for evaluation. In same cases,
it is a method to display the changes.

Quantitative evaluation

Since it is not easy to get ground truth data of the real SAR images, the quantitative
evaluation is more challenging. Usually, an approximate ground truth is provided by
manually labeled map by experts, but it is still not perfectly accurate. Different experts
may have different view of changes, and even the same one may give different determination
at different times. Thus, in the quantitative evaluation of SAR change detection, two kinds
of data sets are usually used:

• Synthetic multi-temporal images. The changes are known (the ground truth data is
exactly accurate, such as the widely used synthetic images and the benchmark data
set in [Cui, 2014]), but the context of the images is not real (e.g. excessively simple
or complex objects, biased statistic model of noise etc.).

• Real multi-temporal images with manually labeled ground truth data. The ground
truth data is not perfectly accurate.

Once the ground truth has been obtained, several measurements to compare the ground
truth and a detection results can be used:

1) The number of true positive (TP): the number of changed pixels correctly detected;
2) The number of false positive (FP): the number of unchanged pixels detected as

change;
3) The number of true negatives (TN): the number of unchanged pixels correctly de-

tected;
4) The number of false negatives (FN): the number of changed pixels detected as no

change.
FP is also known as the false alarm. True positive rate (or sensitivity) and false positive
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rate (or false alarm rate) can be calculated by:

RTP =
TP

TP + FN
,

RFP =
FP

FP + TN
.

(5.22)

A receiver operating characteristic (ROC) or simply ROC curve can be created by plotting
the true positive rate versus the false positive rate at various threshold settings. The higher
ROC curves (at the same false positive rate, the higher true positive rate) indicates the
better algorithms.

5.2 Change pattern classification

Unlike the change/un-change detection, multi-class change detection identifies changes of
different classes. Each changed area (or pixel) is associated with a specific type, e.g. the
land-cover transition etc.

Unsupervised methods

Lombardo and Pellizzeri [2002] presented two detectors for the discrimination between
constant and step change pattern in the temporal domain for SAR images. Based on the
change vector analysis in polar domain as shown in Fig.5.3, Bovolo and Bruzzone [2007]
classified the changed pixels according to θ of the samples in the polar domain. Changes
of Burned area and lake enlargement area have been identified in the change detection
map. The coefficients of variation, amplitude and coherence identify objects dominated
by volume scatterers, rough surfaces and smooth surfaces respectively. Schulz et al. [2010]
proposed to display a pair of SAR images using these coefficients as RGB visualization, as
shown in Fig.5.4.b. Yellow regions in Fig.5.4.b are the moving objects (e.g. cars, airplanes),
green parts are the forest or dense bushes. Similarly, Amitrano et al. [2014] presented
another RGB composition of multi-temporal SAR images, in which the coherence map (R
channel) combined with original image yt (G channel) and image image yt′ (B channel)
were used. Lu [2014] considered the land-cover transitions when classifying the changes.
As shown in Fig.5.4.c, the regions with yellow color are the changes from farmlands to
buildings, red regions are areas where water changes to farmlands, etc.

Supervised methods

Camps-Valls et al. [2008] considered the change detection problem as a pre-classification
enhancement or a post-classification comparison [Singh, 1989]. In the post-classification
comparison, the images of two dates are independently classified and co-registered, and
after comparing the classification results those pixels whose predicted labels change between
dates are changed.

Bruzzone and Serpico [1997] explicitly identified land-cover transitions (changes among
Bare soil, Corn, Soybean, Sugar beet, Wheat) in multi-temporal remote-sensing images
based on supervised classification. Unlike post-classification comparison, Bruzzone and
Serpico [1997] took into account the time dependency by a prior probabilities of classes.
Bruzzone et al. [2004a] detected land-cover transitions by means of a multiple classifier
system (developed in the framework of the compound classification decision rule). Sluiter
and de Jong [2007] identified different types of soil using aerial photographs.
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(a) Bovolo and Bruzzone [2007] (b) Schulz et al. [2010] (c) Lu [2014]

Figure 5.4: Various approaches of change classification. (a) Change classification using
the position of change vector in the polar domain Bovolo and Bruzzone [2007]; (b) Change
classification using the coefficient of variation, amplitude and coherence Schulz et al. [2010];
(c) Change classification using the class transform of objects Lu [2014].

5.3 Long-term Change analysis

Long-term Change Detection detects or monitors the seasonal changes (vegetation dynamic
changes) and slow accumulated changes (trends detection). It implies a set of images,
covering a long time period.

Julea et al. [2011] proposed a crop monitoring using satellite image time series (SITS) by
considering both spatial and temporal dimensions. A grouped frequent sequential pattern
dedicated to groups of pixels sharing common temporal patterns and satisfying a minimum
spatial connectivity is defined.

A generic change detection approach is proposed by [Verbesselt et al., 2010a] for time
series by detecting and characterizing breaks for additive seasonal and trend contribu-
tions. It integrates the decomposition of time series into trend, seasonal, and remaining
components within a long-term time series. An improved harmonic seasonal model which
requires fewer observations has been presented in [Verbesselt et al., 2010b]. De Jong et al.
[2011] analyzed the normalized difference vegetation index time series data based on fast
Fourier transform. Martínez and Gilabert [2009] used a multi-resolution analysis based
on Wavelet transform to deal with the normalized difference vegetation index time series.
To compare time series data with miss samples (due to meteorological phenomena, like
clouds) in optical images, Petitjean et al. [2012] proposed to use dynamic time warping
[Petitjean et al., 2011] to compare time series data with different lengths.

5.4 Summary of change analysis

In this chapter, the main change criteria applied to optical and SAR images have been
reviewed. Most of them include an assumption of the noise in the analyzed images, i.e.
additive Gaussian noise model for optical images and multiplicative Gamma noise for SAR
images. Among them, the likelihood ratio test (LRT) have been widely used. However,
the composite hypothesis problem (due to the lack of the knowledge of noise-free value u)
leads to approximations of the likelihood ratio, like generalized likelihood ratio. Contrary
to the popular methods in which u is estimated by the mean inside a moving window,
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we propose to use the multi-temporal denoising results obtained with our 2S-PPB filter
to solve the composite hypothesis problem. The next chapter thus presents two change
criteria based on LRT for SAR images using 2SPPB filtering results.
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Chapter 6

Likelihood Ratio Test based Change
Detection

Based on the likelihood ratio test (LRT) introduced in section 5.1.2, this chapter proposed
two change criteria for multi-temporal SAR images. Thanks to the expected estimation
of SAR reflectivity achieved by our 2S-PPB filter, we can solve the composite hypothesis
problem of the LRT using the denoising results. Contrary to most likelihood ratio tests
which only use noisy data, both the denoised data and the noisy data are involved in the
proposed criteria.

6.1 Approximate likelihood ratio test

Recall that the noise-free values u in the likelihood ratio given by Eq.(5.10) are unknown.
To estimate the noise free value u, we propose to use the denoised results û provided by
our multi-temporal filter 2SPPB presented in chapter 4, instead of the noisy data y usually
used in the literature. The noise-free value u is simply replaced by the denoised data û, as
shown in the following:

u(1) = û(1),

u(2) = û(2),

u(12) =
L̂(1)û(1) + L̂(2)û(2)

L̂(1) + L̂(2)
,

(6.1)

where L̂(1) is the equivalent number of looks of pixel û(1), which is estimated by Eq.(3.53).
According to Eq.(5.10), the change criterion between y(1) and y(2) using likelihood ratio
can be defined as (combined with the Gamma probability density function):

RALRT(y(1), y(2)) =
p (y(1), y(2)|u(12),H0)

p (y(1), y(2)|u(1), u(2),H1)
(6.2)

=

[

1

4

(

û(2)

û(1)
+
û(1)

û(2)
+ 2

)]−L

exp

[

L

(

y(1)

û(1)
+
y(2)

û(2)
− 2y(1) + 2y(2)

û(1) + û(2)

)]

(6.3)

where L is the original number of looks of y(1) and y(2). Note that the approxi-
mate likelihood ratio RALRT highly depends on the denoised values û(1) and û(2), since
RALRT(y(1), y(2)) ≡ 1 when û(1) = û(2) whatever y(1) and y(2).
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6.2 Generalized likelihood ratio test

In a more accurate way, we can take into account the denoised values to define the observed
data and consider the likelihood probability of H0 and H1 as p(y(1), y(2), û(1), û(2)|H0)
and p(y(1), y(2), û(1), û(2)|H1). To simplify this likelihood probability, we can assume
that {y(1), û(1)} and {y(2), û(2)} are independent, although this assumption is not well
justified (since, typically y(1) can intervene in the estimation of û(1)). Thus,

p(y(1), y(2), û(1), û(2)|H0) =p(y(1), û(1)|u(12),H0)p(y(2), û(2)|u(12),H0)

p(y(1), y(2), û(1), û(2)|H1) =p(y(1), û(1)|u(1),H1)p(y(2), û(2)|u(2),H1) .

The likelihood ratio test is then given by:

RGLRT(y(1), y(2)) =
p(y(1), û(1) | u(12),H0)p(y(2), û(2) | u(12),H0)

p(y(1), û(1) | u1,H1)p(y(2), û(2) | u2,H1)
. (6.4)

Since u(12), u(1) and u(2) are not available, they can be replaced by their maximum
likelihood (ML) estimation, exploiting both y(i) and û(i) this time:

u(1) =
Ly(1) + L̂(1)û(1)

L+ L̂(1)

u(2) =
Ly(2) + L̂(2)û(2)

L+ L̂(2)
(6.5)

u(12) =
Ly(1) + Ly(2) + L̂(1)û(1) + L̂(2)û(2)

2L+ L̂(1) + L̂(2)
.

L, L̂(1) and L̂(2) are the number of looks associated to y, û(1) and û(2) respectively. Note
that this is very similar to [Lombardo and Oliver, 2001]. Nevertheless, the multi-temporal
denoised values used in the proposed approach can provide more accurate estimation with-
out loss of spatial resolution. It was not the case in [Lombardo and Oliver, 2001] where
spatial partitioning and averaging were introduced as post-processing steps. In case of
Gamma distributions with different number of looks, each probability term p(y, û|u) in
Eq.6.4 can be approximated under conditional independence assumption by:

p(y, û|u) = p(y|u)p(û|u)

=
y−1û−1

Γ(L)Γ(L̂)

(Ly)L(L̂û)L̂

uL+L̂
exp

(

−Ly + L̂û

u

)

. (6.6)

Finally, the change criterion given by the generalized likelihood boils down to:

RGLRT(y(1), y(2)) =

(

Ly(1) + L̂(1)û(1)

L+ L̂(1)

)L+L̂(1)(

Ly(2) + L̂(2)û(2)

L+ L̂(2)

)L+L̂(2)

(

2L+ L̂(1) + L̂(2)

Ly(1) + L̂(1)û(1) + Ly(2) + L̂(2)û(2)

)2L+L̂(1)+L̂(2)

(6.7)

Unlike RALRT, the generalized likelihood ratio RGLRT does not rely so much on the de-
noised values û(1) and û(2). Indeed, even when û(1) = û(2), RGLRT still depends on the
noisy values y(1) and y(2).
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Figure 6.1: The simulated histograms of RALRT and RGLRT with different number of
images (N) using synthetic images. When N → ∞, the values of RALRT and RGLRT

gather together.

6.3 Thresholds for change detection

Distributions of RALRT and RGLRT. It is not easy to analytically obtain the distribu-
tions of RALRT and RGLRT since they depend on the number of looks of noisy images, the
number of images used in the denoising process and all the parameters of multi-temporal
filter (such as h, h′, search window size, patch size and so on as described in chapter
3). Taking the number of images as example, Fig.6.1 shows the simulated histograms of
RALRT and RGLRT with different numbers of images using the synthetic images. For our
purpose of simulating the histograms, any picture can be used to generate multiple speckle
images with no change although it is preferable to use an image with a content similar to a
SAR image (strong scatterers, bright lines...). Note that all the synthetic multi-temporal
noisy images use the same true image, which guarantees no changes among them. The
histograms vary with different numbers of images N (the denoised image is the noise-free
image when N = ∞). The more images used to computed RALRT and RGLRT (N → ∞),
the sharper are the histograms. They are then used as approximations of the distribution
of RALRT and RGLRT.
Thresholding the histograms. As introduced in section 5.1.4, the quantiles of the
change criteria can be selected as the thresholds without the complete modeling of the
distribution of the criteria. We therefore propose to choose the thresholds according to the
quantiles of the distributions of RALRT and RGLRT computed on synthetic images. The
change detection threshold can then be set by τALRT = quantile(RALRT, α = 0.01) (and
τGLRT = quantile(RGLRT, α = 0.01)), which means the false alarm rate is fixed to 1% for
ideal signals. As shown in Fig.6.2.a, the histograms of RALRT and RGLRT are truncated
by the thresholds (red lines) with false alarm 1%. The parts on the right of the thresholds
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(a) Thresholds in the simulated histograms. The simulated histograms of RALRT and RGLRT using
synthetic images are the blue lines. The red lines are thresholds τALRT and τGLRT with false alarm 1%.

(b) Examples of the normalized histograms (peak normalization) of RALRT and RGLRT using real
SAR images Paris (detailed in section 6.4). The red lines are thresholds τALRT and τGLRT with false
alarm 1%. The blue lines are the histograms of unchanged RALRT and RGLRT. The green lines are
the histograms of changed RALRT and RGLRT.

Figure 6.2: The selection of the thresholds for change detection.

are considered as unchanged case, the left part is changed case. Fig.6.2.b shows the RALRT

and RGLRT histograms of changed and unchanged pixels in real SAR data Paris (image
information detailed in section 6.4). Those changed pixels are labeled manually.

6.4 Experiments of change detection

The proposed methods are evaluated on both synthetic images and real multi-temporal
SAR images.

6.4.1 Data Set

Synthetic images: Fig.6.3.a shows the noisy synthetic images yt and yt′ corrupted by
single-look multiplicative speckle noise respectively and the ground truth of changes be-
tween them. The four squares are 32×32 pixels with true value 128. The darker frame is
8 pixels width with 32 as true value and the true value of background is 64.

Realistic SAR synthetic images: A denoised image of 21 single-look TerraSAR X-
band images in Paris (France) sensed in 2011 is considered as the noise-free image (multi-
temporal denoising approach of section 4.2.2), as shown in Fig.6.3.b. Two single-look noisy
images yt and yt′ are generated with changes added in yt′ . These changed regions are about
15-25 pixels width and length, for instance a 20×20 pixels patch of vegetation is replaced
by a same size patch of building and so on. The right of Fig.6.3.b shows the ground truth
of changes.

Real SAR images 1: 26 single-look TerraSAR images in Saint-Gervais-les-Bains
(France) (13 images are sensed in 2009 and the other 13 images in 2011) are shown in
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Name Reference Description

Log-Ratio Rignot and van Zyl [1993] Log-Ratio operator
GLRT Lombardo and Oliver [2001] Generalized likelihood ratio test

Wilcoxon Krylov et al. [2012]
Change detection using a Wilcoxon
Test

MIMOSA Quin et al. [2013]
Method for generalIzed Means Ordered
Series Analysis

RALRT -
The proposed approximate likelihood
ratio test

RGLRT -
The proposed generalized likelihood ra-
tio test

Table 6.1: The change detection methods used in the comparison experiments.

Fig.6.4.a, identified as Saint-Gervais-les-Bains. Reference Ground truth of changes is la-
beled manually in the right of Fig.6.4.a.

Real SAR images 2: Experiment in Fig.6.4.b uses 21 single-look TerraSAR X-band
images identified as Paris in Paris (France) sensed in 2011. We label the ground truth of
changes manually, as shown in right of Fig.6.4.b.

Real SAR images 3: Experiment in Fig.6.6 uses 24 CARABAS-II magnitude images
acquired in Vidsel, Sweden 2002, identified as CARABAS [Sensor Data Management Sys-
tem (SDMS) Public web site, 2008]. We only detect the changes between image v02_2_1_1
and image v02_4_1_1, while all the 24 images are used in the multi-temporal denoising
process.

Real SAR images 4: Experiment in Fig.6.7 uses 9 single-look TerraSAR X-band
images identified as Sendai in Sendai Harbor (Japan) sensed in 2011. Fig.6.7.a and b show
the images acquired respectively on May 6, 2011 and June 8, 2011. All the 9 images are
used in the multi-temporal denoising step.

6.4.2 Change detection methods

The proposed change criteria approximate likelihood ratio test RALRT and generalized
likelihood ratio test RGLRT are compared with some state-of-the-art methods, such as Log-
Ratio operator [Rignot and van Zyl, 1993], the generalized likelihood ratio test (GLRT)
proposed in [Lombardo and Oliver, 2001], Wilcoxon Test based change criterion [Krylov
et al., 2012] and Method for generalIzed Means Ordered Series Analysis (MIMOSA) [Quin
et al., 2013], summarized in Tab.6.1.

6.4.3 Results

The change detection results are assessed by the True-Positive versus False-Positive curves
using the reference map of changes as shown in Fig.6.3.c and Fig.6.4.c. The proposed
methods RALRT and RGLRT can generally obtain higher receiver operating characteristic
(ROC) curves than others. For the sake of visual evaluation of those change criteria,
we select a fixed true positive rate to compare the false positive rate. Fig.6.5 shows the
change criteria thresholded by the fixed true positive rates 1 (or change detection results
with fixed true positive rate). The proposed change criteria RALRT and RGLRT (on the

1Note that these fixed true positive rates may vary for different data sets, which is for the sake of visual
evaluation.
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right of Fig.6.5) have less noise in the results, which means they have lower false positive
rates.

The experiments on CARABAS and Sendai data in Fig.6.6 and 6.7 show that the
proposed GLRT change detection has comparable performance with MIMOSA [Quin et al.,
2013]. RALRT and RGLRT outperform other change criteria, but the latter is more reliable
than the former (the ROC curves of RGLRT are higher than RALRT in Fig.6.3 and 6.4).

6.5 Conclusion

Based on the likelihood ratio test (LRT), two change criteria, approximated LRT RALRT

and generalized LRT RGLRT have been proposed in this chapter. They attempt to solve
the composite hypothesis problem of LRT by using the multi-temporal denoising results.
Thresholds selected by the quantiles of the change criteria are used to isolate the change
regions. Experiments demonstrate the proposed change detection methods have higher
accuracy and less noise compared with some state of the art change detection methods.
Besides, the proposed criteria could be used with other filtering methods, but an associated
number of looks should be provided for each pixel. Although using a pre-filtering process
can be seen as a limit of our approach, it increases the reliability of our criterion and fully
exploits the available information. This part of work has been published in [Su et al.,
2013].

Change detection recognizes the change information only by two patterns, change and
no-change. More change patterns exploiting the temporal information of the changes will
be introduced in the next chapter.
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(a) Synthetic images. From left to right: synthetic image yt, Synthetic image yt′ and the reference
map of changes.

(b) Realistic SAR synthetic images. From left to right: synthetic image yt, Synthetic image yt′ and
the reference map of changes.
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(c) False positive alarm vs true positive curves of synthetic images and realistic SAR synthetic images

Figure 6.3: Change detection results for synthetic SAR images.
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(a) Saint-Gervais-les-Bains data set. From left to right: noisy image yt1 , noisy image yt26 and the
reference map of changes.

(b) Paris data set. From left to right: noisy image yt1 , noisy image yt26 and the reference map of
changes.
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(c) False positive alarm vs true positive curves of Saint-Gervais-les-Bains and Paris data set.

Figure 6.4: Change detection results for real SAR images Saint-Gervais-les-Bains and
Paris data set.
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Reference log-ratio GLRT Wilcoxon RALRT RGLRT

(a) Change detection results of Fig.6.3.a with True Positive rate 95%.

(b) Change detection results of Fig.6.3.b with True Positive rate 90%.

(c) Change detection results of Fig.6.3.b with True Positive rate 90%.

(d) Change detection results of Saint-Gervais-les-Bains data set with True Positive rate 80%.

(e) Change detection results of Paris data set with True Positive rate 75%.

(f) Change detection results of Paris data set with True Positive rate 75%.

Figure 6.5: Change detection results.
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(a) Image v02_2_1_1 in CARABAS. (b) Image v02_4_1_1in CARABAS.

(c) The proposed change criterion RGLRT. (d) Results using a threshold τ with α = 0.1%.

Figure 6.6: Change detection results of real SAR images CARABAS [Sensor Data Man-
agement System (SDMS) Public web site, 2008].
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(a) Image on 06/05/2011 in Sendai data. (b) Image on 08/06/2011 in Sendai data.

(c) The RGB composition between a and b by MI-
MOSA [Quin et al., 2013].

(d) The change detection results by MIMOSA (a
prior FAR is 1%) [Quin et al., 2013].

(e) The proposed change criterion RGLRT. (f) Results using a threshold τ with α = 0.1%.

Figure 6.7: Change detection results of real SAR images Sendai.
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Chapter 7

Change Classification: NORCAMA

In chapter 6, we focused on the bi-temporal SAR images and aimed at detecting a binary
pattern (change or no-change). When dealing with a multi-temporal data set (more than
2 dates), the analysis among them is much more complex. As said in chapter 1, we will
define the changes with more than two patterns (change or no-change). More patterns,
such as step change, impulse change, cycle change, have been defined here according to
the temporal behaviors of changes, unlike the work in [Lombardo and Pellizzeri, 2002]
in which only the step changes are detected. It is very useful to exploit these temporal
features of changes, since for instance the temporal behaviors of a new building usually can
be considered as a step change, which means that comparing the oldest date with other
dates, it was unchanged at the beginning but it changed since a certain date (shown in
Fig. 7.1.a). Similarly, we can define the boats in rivers or cars on the roads as impulse
changes (Fig. 7.1.b). These change information can be used in the multi-temporal image
interpretation tasks.

To represent the change information, the change criteria proposed in chapter 6 have
been used to form a change criterion matrix (CCM) which consists of the full change
information among the time series. Then, a clustering-and-recognizing method is proposed
to classify the changes. It has two steps, clustering using normalized cut on a change
criterion matrix (to assign a same label to similar or unchanged temporal pixels) and
classification according to their temporal behaviors. Note that although change information
exploited here is no longer change or no-change problem as people usually focus on, it is
still limited to binary changes, which means that we will not take into account continuous
changes. For instance, in Zhu and Woodcock [2014]’s work, the continuous seasonal change
is modeled by sines and cosines. The proposed change classification is well adapted for few
time series and urban applications. It can also be seen as a preliminary step of screening
before improved classification of continuous changes.

7.1 Change criterion matrix

At position i of a multi-temporal SAR series {yt1 , ..., ytN }, we have the two pixel se-
ries {yt1(i), ..., ytN (i)} (original noisy data), {ût1(i), ..., ûtN (i)} (denoised data by multi-
temporal filter of chapter 4) and associated equivalent number of looks {L̂t1(i), ..., L̂tN (i)}.
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(a) Step change.

(b) Impulse change.

Figure 7.1: Examples of step changes and impulse changes. From left to right: original
multi-temporal SAR images at time t1, t2, t3, t4, t5, change criterion matrix of a pixel in
the red rectangle (cold color - high similarities: unchanged; warm color - weak similarities:
changed).

The change criterion matrix (CCM) at position i is defined as:

M(i) =









R(yt1(i), yt1(i)) R(yt1(i), yt2(i)) ... R(yt1(i), ytN (i))
R(yt2(i), yt1(i)) R(yt2(i), yt2(i)) ... R(yt2(i), ytN (i))

... ... ... ...
R(ytN (i), yt1(i)) R(ytN (i), yt2(i)) ... R(ytN (i), ytN (i))









(7.1)

where R(ytn(i), ytm(i)) denotes the proposed change criterion (RALRT or RGLRT in chapter
6) between pixel ytn(i) and ytm(i). Note that R(ytn(i), ytm(i)) = 1 when n = m. Contrary
to the multi-date divergence matrix in [Atto et al., 2013] performing at the image or sub-
image level, the CCM presents the change information at pixel level. Each CCM M(i)
denotes the temporal behavior of the pixel series at position i.

7.2 Normalized cut on change criterion matrix

Normalized cut (N-Cut) as one of the spectral clustering techniques makes use of the sim-
ilarity matrix of the data to perform clustering. It is simple to implement, can be solved
efficiently by standard linear algebra software, and very often outperforms traditional clus-
tering algorithms such as the K-Means algorithm [Von Luxburg, 2007]. Since the CCM can
be considered as a similarity matrix of the time series, spectral clustering method can be
easily applied on the CCM to cluster the temporal pixels. In this case, no more similarity
measurements is needed compared with other clustering methods (like K-Means algorithm
for which new similarity to cluster center has to be computed).

7.2.1 Normalized cut

Spectral clustering has become one of the most popular modern clustering algorithms.
Given a set of data (i.e. pixels) {y(1), y(2), . . . , y(N)}, a similarity graph G = (V,R) is
used to present the relation among these pixels. Each vertex V(i) in this graph represents
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a pixel y(i). Two vertices y(i) and y(j) are connected and R(i, j) is the weight of the edge
between y(i) and y(j). This graph can also be presented by a N×N similarity matrix MS,
in which element at i-column and j-line is the similarity R(i, j) between y(i) and y(j).

Spectral clustering performs on this similarity graph G and it wants to find a partition
of the graph such that vertices in the same cluster have high weights (meaning they are
similar to each other) and vertices in different clusters have low weights (dissimilar to
each other). The main processing chain of spectral clustering consists of 1) computing
the Laplacian matrix ML; 2) eigenvalue decomposition of ML; 3) K-Means clustering on
eigenvectors with K = p the number of clusters.

Laplacian matrices

The popular ways to construct the similarity graph G from the data set are to 1) connect
the vertex pair with similarity more than a certain threshold, 2) connect each vertex with
its k nearest neighbors or, 3) fully connect every pair of vertex. To fully represent the
relation information, the third one should be used. There are many several expressions to
compute the Laplacian matrix ML from the similarity matrix MS:

ML = MD −MS Unnormalized Laplacian matrix,

ML = I −MD− 1

2MSMD− 1

2 Normalized Laplacian matrix [Chung, 1997],

ML = I −MD−1MS Normalized Laplacian matrix [Shi and Malik, 2000].

(7.2)

MD is the degree matrix, in which the non-diagonal elements are zero and the diagonal el-
ement at i-column is

∑

j R(i, j). In the minimization step, unnormalized Laplacian matrix
cannot simultaneously minimize the disassociation across the partitions while maximizing
the association within the cluster [Chung, 1997, Shi and Malik, 2000]. Therefore, normal-
ized Laplacian matrix usually has better results in practice. In addition, in [Von Luxburg,
2007]’s work, the normalized Laplacian matrix presented in [Shi and Malik, 2000] is sug-
gested since the one presented in [Chung, 1997] may be problematic if the eigenvectors
contain particularly small entries.

Eigenvalue decomposition and K-Means clustering

The eigenvalue decomposition is applied on the Laplacian matrix ML. The eigen-
values {λ(1), λ(2), . . . , λ(N)} are sorted in the ascending order, which are associated to
eigenvectors {v(1),v(2), . . . ,v(N)}. In [Shi and Malik, 2000]’s work, a K-way cut is
suggested due to the simplicity of the computation. The first p generalized eigenvec-
tors {v(1),v(2), . . . ,v(p)} are selected for the partition. These selected eigenvectors are
used to form a new matrix (each line is a eigenvector). Then, this new matrix is split
into vectors, while each column is a new vector v′(i), as shown in Fig.7.2. New vectors
{v′(1),v′(2), . . . ,v′(N)} are considered as N samples and have been classified into p clus-
ters by K-means. The output labels {l(1), l(2), . . . , l(N)} are the clustering results of the
data set {y(1), y(2), . . . , y(N)}.

In the normalized cut algorithm, p is a important parameter controlling the number
of the clusters. Choosing the number of clusters p is a general problem for all cluster-
ing algorithms, and a variety of successful methods have been devised (more details in
[Von Luxburg, 2007]). Eigengap heuristic is one of them and particularly designed for
spectral clustering. The main idea is to choose the number p such that all eigenvalues
λ1, ..., λp are very small, but λp+1 is relatively larger (all eigenvalues are sorted in ascend-
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Figure 7.2: The selected eigenvectors {v(1),v(2), . . . ,v(p)} are used to form a matrix (each
line is an eigenvector). Each column of this matrix is a new vector v′(i).

ing order). However, this heuristic fails when the clusters of the data are overlapping
(possibly because of noise).

7.2.2 Clustering using CCM

This section applies the normalized cut proposed by Shi and Malik [2000] to cluster the
temporal pixel series {yt1(i), yt2(i), . . . , ytN (i)}, which can be summarized in Algorithm 3.
In this algorithm, the normalized Laplacian matrix Mu(i) is computed by:

ML(i) = I −MD(i)−1M(i) (7.3)

MD(i) =









∑R(yt1(i), ytn(i)) 0 ... 0
0

∑R(yt2(i), ytn(i)) ... 0
... ... ... ...
0 0 ...

∑

R(ytN (i), ytn(i))









∑

R(ym, yn) =
∑

n=1,...,N

R(ym, yn)

To estimate the number of clusters p, eigengap heuristic method has been applied
here. However, to solve the overlapping problem of the eigengap, we binarize the CCM
M(i) using the threshold used in the proposed change detection method, as shown in the
following:

Mb(i) =









Rb(yt1(i), yt1(i)) Rb(yt1(i), yt2(i)) ... Rb(yt1(i), ytN (i))
Rb(yt2(i), yt1(i)) Rb(yt2(i), yt2(i)) ... Rb(yt2(i), ytN (i))

... ... ... ...
Rb(ytN (i), yt1(i)) Rb(ytN (i), yt2(i)) ... Rb(ytN (i), ytN (i))









(7.4)

Rb(ym, yn) =

{

0 if R(ym, yn) < τ

1 if R(ym, yn) > τ

The Eigengap heuristic performed on the binary change criterion matrix Mb(i) can easily
be used to estimate the number of clusters p (see the example shown in Fig. 7.3). The
toy model in Fig. 7.3.a has 2 clusters. Using CCM M(i) in 7.3.b, the difference between
eigenvalues λ2 and λ3 is not large enough compared with the one between λ1 and λ2. It is
very easy to find the best estimation of p using the binary CCM Mb(i) in 7.3.c because
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Types p Label series {lt1(i), ..., ltN (i)}
Unchanged 1 {1, 1, ...}
Step 2 {1, 1, ..., 2, 2, ...}
Impulse 2 {1, 1, ..., 2, 2, ..., 1, 1, ...}
Cycle 2 {1, 1, ..., 2, 2, ...1, 1, ...2, 2, ...}
Complex > 3 {1, 1, ..., 2, 2..., 3, 3...4, 4...}

Table 7.1: The identifications of different types of change.

of the large gap between λ2 and λ3. It is obvious that this estimation of p highly depends
on the choice of the thresholds. However, the robustness of the proposed change criteria
(especially RGLRT shown in Fig.6.2) can guaranty the estimation accuracy of p.

Algorithm 3 Clustering of the pixel series (Normalized spectral clustering [Shi and Malik,
2000])
Input:

A change criterion matrix M(i) of pixel series {yt1(i), ..., ytN (i)}, number p of clusters
to construct.

Output:
The clustering labels {lt1(i), ..., ltN (i)} for pixel series {yt1(i), ..., ytN (i)}

1: Compute the normalized Laplacian matrix Mu(i) using Eq.7.3.
2: Compute the first p generalized eigenvectors v1, ...,vp of Mu(i) (Mu(i)v = λIv).
3: Let v′ be the matrix containing the vectors v(1), ...,v(p) as columns.
4: Consider each row of v′ as a sample, v′ = {v′(1), ...,v′(N)}.
5: Cluster the samples v′(1), ...,v′(N) with the k-means algorithm into clusters with K =
p as the number of clusters. The cluster labels of v′(1), ...,v′(N) are l(1), ...l(n), ..., l(N)
(l(n) ∈ {1, ..., p}).

6: return Cluster labels l(1), ...l(n), ..., l(N)

7.3 Recognition of change patterns

After clustering, each pixel series {yt1(i), ..., ytN (i)} has a cluster label series
{lt1(i), ..., ltN (i)}, in which ltn ∈ {1, ..., p}. We can identify different types of change
according to the transformation in the cluster label series {lt1(i), ..., ltN (i)}. For example,
if p = 1, there is no change among this pixel series. If p = 2 with cluster label series
{1, 1, ..., 1, 2, 2, ..., 2}, it is a step change. Impulse change usually has p = 2 and cluster
label series is {1, 1, ..., 1, 2, 2, ..., 2, 1, 1, ..., 1}. When p > 3, the transformation is complex
and changes are defined as complex cases. According to these identifications (details in
Table 7.1), changes can be classified into several classes.

7.4 Experiments of Change Classification

7.4.1 Test on realistic SAR synthetic images

This experiment uses one denoised image of 21 single-look TerraSAR X-band images of
Paris (France) sensed in 2011 as the noise-free image (multi-temporal denoising approach in
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(a) A pixel series {yt1(i), ..., yt12(i)} which should be clustered into 2
groups (red and blue).
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(b) CCM M(i) and its eigenvalues.
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(c) Binary CCM Mb(i) and its eigenvalues.

Figure 7.3: Estimation of the number of clusters. (a) A pixel series {yt1(i), ..., yt12 (i)}
which should be clustered into 2 groups; (b) estimation of the number of clusters using
CCM M(i), the gap between λ2 and λ3 is not obvious; (c) estimation of the number of
clusters using binary CCM Mb(i), the gap between λ2 and λ3 is larger.
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Confusion Classification results
Matrix (%) Unch. Step Impl. Cyc. Comp.

A
ct

ua
l
cl

as
s Unch 99.42 0.17 0.12 0.17 0.11

Step 11.52 78.71 3.12 4.05 2.60
Impl. 6.25 4.50 80.25 5.63 3.38
Cyc. 17.50 2.92 1.58 75.58 2.42

Comp. 4.27 5.52 2.85 6.23 81.14

Table 7.2: Confusion matrix of change classification results. Unch.: unchanged, Step: step
change, Impl.:impulse change, Cyc.: cycle change and Comp.: complex change.

chapter 4), as shown in Fig.7.4.a. 6 single-look images are generated with different changes
added in them. As shown in Fig.7.4.b, different kinds of changes have been introduced,
such as step change (in red), impulse change (in green) and cycle change (in blue). Fig.7.4.c
shows the change classification result by RGLRT. The confusion matrix in Tab.7.2 shows
the good performance of the proposed classification method.

7.4.2 Test on real SAR images

We have 21 single-look TerraSAR X-band images identified as Paris in Paris (France)
sensed in 2011 and 6 single-look TerraSAR X-band images identified as San-Francisco
sensed in San-Francisco, U.S.A. 2007 and 2011. These images have been accurately reg-
istered using the sensor parameters. Fig.7.5.a and b only show the first noisy image and
its denoising result. Fig.7.5.c shows the results of the change classification approach by
RGLRT, in which red regions denote step changes, green are impulse changes and blue
are cycle changes. We can observe that many boats in the river have been classified as
impulse change. Fig.7.6 gives an illustration of examples of step change, impulse change;
cycle change and complex change with the corresponding optical images c©Google (but the
dates of the optical images are not exactly the same as the SAR images).

We can see that the step changes might correspond to some facilities in the stadium,
impulse changes and complex changes are boats moored at piers, the cycle changes are
the river bank. The proposed method has good performance in classifying these interrupt
changes, however for the continuous changes, like the growth of vegetation, the proposed
method probably considers them as complex changes.

7.5 Conclusion

Based on the change criteria approximated LRT RALRT and generalized LRT RGLRT pre-
sented in chapter 6, a change classification method has been introduced here. The purpose
of this classification is to exploit the temporal behavior information of the changes. It
applies a normalized cut algorithm to cluster the temporal pixel series, then classifies the
pixel series by the clustering labels. After classification, pixel series are labeled as step
change, impulse change, cycle change and complex change associated to step, impulse,
cycle and complex fluctuation of intensity in the temporal domain.

This is the second contribution of this PhD and has been published in [Su et al., 2014a,
2015]. In the next part of this PhD, we will extend the proposed 2SPPB filter, change
criteria and change classification methods to the application of the SAR image compression
and SAR change information updating.
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(a) "Noise-free" image with synthetic changes (only
1 image has been shown).

(b) Ground-truth map of changes (c) Change classification results by RGLRT

Figure 7.4: Change classification of synthetic SAR images (6 single-look SAR images). (a)
"noise-free" image with synthetic changes (only 1 image has been shown); (b) ground-truth
map of changes; (c) change classification results by RGLRT (black: no change, red: step
change, green: impulse change, blue: cycle change and yellow: complex change.
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(a) Paris, 21 single-look TerraSAR-X images

(b) San-Francisco, 6 single-look TerraSAR-X images

Figure 7.5: Change classification on Real SAR images. From top to bottom: Paris,
21 single-look TerraSAR-X images and San-Francisco, 6 single-look TerraSAR-X images.
From left to right: noisy image yt1 and change classification results by criterion RGLRT

(black: no change, red: step change, green: impulse change, blue: cycle change yellow:
complex change.).
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(a) The AT&T park in San-Francisco. Example of step change in San-Francisco. From left to right,
the change classification results, the noisy image from date t1 to t6.

(b) The Pier 48 in San-Francisco. Example of impulse change in San-Francisco. From left to right, the
change classification results, the noisy image from date t1 to t6.

(c) The bank of the river in the Mission Creek Garden. Example of cycle change in San-Francisco.
From left to right, the change classification results, the noisy image from date t1 to t6.

(d) The Pier 50 in San-Francisco. Example of complex change in San-Francisco. From left to right,
the change classification results, the noisy image from date t1 to t6.

(e) (f) (g) (h)

Figure 7.6: Details of change classification results of San-Francisco data set. (a-d) from
top to bottom: from left to right: the AT&T park, the Pier 48, the bank of the river in
the Mission Creek Garden and the Pier 50. They are step change, impulse change; cycle
change and complex change. (black: no change, red: step change, green: impulse change,
blue: cycle change and yellow: complex change). (e-h) the optical images c©Google Earth
(imagery data 2014.02.24) corresponding to images (a-d).
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Part III

Information Updating and
Compression
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Chapter 8

Information Updating of SAR Time
Series

The quantity of multi-temporal SAR images is experiencing a rapid growth, especially af-
ter the launch of some recent and new sensors like TanDEM-X (revisit cycle of 11 days)
combined with TerraSAR-X, Sentinel-1 (revisit cycle of 12 days with Sentinel-1A, 6 days
with the combination of Sentinel-1A and Sentinel-1B), etc. New challenges related to big
data processing then raise: 1) how to compress the data to reduce the storage space, and
2) how to rapidly exploit useful information in this big data. We propose two compres-
sion methods for the multi-temporal SAR images in this chapter, pixel-level compression
and patch-level compression, to solve these big data problems for further processing like
denoising or change classification as seen in the previous chapters. We propose in this
chapter to exploit our classification results to define a compression scheme, which can then
be used for filtering updating, or classification updating. The main idea is to store only
on representative value for a set of unchanged values. We present two ’compression’ ap-
proaches one defined at the pixel-level, and the other one at the patch-level, which is the
main structure of our processings as explained previously. In the implementation, the sim-
ilar pixels/patches are found by a normalized cut clustering based on the change criterion
matrix (CCM) presented in chapter 7, and compressed by simple averaging. A Huffman
encoding algorithm is then applied to further compress the data.

Basically, the pixel-level compression scheme produces higher compression ratio, but it
needs to be followed by a patch reconstructing step when the compressed data are used
in patch-based applications, e.g. our 2S-PPB filter. Instead the patch-level compression
stores the averaged patches, thus the compressed data can be rapidly used in patch-based
applications but at the price of a lower compression ratio. These two approaches will be
described and compared in the following chapters. Then with these compressed and stored
data, when a new SAR image is acquired, we apply the proposed 2S-PPB filter to denoise
the new image and NORCAMA change detection method to update the change classifica-
tion results using the compressed data. After the processing, the stored compressed data
are updated with the information extracted from the new image.

Fig.8.1 shows the main framework of the proposed compression and updating processes
in this chapter. This chapter will firstly present the compression method (pixel-level and
patch-level compressions) and then the updating method (denoising and change detection
of the newly acquired SAR image). The experiments will compare the 2S-PPB filtering
and NORCAMA change detection results using the compressed data and the original SAR
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time series.

Figure 8.1: The problem of SAR data updating considered in this chapter.

8.1 Concept and method of compression

The pixel/patch-level compression consists of a lossy compression followed by a lossless
compression, as shown in Fig.8.2.a and b. The lossy compression is performed on each pixel
series. It finds the similar pixels or patches in the temporal domain by the normalized-cut
clustering presented in chapter 7. The pixel-level compression computes the average of
the pixels in a cluster (corresponding to the center of the cluster), as shown in the mid-
dle of Fig.8.2.a. Instead, the patch-level compression considers both the pixels and their
neighbors (the patches surrounding them), and stores the averaged patches, as shown in
the middle of Fig.8.2.b. Both the pixel-level and patch-level compressions finally have a
Huffman encoding step to further compress the clustering labels and the averaged pix-
els/patches. The two approaches and their advantages and drawbacks are now described
in details.

8.1.1 Pixel-level compression

The denoised images {ût1 , ût2 , . . . , ûtN } associated to SAR image series {yt1 , yt2 , . . . , ytN }
are firstly obtained by the proposed 2S-PPB filter presented in chapter 4. The compression
is applied pixel by pixel. At each position i, the pixel series {yt1(i), yt2(i), . . . , ytN (i)} and
the associated denoised pixel series {ût1(i), ût2(i), . . . , ûtN (i)} are considered. As shown in
Fig.8.2.a, the lossy compression step consists in storing the labels of the clusters for the
different dates of the series, and a unique filtered intensity value ycm(i) for each cluster.
All these steps based on the previous chapters are described in Algorithm 4. Then, a Huff-
man compression is applied on the clustering labels {lt1(i), lt2(i), . . . , ltN (i)} and clustering
centers {yc1(i), yc2(i), . . . , ycM (i)} to further compress the data.

Discussion about the compression ratio.
The data type of SAR intensity is Float (32 bits). Thus, the storage space (or the file

size) Oo of the original SAR time series can be computed by:

Oo = 32NtNp bit (8.2)
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(a) Pixel-level compression

(b) Patch-level compression

Figure 8.2: The compression processing. Each pixel series {yt1(i), yt2(i), . . . , ytN (i)}
(with associated denoised pixel series {ût1(i), ût2(i), . . . , ûtN (i)}) is firstly clustered by a
normalized-cut algorithm presented in chapter 7. Pixel-level compression (a) keeps cluster-
ing centers (averaged pixels), while patch-level compression (b) keeps the clustering centers
and their neighbors (averaged patches). Then the clustering results (both the labels and
clustering centers) are further compressed by a Huffman encoding algorithm.

where Nt is the number of images in the SAR time series and Np is the number of pixel in
each image. The compression ratio is the ratio of Oo and the storage space of compressed
data Oc:

r =
Oo

Oc
(8.3)

Oc = Ol +Ov (8.4)

where Ol is storage space of the (lossless compressed) labels and Ov for the (lossless com-
pressed) centers of clusters.

1) Ol: This value depends on the change arising between the different dates. The worst
case would be a full change of the whole image from one date to the next one. Since
we can not model it theoretically, we propose to use an empirical study to give a general
behaviour. In the Huffman encoding, the average description length b̄ to represent the
labels can be calculated by:

b̄ =
M−1
∑

l=1

p(l)l + p(M)(M − 1) (8.5)
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Algorithm 4 The lossy compression step in the proposed pixel-level compression
Input:

SAR time series {yt1 , yt2 , . . . , ytN } ;
The associated denoised images {ût1 , ût2 , . . . , ûtN }.

Output:
Clustering labels (label series) {lt1(i), lt2(i), . . . , ltN (i)} at each position i;
Clustering centers {yc1(i), yc2(i), . . . , ycM (i)} at each position i.

1: for each position i in the SAR time series do
2: calculate the change criterion matrix of pixel series i by Eq.(7.1); (section 7.1)
3: cluster the pixel series by the normalized-cut algorithm; (section 7.2.2)
4: for each cluster m do
5: average the pixels in cluster m by:

ycm(i) =
1

Z

N
∑

n=1

w(n)ytn(i) ,

w(n) =

{

1 if ltn = m

0 otherwise
,

Z =

n=N
∑

n=1

w(n) .

(8.1)

The number of looks Lcm(i) associated to ycm(i) is ZL;
6: end for
7: return clustering labels (label series) {lt1(i), lt2(i), . . . , ltN (i)};

clustering centers {yc1(i), yc2(i), . . . , ycM (i)}.
8: end for

where p(l) is the probability of label l in the label series and p(l) sorts in descending order,
p(1) > p(2) > . . . > p(M).

Since it is difficult to estimate p(l), we approximate p(l) by the normalized frequent
value of l in a real SAR data set (Paris data set c©TerraSAR). As shown in Fig.8.3.b,
the approximate probability p′(l) can be found in the normalized histogram of labels l =
{1, 2, . . . ,M}. Then, the approximate average number of bits b̄′ is computed with p(l)
estimated from the Paris data set:

b̄′ = −
M
∑

l=1

p′(l) log p′(l)

= 0.952 + 0.0301 × 2 + . . .

= 1.0244

(8.6)

Then, we can get the approximate value O′
l of Ol:

O′
l ≈ b̄′NtNp = 1.0244NtNp (8.7)

Note that Huffman encoding can not approach the optimal solution (minimum description
length) if the data does not follow an exponential distribution, for instance the labels distri-
bution of Paris data set is not an exponential distribution. Thus other lossless compression
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Figure 8.3: (a) Number of clusters and (b) Normalized histogram (distribution) of number
of clusters. For this example and 20 dates, pixel series usually has only 1 or 2 clusters after
the lossy compression.

algorithms which can better handle the distribution of labels could be used to improve this
compression. However, we still use the Huffman encoding here for the convenience of
implementation.

2) Ov : Given a certain SAR time series, the size of Ov depends on the number of the
clusters of each pixel series, or the new pixels containing in each image compared with
previous images. However the number of new pixels is difficult to estimate, thus we also
use the number of new pixels empirically counted from the Paris data set to give some
numerical intuition. On average, 0.7%∼1% pixels in each image are new. Without any
compression, the storage space for the clustering centers will be:

O′
v ≈ 32Np(1 + 1%Nt) (8.8)

Note that the computation of O′
v in Eq.(8.8) does not consider any compression, while in

reality a Huffman compression has been applied. Therefore, the real storage space Ov will
be smaller than O′

v given by Eq.(8.8).
So far, we can approximately estimate Oc by combining O′

l given by Eq.(8.7) and O′
v

given by Eq.(8.8):

Oc ≈ O′
l +O′

v = 1.0244NtNp + 32Np(1 + 1%Nt) . (8.9)

The approximate compression ratio r can thus computed by:

r ≈ 32NtNp : [1.0244NtNp + 32Np(1 + 1%Nt)]

=
32Nt

1.3444Nt + 32

(8.10)

The blue line in Fig.8.4.a shows the approximate compression ratio r against the number
of images Nt. However, it must be clear that the computation of r given by Eq.(8.10) is
not strict since O′

v is larger than what it is in reality. The real compression ratio should
be higher than this approximate compression ratio, as shown by the green line (the real
compression ratio computed using Paris data set) in Fig.8.4.a. But we can still conclude
a qualitative result that when Nt increasing, the compression ratio r will correspondingly
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Figure 8.4: The real and approximate compression ratio against the number of images
Nt. (a) Pixel-level compression and (b) patch-level compression. The blue line is the
approximate estimation of compression ratio, while the green line is the real compression
ratio tested on the Paris data set.

increase. The green line also shows the same trend than the approximate compression
ratio as the blue line with the increase of Nt. It should be noted that for few images, the
"compressed" size is bigger than the storage size.

Reconstructing patches from the compressed data

As explained before, we need to reconstruct a patch y′
cm(i) surrounding pixel ycm(i)

when comparing ycm(i) with pixels in a new arriving SAR image. Taking pixel ycm(i) as
an example, the reconstruction of patch y′

cm(i) for pixel ycm(i) can be summarized as the
following steps (as shown in Fig.8.5):

• reconstruct the label patch for each label in the label series {lt1(i), lt2(i), . . . , ltN (i)},
e.g. the k-th neighbor of label ltn(i) is ltn(i + k) which can be found in label series
{lt1(i+ k), lt2(i+ k), . . . , ltN (i+ k)};

• replace the labels by their associated clustering centers, for instance, ltn(i + k) is
replaced by value y′cm′

(i) with m′ = ltn(i+ k);

• patch y′
cm(i) is then defined as the patch with the averaged values (center pixel label

tn(i) is m).

Patch y′
cm(i) can be considered as an averaged surrounding of ycm(i), which will be used

in the patch comparison of 2S-PPB. Note that different pixels in patch y′
cm(i) may have

different number of looks, which depend on the number of looks of the added candidates.

8.1.2 Patch-level compression

Since the patch reconstruction step will cost extra time in the pixel-level compression, we
present in this section another compression scheme to reduce this time consumption. It
has the same processing steps as the pixel-level compression in Algorithm 4, but the only
difference is that in step 5 of Algorithm 4 pixel ytn(i) is replaced by its associated patch
ytn(i). Thus, the averaged result will be a patch ycm(i), as shown in Fig.8.2.b.
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Figure 8.5: The reconstruction of patch for pixel ycm(i). From left to right, 1) the label
series {lt1(i), lt2(i), . . . , ltN (i)}, 2) reconstruct the label patches for each label ltn(i), 3)
transform the label patches to value patches, 4) average these value patches with the same
center label m.

Taking pixel ycm(i) as example, it is given by Eq.(8.1) in the pixel-level compression.
In the patch-level compression, ycm(i) is computed by the same way:

ycm(i) =
1

Z

N
∑

n=1

w(n)ytn(i)

w(n) =

{

1 if ltn = m

0 otherwise

Z =

n=N
∑

n=1

w(n)

(8.11)

Assuming the number of looks of ytn(i) is L, the number of looks of ycm(i) is a constant
value, ZL, which is different from the varying number of looks in reconstructed patch
y′

cm(i). Label ltn is the same as the one in the pixel-level compression. Consequently,
patches ycm(i) instead of just center pixel ycm(i) are stored in the patch-level compression.
Of course the Huffman compression is also applied to obtain the final compressed data.

Using the same approximate computation, the compression ratio of the patch-level com-
pression is shown in Fig.8.4.b. Since the blue line (the approximate compression ratio) does
not consider the lossless compression of the clustering centers, the real compression ratio
(in green line) of Paris data set is significantly higher than the approximate compression
ratio.

Compared with the pixel-level compression, the patch-level compression can directly
use the stored patches and needs less time when dealing with patches. However the price
is larger storage space for patch-level compression (it can be seen by the comparison of
compression ratios in Fig.8.4.a and b).

Beyond the time and space consumptions, the difference between the two compression
schemes is the difference of the patch ycm(i) and the reconstructed patch y′

cm(i). Both
ycm(i) and y′

cm(i) are the neighbors of pixel ycm(i), while they may present different
values. It is difficult to measure the difference between ycm(i) and y′

cm(i) in a theoretical
way. We thus propose to do an empirical study of the difference computed in the real
SAR data, Paris data set. The difference between ycm(i) and y′

cm(i) is measured by
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Figure 8.6: The normalized histogram of difference between ycm(i) and y′
cm(i) is shown

in blue line. If considering the comparison of ycm(i) and y′
cm(i) as a change detection

problem, the threshold selected by the quantiles with α = 0.01 shown in red line (the left
part is unchanged and the right part is changed).

SGLR(ycm(i),y
′
cm(i)) given by Eq.(3.26). The blue line in Fig.8.6 shows the histogram

of this difference. The comparison between ycm(i) and y′
cm(i) can also be seen as a

change detection problem. Therefore, change detection threshold has been calculated using
synthetic data by the same method used in our proposed change detection method in
chapter 6. We can find that most pairs of ycm(i) and y′

cm(i) are unchanged (lower than
the threshold). Thus, pixel-level compression and patch-level compression will lead to
similar performance in the patch comparison, which will also be illustrated in the 2S-PPB
denoising experiments in section 8.3.2.

8.1.3 The relation with usual data compression schemes

Compression of audio, images and video data has been well studied in communication
field and lots of mature algorithms and compression standards have been proposed. They
can be divided into two groups: lossless compression and lossy compression. Lossless
compression usually exploits the statistical redundancy and represents data without losing
any information. Lempel-Ziv compression methods, Huffman coding and Burrows-Wheeler
transform [Burrows and Wheeler, 1994] are the most popular algorithms for lossless storage.
Lossy compression represents data with loss of some information, but the loss must by
acceptable under some conditions. For instance, the human eye is more sensitive to subtle
variations in luminance than it is to variations in color. Based on this fact, JPEG image
compression [Pennebaker and Mitchell, 1993] rounds off bits for nonessential information.
Of course, there is a corresponding trade-off between preserving information and reducing
data size. JPEG image compression is also used in video compression, like H.264/MPEG-
4 AVC [Wiegand et al., 2003] and H.265/HEVC [Sullivan et al., 2012]. More recently,
Donoho [2006] proved that compressed sensing can compress and reconstruct a signal
(audio, images or video) with even fewer samples than the sampling theorem requires, if
the signal is sparse.

In summary, most ordinary data compression methods (lossy compression) aim at re-
ducing the size of data for easy storage and real-time transport. They find a balance in
the trade-off between visual performance and reducing data size. Unlike the visual perfor-
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mance considered by ordinary data compression methods, our proposed compression has to
preserve information that can be used in SAR reflectivity estimation and change detection.
Besides, our main purpose in this chapter is to speed up the processing steps when dealing
with long time series.

8.2 Updating method

After the compression of SAR time series, at each position i we have the label series
{lt1(i), lt2(i), . . . , ltN (i), }, the clustering centers {yc1(i), yc2(i), . . . , ycM (i)} and associated
reconstructed patches {y′

c1(i),y
′
c2(i), . . . ,y

′
cM

(i)} (pixel-level compression) or associated
surrounding patches {yc1(i),yc2(i), . . . ,ycM (i)} (patch-level compression). For the sake of
simplicity, we denote in the following both the patches from pixel-level and patch-level
compression as {yc1(i),yc2(i), . . . ,ycM (i)} without loss of generality. This section will
present how the compressed data can be used to update the stable information by 2S-
PPB filter and the unstable information by the proposed change detection/classification
methods.

8.2.1 2S-PPB filtering for stable information updating

When a new SAR image ytN+1 is acquired, we firstly find similar information in the
database to denoise it. Taking a pixel ytN+1(i) as an example, the original 2S-PPB fil-
ter finds similar pixels in the pixel series {yt1(i), yt2(i), . . . , ytN (i)} by comparing patch
ytN+1(i) with patch series {yt1(i),yt2(i), . . . ,ytN (i)}. While with the compressed data, 2S-
PPB filter will apply this searching among the clustering centers {yc1(i), yc2(i), . . . , ycM (i)}.
Patch ytN+1(i) thus is compared with {yc1(i),yc2(i), . . . ,ycM (i)}, and this comparison can
be given by:

S(ytN+1(i),ycm(i)) = SGLR(ytN+1(i),ycm(i)) (8.12)

where SGLR(·) is the generalized likelihood ratio (GLR) based similarity given by Eq.(3.26).
Like the temporal step of 2S-PPB filter, S(ytN+1(i),ycm(i)) is thresholded to determine if
ycm(i) is similar with (or unchanged compared with) ytN+1(i). The center pixels associated
to the similar/unchanged patches ycm(i) are then combined with the new pixel ytN+1(i)
with the following expressions:

ỹtN+1
(i) =

1

Z

[

LtN+1(i)ytN+1(i) +

M
∑

m=1

fb(S(ytN+1(i),ycm(i)))Lcm(i)ycm(i)

]

,

Z = LtN+1(i) +

M
∑

m=1

fb(S(ytN+1(i),ycm(i)))Lcm(i) ,

(8.13)

where

fb(S(ytN+1(i),ycm(i))) =

{

1, if S(ytN+1(i),ycm(i)) > τ ,
0, otherwise

(8.14)

ỹtN+1
(i) is the temporal estimation and Eq.(8.13) is also the temporal step of the 2S-PPB

using the compressed data. Z is the normalization parameter and corresponding to the
number of looks L̃tN+1

(i) = Z associated to ỹtN+1
(i). The threshold τ is selected by the

same way as presented in section 4.2.1. Note that the threshold τ varies pixel by pixel,
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since it depends on the number of looks of patch ytN+1(i) and ycm(i). The temporal mean
image ỹtN+1

is obtained by applying Eq.(8.13) on each pixel of the new image. We can
finally get the 2S-PPB denoising result by applying the spatial denoising step of 2S-PPB
on the temporal mean image ỹtN+1

(details presented in section 4.2.2).
The change criterion given by Eq.(8.12) consists of only the GLR similarity, instead of

the combination of GLR similarity and KL similarity of the original 2S-PPB presented in
section 4.2.1. The reason for only using GLR similarity is to reduce the time consumption
of the denoising step.

8.2.2 Change detection for updating

To detect changes between the new image ytN+1 and one of the previous images ytn using
the change detection method presented in chapter 6, we need to reconstruct image ytn .
The reconstructing process is the same as to obtain the reconstructed patches illustrated
in Fig.8.5. Each label ltn(i) (associated to pixel ytn(i)) at time tn is replaced by the
associated clustering center ycm(i) with m = ltn(i) (ycm(i) is the center pixel of patch
ycm(i) or y′

cm(i)). We then have the reconstructed image y′tn (associated to ytn), which
consists of pixels ycm(i) with different number of looks. The changes between image y′tn
and new image ytN+1 can be detected by the following steps:

• denoise y′tn by the spatial step of the 2S-PPB filter;

• denoise ytN+1 by the 2S-PPB filter presented in section 8.2.1;

• calculate the change criterion RALRT given by Eq.(6.3) or RGLRT given by Eq.(6.7)
presented in section 6.1 and 6.2 respectively;

• threshold the change criterion using the quantiles method presented in section 6.3.

8.2.3 Change classification for updating

Following the idea of change detection in previous section, we can also apply the change
classification on the compressed data when a new SAR image is acquired. The processing
chain are given in the following:

• reconstruct each previous image y′tn (associated to original image ytn , n =
1, 2, . . . , N);

• denoise each y′tn by the spatial step of the 2S-PPB filter;

• denoise ytN+1 by the 2S-PPB filter presented in section 8.2.1;

• calculate the change criterion matrix of each position i by Eq.(7.1) presented in
section 7.1;

• classify the changes by the NORCAMA algorithm presented in chapter 7.

8.2.4 Database updating

After dealing with a newly acquired SAR image, the stable and unstable informa-
tion should be added to the database (or the compressed data) for the processing of
next new images. According to the change classification results (the new label series
{lt1(i), lt2(i), . . . , ltN (i), ltN+1

(i)} of each pixel i), we can find that:



123

• if ltN+1
(i) is a new label (ltN+1

(i) 6= ltn(i)|n=1,2,...,N ), a new clustering center
ycM+1(i) = ytN+1(i) or ycM+1(i) = ytN+1(i) will be added to the database.

• if ltN+1
(i) = ltn(i), the associated clustering center ycm(i) or ycm(i) (m = ltn(i)) will

be updated by:

ycm(i) =
LtN+1

(i)ytN+1(i) + Lcm(i)ycm(i)

LtN+1
(i) + Lcm(i)

, for pixel-level compression,

ycm(i) =
LtN+1

(i)ytN+1(i) + Lcm(i)ycm(i)

LtN+1
(i) + Lcm(i)

, for patch-level compression.
(8.15)

8.3 Experiments of compression and updating

We test our compression and updating methods on both synthetic images and real SAR
time series.

8.3.1 Time and space consumptions

Compression. We apply the proposed compression method on the Paris data set, 21
single-look TerraSAR images. Only the first 20 images are used in the compression and
the last image is considered as the newly acquired image which will be used in the updating
step. Each image in the Paris data set has 2048×2048 pixels and the data type of SAR
intensity value is Float. The saved labels are integer and we save them as Integer data type.
Table 8.1 shows the time consumption using Intel Core 2 Quad CPU (Q9550) 2.83GHz and
the compression ratio of the proposed patch level and pixel level compression compared
with MAT format (a lossless data compression applied by the Save function of MATLAB,
Versions 7.3 or later) 1. The patch size in the patch level compression is selected as 7× 7
the same size as used in 2S-PPB filter.

The higher compression ratio denotes less cost of storage space. About the time con-
suming of the compression, since it performs pixel by pixel some parallel algorithms can
be used to speed up the compressing step.

File size (MB) Time consumption Compression ratio
Original data 320.00 - 1:1

MAT c©MATLAB 108.00 2.5s 2.963:1
Patch-level compression 163.95 54.21mn 1.952:1
Pixel-level compression 21.71 50.38mn 14.75:1

Table 8.1: The time consumption and compression ratio of the proposed patch-level and
pixel-level compression compared with MAT c©MATLAB lossless compression.

Denoising and change classification. We compare the time consumption of 2S-PPB
filter and NORCAMA change classification using compressed data and original SAR time
series. Table .8.2 shows the details. Note that the time consumption here does not include
the compression process. The SAR time series tested here is the Paris data set with
the last image as the newly acquired image. The time consumption of change detection

1The save function of MATLAB uses GZIP (level-3) compression to save variables to files. GZIP is
based on the DEFLATE algorithm, which is a combination of LZ77 and Huffman coding. http://www.

mathworks.com/help/pdf_doc/matlab/matfile_format.pdf
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includes the denoising process of the two images and the change classification also includes
the denoising of all the images. All of these processes are pixel by pixel, some parallel
algorithms can be used to reduce the cost of time.

2S-PPB denoising Change detection Change classification
Original SAR data 28.57h 30h 58.12h

Patch-level compression 1.38h 2.75h 27.75h
Pixel-level compression 1.89h 3.21h 29.56h

Table 8.2: The time consumption of 2S-PPB filtering, change detection between 2 dates
and change classification using all dates.

8.3.2 Updating results

Denoising. We first test on synthetic images corrupted by multiplicative single-look
speckle noise. in which the classical noise-free image house is used. We use the same noise-
free image to synthesize a temporal image set, which means there is no temporal changes.
The synthetic multi-temporal images have 10 dates (images) and the first 9 images are used
in the compression step, the last one is considered as the new image. The denoising results
of the new image are shown in Fig.8.7. The visual performance and the numerical results
(SNR) show that 2S-PPB filter using patch/pixel-level compression data has comparable
performance with 2S-PPB using original SAR time series. However, the time consumption
is much less than using original SAR time series (note that the time consumption does not
count the compression time consuming).

(a) Original SAR data (b) Patch-level compression (c) Pixel-level compression
SNR: 16.67dB SNR: 16.42dB SNR: 16.51dB
time: 9.77mn time: 53.30s time: 80.41s

Figure 8.7: 2S-PPB denoising using (a) original SAR time series, (b) patch-level compres-
sion data and (c) pixel-level compression data.

Paris data set has also been tested here. The last image in Paris is considered as the
new one and Fig.8.8 shows the denoising results. Comparing with 2S-PPB using original
SAR time series, the visual performance 2S-PPB using patch or pixel level compressed
data can achieve comparable results. Some regions have been shown in Fig.8.9. The result
using patch-level compressed data is close to using pixel-level compressed data. Using
original SAR time series, homogeneous regions have less variance than using pixel/patch-
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level compressed data, while in regions rich of texture or edges, the three results have
comparable visual performance.

(a) New noisy image (b) Original 2S-PPB

(c) 2S-PPB using patch level compression (d) 2S-PPB using pixel level compression

Figure 8.8: 2S-PPB denoising using original SAR time series (b), patch level compression
data (c) and pixel level compression data (d).

Change classification. After the compression, the change classification of Paris data
set can be obtained and shown in Fig.8.10.a. When the new image (the last image of
Paris) is acquired, the change classification results using pixel-level compression data will
be updated and shown in Fig.8.10.b.

To analyze the classification results, we select some interesting patch series (7×7 pixels)
and plot their mean of the intensity values by using time as coordinate axis X, as shown
in Fig.8.11. The 21 values associated to 21 dates and the last one is associated to the
new image. In Fig.8.11.a, there is a boat in the river representing itself as impulse change
without the new information of the new date, however after the updating it turns to be
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(a) Boats in the river.

(b) Metro crossing the river and the Eiffel tower.

(c) Square (Champ de Mars).

(d) Paris Military school (1).

(e) Paris Military school (2).

Figure 8.9: 2S-PPB denoising results of Paris data set. From left to right, 2S-PPB using
original SAR time series, 2S-PPB using patch-level compression data, 2S-PPB using pixel-
level compression data, the difference map (|y1 − y2|) between first and second image, the
difference map between first and third image, the difference map between second and third
image.
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(a) Change classification by NORCAMA of the
first 20 images of Paris

(b) Updating of change classification with the new
image (the 21-th image) of Paris

Figure 8.10: Change classification updating of Paris. (a) Classification results by NOR-
CAMA presented in chapter 7. (b) Updating of classification with the pixel-level com-
pressed data.

Figure 8.11: Change classification updating of Paris. From top to bottom: Boat in the
river (impulse change → circle change; Moving trains (no change → step change); Moving
Car on the street (step change → impulse change).
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(a) Huangshi (b) Daye

Figure 8.12: Sentinel-1 images of Huangshi and Daye in Hubei province, China acquired
at 8th October 2014.

circle change since its repeated showing up.

8.4 Experiments of Sentinel-1 images

Sentinel-1A, the first Sentinel-1 satellite launched in April 2014, carries a C-band SAR
sensor. Sentinel-1 (combination of Sentinel-1A and Sentinel-1B) can provide continuous
radar mapping of the earth with enhanced revisit frequency (6 days) and long time series2.
The data used in this experiment is Level-1 Ground Range Detected (GRD) product, which
has been projected to ground range using an Earth ellipsoid model such as WGS84. Thus,
these multi-temporal images can be easily registered to each other manually (or with the
help of some ground control points [Sester et al., 1998]).

Fig.8.12 shows two regions acquired at 8th October 2014 of Huangshi city and Daye city
in Hubei province, China. There are 7 images of the two regions acquired at 8th October
2014, 20th October 2014, 1th November 2014, 13th November 2014, 25th November 2014,
7th December 2014 and 19th December 2014 respectively. The spatial resolution is 5m×5m.
The proposed methods (2S-PPB filter, NORCAMA change detection and classification and
updating) have been tested on the Sentinel-1 images.

Multi-temporal denoising of Sentinel-1 images

The patch size is selected as 5×5 pixels since the spatial resolution is lower than the SAR
images tested in chapter 4. Fig.8.13 compares the 2S-PPB denoising results using original
time series (7 images) and the 2S-PPB denoising results using the compressed data. The
difference map shows that the two results have close performance in homogeneous areas.
More details can be found in Fig.8.14.

2More information can be found in https://directory.eoportal.org/web/eoportal/

satellite-missions/c-missions/copernicus-sentinel-1
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(a) Original 2S-PPB (b) 2S-PPB in updating (c) Difference map

(d) Original 2S-PPB (e) 2S-PPB in updating (f) Difference map

Figure 8.13: Multi-temporal denoising results. From left to right: 2S-PPB filtering re-
sults using original time series, 2S-PPB denoising results using the compressed data and
difference between the former two results.

Change detection of Sentinel-1 images

We applied the proposed change detection method (RGLRT) on two Sentinel-1 images
acquired at 8th October 2014 and 19th December 2014 respectively. The change criterion
maps are shown in Fig.8.15. Since the time interval between the two images is not long,
the changes between the two dates mainly takes place at river (due to the boats) and
paddy fields. Fig.8.17 also show some details of the change detection results. In the right
of Fig.8.17, the changes are detected by thresholding the change criterion RGLRT with
τ = quantile(R, 0.001).

Change classification of Sentinel-1 images

The first 6 images in the time series are considered as images acquired at previous dates,
and the last image acquired at 19th December 2014 is seen as the new image. Fig.8.16.b
and e show the change classification results using the previous images (before updating).
When the new images are acquired, the change classification results are updated, as shown
in Fig.8.16.c and f. Since most changes are boats, these changes are classified as impulse
or complex changes (marked in green and yellow color). More details can be found in
Fig.8.18.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 8.14: Multi-temporal denoising results. From left to right: noisy images, 2S-PPB
filtering results using original time series, 2S-PPB denoising results using the compressed
data and difference between the former two results.
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(a) Noisy image at 8th Oc-
tober 2014

(b) Noisy image at 19th
December 2014

(c) Change criterion map

(d) Noisy image at 8th Oc-
tober 2014

(e) Noisy image at 19th De-
cember 2014

(f) Change criterion map

Figure 8.15: Multi-temporal denoising results. From left to right: 2S-PPB filtering re-
sults using original time series, 2S-PPB denoising results using the compressed data and
difference between the former two results.

(a) One of noisy images (b) Before updating (c) After updating

(d) One of noisy images (e) Before updating (f) After updating

Figure 8.16: Updating of change classification results. From left to right: one of the
noisy images, the change classification results using the first 6 images, the updated change
classification results with the new image acquired at 19th December 2014.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 8.17: Change detection between date 8th October 2014 and 19th December 2014.
From left to right: noisy image acquired at 8th October 2014, noisy image acquired at
19th December 2014, change criterion maps (RGLRT), and change detection results with
threshold τ = quantile(R, 0.001).
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(a)

(b)

(c)

Figure 8.18: Updating of change classification results.
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8.5 Conclusion

Based on the clustering of pixel series proposed in chapter 7, this chapter introduces a
patch or pixel level compression for multi-temporal SAR images and applies it to up-
date stable information (reflectivity estimation) and unstable information (change detec-
tion/classification map) when a new SAR image is acquired. Contrary to ordinary data
compression mainly concerned by the compression ratio, this compression considers both
time consumption of dealing with new image and space consumption (corresponding to the
compression ratio) of saving the old SAR time series. The experimental results show that
the denoising and change detection performance using the compressed data are comparable
to those obtained using the original SAR time series. We also tested our proposed meth-
ods (2S-PPB filter, NORCAMA change detection and classification, updating method) on
C-band SAR data from the newly launched Sentinel-1A sensor.
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Chapter 9

Conclusion

This chapter concludes this thesis by summarizing and discussing the results obtained in
the development of the different research topics. Finally, it gives an outlook for future
work.

9.1 Summary

This thesis focuses on the information exploitation of multi-temporal synthetic aperture
radar (SAR) images. More specifically, the exploited information is 1) redundancy infor-
mation in both spatial and temporal domains for reflectivity estimation of SAR since the
speckle noise corrupts SAR images and makes their interpretation very difficult, 2) change
information for analyzing the difference between two dates and monitoring the urban de-
velopment and 3) similar information for compressing the multi-temporal SAR images to
reduce the space and time consumption.

Two-steps multi-temporal non local means. Non local means (NLM) search redun-
dant pixels in a non-local or global area and average them to estimate the noise-free values.
Under the NLM framework, we investigated NLM’s successful extension to SAR images
(patch-based probability (PPB) filter) and developed it to deal with multi-temporal SAR
images. The proposed multi-temporal filter is based on a two steps multi-temporal NLM,
dividing the denoising process into two main steps: temporal step averaging temporal pix-
els with binary weights and spatial step averaging spatial pixels based on the PPB filter.
The patch comparison criterion used in PPB filter has been developed to handle patches
with different levels of noise. We also extended the proposed denoising framework to the
case of miss-registered SAR images by adding an offset estimation step. This 2S-PPB
approach is one of the major contribution of the PhD and has been published in [Su et al.,
2012, 2014b].

Likelihood ratio test based change criteria. The change detection problem between
two SAR images has been considered through a likelihood ratio test. To calculate the
likelihood ratio, various estimation or approximation of noise-free parameters have been
proposed in the literature. In this work, we proposed to use our multi-temporal denoising
results to estimate the parameters of the likelihood ratio. Two change criteria have been
proposed: 1) the approximate likelihood ratio, in which the noise-free value is directly
replaced by the denoised value; 2) the generalized likelihood ratio, in which we estimated
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the noise-free parameters using both the denoised value and the noisy value by a maximum
likelihood estimation.

Change classification by normalized cut on change criterion matrix. In this part,
we focused on the temporal behaviors of changes and classified them into step, impulse,
circle and complex changes. To classify the changes, we first represented the full change
information of a pixel time series by a matrix of change criterion based on the proposed
change criteria. A normalized-cut was then applied on the change criterion matrix to
cluster the pixels in each pixel series and the changes were recognized according to their
clustering labels. This part is the second major contribution of this PhD and has been
published in [Su et al., 2013, 2014a, 2015].

SAR time series compression and information updating. We focused on the big
data problem of multi-temporal SAR images in this work and proposed patch level and
pixel level compressions to reduce the space and time consumption when dealing with
SAR time series. When a new SAR image is acquired, the compressed data can be easily
and quickly used to estimate the reflectivity of a new SAR image and update the change
classification maps, without processing the whole stored SAR time series.

9.2 Perspectives

Reflectivity estimation of SAR data. Different denoising approaches have different
advantages when filtering noisy images. For instance NLM highly reduces the local vari-
ance, regularity based methods enhance image details, dictionary based methods handles
well the rare features of noisy images and so on. A best filter may consist of a combination
of these methods. The challenges are thus what to be combined and how to combine. A
research axis inspired from [Sutour et al., 2013] could provide improved results for multi-
temporal denoising.

SAR change information analysis. Our preliminary results are promising but should
be validated on more data sets, for instance more Sentinel-1 images etc. A short term
perspective of this work is to improve the pixel level change classification by introduc-
ing shape information. Our results rely on pixel based classification but shape analysis
could help the change classification and could be a way to introduce semantic information.
Markov Random Fields, Conditional Random Fields and so on are efficient frameworks
for this aim. Another short term perspective is the validation and extension of the work
on long multi-temporal series. In particular ’smooth’ changes, useful for vegetation and
agricultural areas could be introduced.

Extensions to other remote sensing data. The multi-temporal SAR images concerned
in this thesis are from the same sensor with the same spatial resolution, the same incidence
angle, the same ascending/descending mode and the same polarimetric mode, and have
been finely registered (except in section 4.4). However the multi-temporal SAR images
in reality are much more than that. Applying the proposed methods to complex multi-
temporal SAR data, specially with different incidence angles and different track directions
will be a challenging task. The full interest of the ’World-SAR’ concept, combining dif-
ferent SAR acquisitions rely on these new approaches to be developed. And some new
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developments should be proposed to deal with these complex input data. In addition, op-
tical images and other modes of remote sensing images can also be efficiently. Among the
possible methods to achieve this aim, learning approaches could help our understanding
and the definition of new methods.
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