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Abstract—A general approach for anomaly detection or novelty
detection consists in estimating high density regions or Minimum
Volume (MV) sets. The One-Class Support Vector Machine
(OCSVM) is a state-of-the-art algorithm for estimating such
regions from high dimensional data. Yet it suffers from practical
limitations. When applied to a limited number of samples it
can lead to poor performance even when picking the best
hyperparameters. Moreover the solution of OCSVM is very
sensitive to the selection of hyperparameters which makes it
hard to optimize in an unsupervised setting. We present a
new approach to estimate MV sets using the OCSVM with a
different choice of the parameter controlling the proportion of
outliers. The solution function of the OCSVM is learnt on a
training set and the desired probability mass is obtained by
adjusting the offset on a test set to prevent overfitting. Models
learnt on different train/test splits are then aggregated to reduce
the variance induced by such random splits. Our approach
makes it possible to tune the hyperparameters automatically and
obtain nested set estimates. Experimental results show that our
approach outperforms the standard OCSVM formulation while
suffering less from the curse of dimensionality than kernel density
estimates. Results on actual data sets are also presented.

I. INTRODUCTION

An anomaly is defined as any observation that does not

conform to the expected normal behavior [1]. The goal of

anomaly detection also referred as novelty detection is to

identify abnormal observations without previously knowing

them. Applications include machine fault detection, network

intrusion detection in cybersecurity or fraud detection in

finance. Given observations X1, . . . , Xn ∈ R
d, d ≥ 1, inde-

pendent and identically distributed realizations of an unknown

probability distribution P , we would like to learn a subset of

R
d such that points lying inside this set will be considered

as normal and points lying outside will be considered as

anomalies. The implicit hypothesis made in this context is

that anomalies correspond to rare events and are located in the

tail of the distribution. A possible approach is to estimate the

subset corresponding to the region where the data are most

concentrated. Such a region is called a Minimum Volume

(MV) set, i.e., the set of minimum volume with probability

mass at least α, with α close to 1.

The notion of MV sets has been introduced by Polonik [2].

Let µ be the Lebesgue measure and α ∈ (0, 1). A MV set

Copyright notice: 978-1-4673-8273-1/15/$31.00 c©2015 European Union

with mass at least α is a solution of the following optimization

problem

min
G∈B(Rd)

µ(G) such that P (G) ≥ α , (1)

where B(Rd) is the set of all measurable subsets of Rd.

We assume that the probability measure P has a density

h with respect to the Lebesgue measure µ and that h has no

flat parts, i.e., µ({x, h(x) = τ}) = 0 for all τ > 0. One can

show that under regularity assumptions on h, the optimization

problem (1) has an unique solution G∗
α (up to subsets of null

µ-measure). This solution satisfies P (G∗
α) = α and is a density

level set, i.e., a set of the form {h > τ}, τ > 0 [3]. A MV

set is thus a density level set. The converse holds with no

assumption on the density: density level sets are MV sets.

There are essentially two different approaches to estimate a

MV set. The first one is to resort to a plug-in approach where

one first estimates the underlying density and then thresholds

it at the level τ̂α such that P ({ĥn ≥ τ̂α}) = α where ĥn is

a density estimator. The main drawback of this approach is

that plug-in estimators do not scale well with the dimension

(for e.g. see [4]–[6]). Moreover the entire density is estimated

while just a density level set is needed.

The second one is to resort to a direct approach by choosing

the set of minimum volume containing a proportion α of the

sample points among a class of sets such as Glivenko-Cantelli

or Vapnik-Cervonenkis classes. Direct approach algorithms

include algorithms from [7], [8] and the OCSVM [9], [10].

Scott and Nowak [7] introduce a framework analogous to

the empirical risk minimization in binary classification to

estimate a MV set. Davenport et al. [8] use a Neyman-

Pearson classification approach to estimate MV sets with

SVMs or any other classification algorithms. Tax and Duin

[10] introduce the Support Vector Data Description (SVDD)

algorithm to search for the hypersphere with the minimum

volume containing at least a proportion α of data sample in

a Reproducing Kernel Hilbert Space (RKHS). If the kernel

used is the Gaussian kernel then the OCSVM and SVDD are

equivalent [11].

While the problem of anomaly detection is unsupervised, it

is known that an unsupervised problem can be transformed

into a supervised one [12]. Steinwart et al. [13] introduce

a classification framework for density level set estimation.

The classification is performed between the original data and



0 2 4 6 8 10

0

2

4

6

8

10

-6
0
.0

-6
0.
0

-45
.0

-30.0

-30.0

-1
5
.0

-15.0

0.0

0.
0

Fig. 1. Application of the OCSVM with ν = 0.4 on a Gaussian mixture
sample of size n = 1000. In blue the estimated set, in black the level sets of
the solution function of the OCSVM, in red the support vectors. The solution
function captures the structure of the tail of Gaussian mixture distribution.

an artificial second class. The density level set {h > τα}
can then be learnt with any classification algorithm without

estimating the entire density h. However one still needs to

choose the threshold corresponding to a mass α which can be

computationally expensive.

The OCSVM algorithm introduced by Schölkopf et al. [9]

is one of the most popular algorithm for anomaly and novelty

detection. In [14], Vert and Vert show that the OCSVM is

a consistent estimator of density level sets. In fact they give

a more powerful result: the solution function returned by the

OCSVM gives an estimate of the tail of the underlying density

h. The OCSVM is mainly applied with the Gaussian kernel

and the performance highly depends on the kernel bandwidth

selection.

With the formulation introduced by Schölkopf et al. [9],

the mass of the estimated set is controlled by a parameter

ν specified by the user. The estimated set is guaranteed to

contain at least a fraction 1− ν of the data. However simple

simulations show that the OCSVM can perform very poorly

to estimate a MV set for a finite data sample. For instance

for a Gaussian mixture such as the one in Figure 1, no value

of the kernel bandwidth gives a good approximation of the

true MV set with mass at least 0.95 when the parameter ν is

chosen such that the empirical probability of the estimated set

is larger than α (see section III-A). However using a different

value of ν, the set estimated by the OCSVM clearly differs

from the true MV set but the solution function captures the

structure of the tail of the underlying distribution as shown in

Figure 1.

The approach we propose and describe in the second part

of this paper consists in fixing ν at a value such that the

proportion of points outside the estimated set will be strictly

greater than 1−α. The solution function is learnt on a training

set and then thresholded to obtain the desired probability mass

on a test set to prevent overfitting. To reduce the variance

induced by the random split of the data set into a training

set and a test set we aggregate several models. Thresholding

the solution function of the OCSVM to obtain the desired

probability mass is an approach that has already been very

briefly mentionned in [9] and in [15]. However, to the best of

our knowledge, such an approach has never been considered

thoroughly. In the second part of this paper we present the

OCSVM and its properties before presenting our approach. In

the last part we compare the performance of our approach with

the OCSVM on simulated data sets and apply our approach to

real data sets. Connections can be made between this paper and

[16] in which Filipone et al. apply the possibilistic c-means

algorithm in kernel-induced spaces.

II. METHOD

A. Background on One-Class SVM

The OCSVM was introduced by Schölkopf et al. [9] to esti-

mate high density regions from a data sample. After mapping

the data in a feature space through a function Φ determined by

a specific kernel k the OCSVM finds a separating hyperplane

between the origin and the mapped data. The separating

hyperplane defined by a vector w and an offset ρ is given

by the solution of the following optimization problem

min
w,ξ,ρ

1

2
‖w‖2 − ρ+

1

νn

n
∑

i=1

ξi

s.t. 〈w,Φ(xi)〉 ≥ ρ− ξi , 1 ≤ i ≤ n

ξi ≥ 0 , 1 ≤ i ≤ n

(2)

where ν ∈ (0, 1) is a parameter specified by the user. This

problem is convex and as strong duality holds it is solved

through its dual

min
γ

1

2

∑

1≤i,j≤n

γiγjk(xi, xj)

s.t. 0 ≤ γi ≤
1

νn
, 1 ≤ i ≤ n

n
∑

i=1

γi = 1

(3)

The resulting solution function is given by

x 7→
n
∑

i=1

γik(x, xi)

and the resulting estimated MV set by

Ĝ = {x,
n
∑

i=1

γik(x, xi)− ρν ≥ 0} (4)

where ρν denotes the ρ solution of (2).
As with SVM in supervised settings, not all the γi are non-

zero. The points xi such that γi > 0 are called support vectors

(SVs). Support vectors are exactly the samples located outside

or on the border of the set Ĝ:

{xj , 1 ≤ j ≤ n,

n
∑

i=1

γik(xj , xi)− ρν ≤ 0} .



Outliers are exactly the samples that are located strictly

outside the set Ĝ:

{xj , 1 ≤ j ≤ n,

n
∑

i=1

γik(xj , xi)− ρν < 0} .

The parameter ν needs to be chosen by the user. We have

the following property [9]:

Proposition 1: Assuming the solution of (2) satisfies ρν > 0
the following statement holds

i) ν is an upper bound on the fraction of outliers and a

lower bound on the fraction of SVs

Outliers

n
≤ ν ≤

SV

n
.

ii) If the data were generated independently from a distribu-

tion P absolutely continuous with respect to the Lebesgue

measure and if the kernel k is analytic and non constant

then
SV

n
−→ ν almost surely

Outliers

n
−→ ν almost surely

This property is of great interest in practice. It gives the

user some insights on how to choose the parameter ν. Indeed

the empirical probability of the estimated set is greater than

1−ν and the probability of the estimated set converges almost

surely to 1 − ν as n tends to infinity. Hence one possible

approach is to choose ν = 1 − α to estimate a MV set with

mass at least α [17], [18].

In the following the kernel k is the Gaussian kernel kσ, σ >

0, and is defined as

kσ(x, x
′) = exp

(

−
1

2σ2
‖x− x′‖2

)

.

We denote by fσ the solution function

fσ(x) =

n
∑

i=1

γikσ(x, xi) .

The paper of Vert and Vert [14] proves the consistency of the

OCSVM for density level sets estimation and hence for MV

sets estimation. The optimization problem associated with the

OCSVM studied in their paper is the following

min
f∈Hσ

1

n

n
∑

i=1

max(0, 1− f(xi)) + λ‖f‖2Hσ
(5)

where Hσ is the RKHS associated to the normalized Gaussian

kernel and λ > 0 a regularization parameter.

Vert and Vert [14] prove that for a well calibrated kernel

bandwidth σ, the OCSVM is a consistent estimator of every

density level sets of level τ ∈ (0, 2λ). To show such a

result they prove that the solution of the OCSVM when a

normalized Gaussian kernel is used converges in norm L2 and

in probability to the underlying density truncated at 2λ:

lim
n→+∞

‖fσ − hλ‖L2
= 0 in probability

where

hλ =







h(x)

2λ
if h(x) ≤ 2λ

1 otherwise.

Remark 1 (Connection with kernel smoothing): If ν = 1
the constraints of the dual problem (3) give γi = 1

n
for all

i ∈ {1, . . . , n}. This means that all the samples are taken into

account in the solution and the solution function is

fσ(x) =
1

n

n
∑

i=1

kσ(x, xi) .

This function is the one we recover when performing a

kernel smoothing with the same kernel bandwidth σ in all

the directions.

The advantage of the OCSVM over a kernel smoothing is

that the estimated set is only characterized by the support

vectors which, for small values of ν, represent a small fraction

of the sample size: the solution is sparse. This property is

useful when performing the prediction task which is therefore

less expensive than when using a kernel smoothing approach.

Besides the solution function gives an approximation of the

tail of the underlying density and, unlike a kernel smoothing,

the approximation given by the solution function can be very

bad elsewhere. This is why classification is sometimes said

to be easier than regression [19]: we only want to be good in

a neighborhood of the border of the set of interest and not

elsewhere.

Eventually, parametrization of the mass of the MV set

estimated by the OCSVM via the parameter ν does not allow

to obtain nested set estimates as the mass α increases. For

each ν a new optimization problem is solved and nothing

ensures that the different set estimates are nested. Variants

of the OCSVM that ensure this property have been introduced

[20], [21]. With our approach, the mass of the MV set is

parametrized through the offset and this allows us to produce

nested sets in a neighborhood of the estimated MV set with

mass at least α. For the same solution function, we select

different offsets ρ, one for each mass.

B. Automatic Calibration of OCSVM

We want to estimate a MV set with mass at least α with α

close to 1 from the sample X1, . . . , Xn. Thanks to the result of

Vert and Vert [14], we know that the solution function of the

OCSVM gives an approximation of the tail of the underlying

distribution. More precisely in our approach we use the fact

that fσ is an approximation of the underlying density in a

neighborhood of the border of the MV set. The algorithm we

propose is described in Figure 2 and detailed hereafter.

First the data set X = (X1, . . . , Xn) is randomly split in

a training set Xtrain and a test set Xtest respectively of size

ntrain and ntest. Let Ĝ be the set estimated by the OCSVM

on the training set. The parameter ν is chosen such that we

are able to estimate the underlying distribution for the interval

of masses [α − c, α + c] where c > 0. Therefore ν must be

chosen such that Pntrain
(Ĝ) 6 α− c, where Pntrain

denotes



Input: parameter ν, mass α, data set X , kernel bandwidths

set Σ, c > 0
Randomly split X in a training set Xtrain and a test set

Xtest

for kernel bandwidth σ in Σ do

fσ = OCSVM(ν, σ,Xtrain)
for β in [α− c, α+ c] do

Bisection search to find ρ̂β such that

Pntest
(Ĝσ

ρ̂β
) = β

where Ĝσ
ρ̂β

= {x, fσ(x)− ρ̂β ≥ 0}

Computation of µσ
ρ̂β

= µ(Ĝσ
ρ̂β
) by Monte Carlo

integration

end for

end for

Compute Area under the Mass Volume curve (β, µσ
ρ̂β
) for

each σ: AMV(σ)

σopt = argminσ∈Σ AMV(σ)
return Ĝ

σopt

ρ̂α
= {x, fσopt

(x)− ρ̂α ≥ 0}

Fig. 2. Algorithm of the OCSVM with a calibrated offset and the selection
of the optimal kernel bandwidth

the empirical probability measure based on the training set.

Pntrain
(Ĝ) 6 α − c is equivalent to a fraction of outliers,

points lying outside Ĝ, greater than 1 − (α − c). What we

have from proposition 1 is that the fraction of outliers is less

than ν for all n and converges almost surely to ν as n tends

to infinity. The closer ν is to 1, the more outliers we allow

the OCSVM to find. If ν has been set such that the fraction

of outliers is less than 1− (α− c), then a higher value should

be chosen. As we only consider values of α close to 1, we

do not need ν to be too close to 1 and can therefore preserve

the sparsity of the OCSVM. In our algorithm we assume that

a good value for ν is known and is set independently of the

data set.

The function fσ gives an approximation of the tail of the

distribution. Consequently thresholding it at ρ̂α such that

Pntest
(fσ ≥ ρ̂α) = α should offer an approximation of

the MV set with mass at least α, where Pntest
denotes the

empirical probability measured based on the test set.

Remark 2: Let α1 < · · · < αN be N values in [α−c, α+c]
and let ρ̂1 ≥ · · · ≥ ρ̂N be such that for all i ∈ {1, . . . , N}
we have Pntest

(fσ ≥ ρ̂i) = αi. Let Ĝi be the set Ĝi =
{x, fσ(x) ≥ ρ̂i}, then by construction the following holds

Ĝ1 ⊂ · · · ⊂ ĜN .

C. Performance metric and kernel bandwidth selection

To assess the performance of our approach and select the

kernel bandwidth we need a performance metric. The kernel

bandwidth parameter selection is an important task in practice

as the solution of OCSVM highly depends on its choice. Low

values of σ lead to overfitting. On the contrary, high values of

σ lead to underfitting.

A performance metric used for the theoretical study of MV

sets or density level set estimators is the Lebesgue measure

of the symmetric difference between the true MV set G∗
α and

the estimate Ĝ, µ(G∗
α∆Ĝ) where A∆B = (A\B) ∪ (B\A)

[7], [13], [22].

This performance metric depends on the true MV set G∗
α.

We use it to assess the performance of our approach and select

the optimal kernel bandwidth when we have access to the true

MV set.

Several performance metrics have been used to assess the

quality of one-class classification algorithms and select the

optimal hyperparameters (see among others [8], [20], [21],

[23]). It is noteworthy to say that all these metrics require

to sample points uniformly, either to compute the volume

of the estimated set or to generate an artificial second class.

Therefore both method suffer from the curse of dimensionality.

First, the proportion of points uniformly sampled in the

hypercube enclosing the data lying in the estimated set can

decrease exponentially to 0 with the dimension. Second, for

high dimensions, data are expected to be very sparse and to be

very easily separated, leading classification solutions to overfit.

We must therefore limit the use of these metrics to data sets

of low dimension, for e.g. d ≤ 10. This has been mentionned

by Tax in [11], [23].

The performance metric we decide to use in our algorithm

to select the kernel bandwidth is the Mass Volume curve

introduced by Clémençon and Jakubowicz [24] and defined

as {(α, µ(G∗
α)), α ∈ (0, 1)}. To use this performance metric,

we still need to sample points uniformly to compute the

volume. The Mass Volume curve is a functional criterion

that can be used to assess the quality of a scoring rule

in the unsupervised setting. The Mass Volume curve of the

true underlying distribution is the lowest Mass Volume curve

that can be obtained. Clémençon and Robbiano [25] give

the explicit relation between the well known area under the

ROC curve (AUC) and the area under the Mass Volume

curve. Minimizing the area under the Mass Volume curve is

equivalent to maximizing the AUC when the second class has

been generated from a uniform distribution.

The Mass Volume curve is suited to assess the quality of

scoring rules whereas the first purpose of the OCSVM is not

to estimate a scoring rule. Indeed, the OCSVM with ν =
1 − α gives an estimated set of the form {x, fσ(x) ≥ ρν}.

However there is no guarantee that for all ρ 6= ρν , sets of the

form {x, fσ(x) ≥ ρ} are good approximations of MV sets.

Our approach estimates a scoring rule for the points located

in the tail of the distribution and we use the area under the

Mass Volume curve for masses in a neighborhood of α as a

performance metric to select the best kernel bandwidth.

To compute the Mass Volume curve, {(P (Ĝβ), µ(Ĝβ)), β ∈
[α − c, α + c]}, we need to compute the probability and the

volume of the estimated set. The probability is estimated on

the test set and is thus equal to β as we choose the offset

such that the empirical probability of the estimated set on the

test set equals β. We estimate the volume by Monte Carlo

estimation.



Volume computation: The volume of a set G = {x, fσ(x) ≥ ρ}
is defined as

µ(G) =

∫ 1G(x)µ(dx) . (6)

This integral cannot be computed exactly so we resort to

Monte Carlo estimation. As we do not know how to sample

uniformly in the set G either we resort to importance sampling

rewriting (6) as

µ(G) =

∫ 1G(x)
q(x)

q(x)µ(dx) (7)

where q must be a well chosen distribution.

The most popular distribution used in the literature is the

uniform distribution over the hypercube Gc enclosing the data.

Let Vc be the volume of Gc then the density of such a

distribution is qc(x) =
1
Vc
1Gc

(x) and

µ(G) = Vc

∫ 1G(x)1Gc
(x)

qc(x)µ(dx) = Vc

∫ 1G(x)qc(x)µ(dx)
= VcEqc [1G(Z)] .

Thanks to the Law of Large Numbers the volume µ(G) is

estimated by

µ̂c(G) =
Vc

m

m
∑

i=1

1G(Zi) Zi ∼ qc.

Sampling uniform data is an issue worth mentioning as it

is the factor limiting the estimation of Minimum Volume sets

in a high dimension setting.

D. Aggregation

In section II-B we presented our approach consisting in the

following:

1) Randomly split the data set in a training set and a test

set

2) Train the OCSVM on the training set to obtain fσ
3) Find the offset ρ̂α such that Pntest

({fσ ≥ ρ̂α}) = α on

the test set

Randomly splitting the data set in training and test sets

introduces variance in the result. To reduce the variance we

aggregate several models based on B train/test splits. Let

(f b
σ, ρ̂

b
α), 1 ≤ b ≤ B be the models obtained, where ρ̂bα is

such that

P b
ntest

({x, fσ(x) − ρ̂bα ≥ 0}) = α .

Averaging all the models we obtain

FB
σ (x) =

1

B

B
∑

b=1

(f b
σ(x) − ρ̂bα) .

The final estimated set is given by

ĜB
α = {x, FB

σ (x) ≥ 0} .

Input: parameter ν, mass α, data set X , kernel bandwidths

set Σ, c > 0, number of models B

for b in {1, . . . , B} do

Randomly split X in a training set Xtrain and a test set

Xtest

for kernel bandwidth σ in Σ do

f b
σ = OCSVM(ν, σ,Xtrain)

for β in [α− c, α+ c] do

Bisection search to find ρ̂bβ such that

Pntest
(Ĝσ

ρ̂b
β

) = β

where Ĝσ
ρ̂b
β

= {x, f b
σ(x)− ρ̂bβ ≥ 0}

end for

end for

end for

For all β and all σ, compute the volume µσ
β of the set

{x, FB
σ,β(x) ≥ 0} where FB

σ,β(x) =
1
B

∑B

b=1(f
b
σ(x) − ρ̂bβ)

Compute Area under the Mass Volume curve (β, µσ
β) for

each σ: AMV(σ)

σopt = argminσ∈Σ AMV(σ)
return ĜB

α = {x, FB
σopt,α

(x) ≥ 0} where FB
σopt,α

=
1
B

∑B

b=1(f
b
σopt

(x)− ρ̂bα)

Fig. 3. Aggregation of the models learnt on different train/test splits

The algorithm is described in Figure 3.

Proposition 2 (Nested sets): Considering several values 0 <

α1 < · · · < αN < 1, we can construct nested sets ĜB
α1

⊂
· · · ⊂ GB

αN
.

Proof: For i ∈ {1, . . . , N}, let (f b,i
σ , ρ̂bi), 1 ≤ b ≤ B be

the models obtained on the sequence of training and test sets

for the mass αi. We have f b,i
σ = f b,j

σ for all i, j ∈ {1, . . . , N}
as f b,i

σ only depends on the train and test split. By construction

we also have ρ̂b1 ≥ · · · ≥ ρ̂bN for all b. Then for all b,

f b,1
σ − ρ̂b1 ≤ · · · ≤ f b,N

σ − ρ̂bN .

By summing

FB,1
σ ≤ · · · ≤ FB,N

σ

and if ĜB
αi

= {x, FB,i
σ (x) ≥ 0} then

ĜB
α1

⊂ · · · ⊂ ĜB
αN

.

III. EXPERIMENTS

For all the experiments we choose ν = 1 − α for the

OCSVM and ν = 0.4 for our approach. With our approach

80% of the data set is used as the training set and the other

20% as the test set. Unless stated otherwise, α = 0.95, the

Mass Volume curves are made from 10 masses equally spaced

between 0.91 and 0.99 and we uniformly sample 10000 points

in the smallest hypercube enclosing the data to compute the

volumes. All the experimental work was done with Scikit-learn

[26] using the underlying LIBSVM library [27].



A. Simulation with bimodal distribution

We sample n = 1000 points from a two-

dimensional Gaussian mixture of density h(x) =
1
2N ((2.5, 2.5), I)(x) + 1

2N ((7.5, 7.5), I)(x) where I

denotes the identity matrix and N (m,Σ)(x) the density of

the Gaussian distribution with mean m and covariance Σ.

We want to estimate the MV set with mass at least 0.95
from this sample. Knowing the density, we only need the

level τα such that P (h(X) > τα) = α to know the true

MV set G∗
α. τα is the 1 − α quantile of the distribution of

h(X). We estimate such a quantile with 1 million points

generated from h. To compute the volume of the symmetric

difference between the estimated set and the true MV set

we sample points uniformly in the hypercube enclosing the

data. Our approach is implemented with an aggregation of 10

models. The comparison of the performance as a function of

σ between the OCSVM and our approach is shown in Figure

4. We observe that the performance of the OCSVM obtained

for the best value of σ, i.e., the value of σ minimizing this

performance, is worse than the performance reached for a

wide range of values of σ with our approach. We represent the

sets obtained for the values of σ giving the best performance

for each approach in Figures 5 and 6. The solution obtained

with our approach is clearly better. Besides, even the solution

obtained for the best σ of OCSVM tends to overfit (Figure

5).
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Fig. 4. Performance as a function of σ: OCSVM (dashed line) and our
approach with an aggregation of 10 models (solid line)

In Figure 7 we show the evolution of the measure of the

symmetric difference between the true and the estimated MV

set with mass at least 0.95 as a function of the number of

samples. The results are averaged over 100 repetitions. For

each sample size, the best σ is computed by minimization

of the area under the Mass Volume curve for our approach

and through minimization of the measure of the symmetric

difference for the OCSVM. Again in the case of OCSVM

the ground truth is assumed to be known for parameter

tuning while our approach automaticaly tune σ without the

knowledge of the ground truth. Despite this, our approach

outperforms the OCSVM when we consider the measure of
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Fig. 5. In dashed line the true MV set. In solid line the estimated MV set
for the best σ of the OCSVM with respect to the measure of the symmetric
difference between the true and the estimated MV set shown in Figure 4.

0 � 4 6 8 10

0

�

4

6

8

10

Fig. 6. In dashed line the true MV set. In solid line the estimated MV set
for the best σ of our approach with respect to the measure of the symmetric
difference between the true and the estimated MV set shown in Figure 4.

the symmetric difference between the true and the estimated

MV set metric. The approach with aggregation further

improves the performance without.

B. Bimodal distribution with outliers

We now considered a two-dimensional Gaussian mixture

sample to which we add 5% outliers uniformly distributed over

an hypercube enclosing the data. We thus sample n = 1000
points from the distribution with density h(x) = 0.475 ·
N ((2.5, 2.5), I)(x) + 0.475 · N ((7.5, 7.5), I)(x) + 0.05

VC
1C(x)

where C = [−2, 12] × [−2, 12] and VC is the volume of

C. Knowing the density, we proceed as in section III-A to

compute the true MV set G∗
α of such a distribution. For the

OCSVM we choose the value of σ minimizing the measure
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Fig. 7. Performance as a function of the number of samples n. OCSVM
(dashed line), our approach without aggregation (solid line) and our approach
with an aggregation of 3 models (dotted line).

of the symmetric difference between the estimated set and the

true MV set. The estimated set is shown in Figure 8. Our

approach is implemented with an aggregation of 10 models.

We consider 20 values of σ equally spaced between 0.01 and

3. The best σ is obtained by minimization of the area under

the Mass Volume curve. The estimated set is shown in Figure

9. This experiment suggests that our approach is more robust

to outliers than the OCSVM.
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Fig. 8. In dashed line the true MV set. In solid line the estimated MV set.
Outliers are represented by crosses.

C. Comparison with plug-in approach

In this section we compare the performance of the plug-

in approach with our approach with respect to the number

of features d for a Gaussian mixture. We recall here that

the plug-in approach consists in estimating the underlying

density and then thresholding it at the level τ̂α such that
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Fig. 9. In dashed line the true MV set. In solid line the estimated MV set.
Outliers are represented by crosses.

P ({ĥn ≥ τ̂α}) = α. The performance metric used to compare

both approach is the measure of the symmetric difference

between the true and the estimated MV set with mass at least

0.95. We generate a Gaussian mixture sample of size n=500

with density h(x) = 1
2N (2.5·1d, Id)(x)+

1
2N (7.5·1d, Id)(x),

1d denoting the vector of R
d with all its components equal

to 1 and Id denoting the identity matrix of dimension d.

For the plug-in approach we use a kernel density estimator

ĥn to estimate h and a bisection search to estimate τ̂α. The

kernel used is the Gaussian kernel with same bandwidth s

in all the directions. The bandwidth s is selected through

a 4-fold cross validation among 15 values equally spaced

between 0.1 and 10. Then we threshold ĥn at τ̂α such that

Pn(ĥn ≥ τ̂α) = α where Pn is the empirical probability

measure based on the sample of size n. Our approach is

performed with an aggregation of 5 models and the kernel

bandwidth is automaticaly selected through minimization of

the area under the Mass Volume Curve. In Figure 10 we

show the evolution of the performance for both approach.

The results are averaged over 100 repetitions. Even though

the performance of both approach is quite similar for d = 2
and d = 3, for d > 3 we observe that the performance of

the plug-in approach deteriorates much more faster than the

performance of our approach. We limit this experiment to

d = 8 because of the difficulty to compute volumes in high

dimension.

D. Two moons data set

We generate a two-dimensional two moons data set of size

n = 2000 and try to estimate a MV set with mass at least

0.95. We choose 30 values of σ equally spaced between 0.01
and 0.5. We average 25 models based on 25 train/test random

splits of the data set. The best σ obtained by minimization

of the area under the Mass Volume curve is σ = 0.15 (see

Figure 11). The estimated set is represented in Figure 12. Its

empirical mass on the whole data set is 0.96.
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Fig. 10. Performance as a function of the number of features d. Plug-in
approach (dashed line) and our approach with an aggregation of 5 models
(solid line). Our approach clearly outperforms the plug-in approach as soon
as dimension d increases.
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Fig. 11. Area under the mass volume curve as a function of σ for the two
moons data set. The minimum is reached at σ = 0.15.

E. Real data set

We consider here the Boston housing data set [28] from

the UCI machine learning repository. This data set concerns

housing values in suburbs of Boston and consists in n = 506
samples and d = 14 features which can be either categorical,

integer or real. We only consider two of the features for a

better representation of our approach: the average number of

rooms per dwelling and the percentage lower status of the

population. We first standardize the features, i.e., component

wise center and scale to unit variance, and then apply our

approach to estimate MV sets. We choose 30 values of σ

equally spaced between 0.01 and 4. We average 25 models

based on 25 train/test random splits of the data set. The best

σ obtained by minimization of area under the Mass Volume

curve is σ = 0.42 (see Figure 13). The estimated sets are

represented in Figure 14. The estimated MV set with mass at

least 0.90 has an empirical mass of 0.91 on the whole data

set and the estimated MV set with mass at least 0.95 has en
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Fig. 12. Estimated MV set with mass at least 0.95 for a generated two moons
data set

empirical mass of 0.95. We observe that the estimated sets are

nested.
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Fig. 13. Area under the mass volume curve as a function of σ for the Boston
housing data set. The minimum is reached at σ = 0.42.

IV. CONCLUSION

This paper presents a new approach to estimate MV sets

using the OCSVM algorithm. Results show that it outperforms

the standard way to use the OCSVM. Our approach is based on

the calibration of the offset of the solution function to obtain

the desired probability mass on a test set. It allows to compute

nested set estimates without the need to add any condition

ensuring this property and consider several regularization

parameters. Moreover it provides a scoring rule for samples

located in the tail of the underlying distribution. The computed

Mass Volume curve allows to assess the performance of the

approach and to select the kernel bandwidth automatically.

Our solution inherits the sparsity of the OCSVM which is a

computational advantage over kernel smoothing.

The kernel bandwidth selection requires to compute the

volume of the estimated set which suffers from the curse

of dimensionality. This issue is still an open research area.
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Fig. 14. MV sets with mass at least 0.90 and 0.95 respectively in blue and in
red estimated from the two features, average number of rooms per dwelling
(x axis) and percentage lower status of the population (y axis), of the Boston
housing data set. The features have been standardized.

Sampling more precisely in the region where the data lives

instead of sampling in the hypercube enclosing the data is a

possible approach to scale to higher dimensions.
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