

INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG2015/M37248

October 2015, Geneva, Switzerland

Source Canon Research Centre France (CRF), Telecom ParisTech (TPT)

Status Proposal to DASH Core Experiment on Full-duplex HTTP

Title Editorial comments on DASH FDH Working Draft

Authors Franck Denoual (CRF), Hervé Ruellan (CRF), Youenn Fablet (CRF), Frédéric Mazé

(CRF), Cyril Concolato (TPT), Jean Le Feuvre (TPT),

1 Introduction
After the last MPEG#112 meeting, a 2

nd
 Working Draft on DASH for Full Duplex Protocols was

produced [1]. This draft describes an abstract protocol composed as a set of messages.

This contribution provides comments, section by section, on this draft to try to improve

readability and better define the scope of this Part-6.

2 General comments
1. First, concerning the scope of this specification: current draft contains “server MUST”,

“client MUST”: it should be clarified if we want to standardize client and/or server

behavior or rather focus on the messages.

a. Up to now, DASH did not specify server and/or client behavior but rather formats

and/or messages. In FDH draft, for example in section 7.3.4, current text

constrains the server behavior.

b. Open question: do we include in this FDH specification’s scope the server and/or

client behavior or should we just focus on FDH messages?

2. Moreover, we should clarify the terminology and the way to define our protocol, talking

about defining an API is confusing, indeed we are not defining functions on the client or

the server but rather messages exchanges between clients and servers

3. We’re not sure about the relevance of the section related to the abstract protocol

specification: a more concise part would be better to reach more rapidly the use of DASH

FDH on concrete protocols (since abstract part has many redundancies with each specific

binding).

4. Fundamentally, as such WebSocket is not an “HTTP-based protocol”, this is rather a

TCP-based protocol compatible with HTTP-based infrastructure (through the upgrade

mechanism).

The working draft should avoid such misuse of terms.

We propose replacing “HTTP-based” by “HTTP-compatible” everywhere in the

document (including the title “Part 6: DASH over Full Duplex HTTP-compatible

Protocols (FDH)”).

Considering that for HTTP/2 the only normative element defined in the specification is a

new header, the length of the specification (30 pages) seems unnecessary. The group

should consider making a very concise specification defining HTTP/2 only and a separate

specification for WebSocket only.

3 Specific comments, section by section

3.1 Section 2: Normative References
Replace:
“IETF Approved Working Draft, Hypertext Transfer Protocol version 2 (draft-ietf-httpbis-http2-17),
February 2015”

With

“IETF RFC 7540, Hypertext Transfer Protocol Version 2 (HTTP/2), May 2015”

3.2 Section 3.1: Terms and definitions

In this section, we should distinguish concepts (like “server push” and “push strategy”) from

parameters and/or types for this specification (like “push directive”, “push acknowledge”).

In 3.1.1, the term "Full Duplex HTTP" is never used. We suggest removing this definition (and

any other definition not used).

In 3.1.2: HTTP/2 could be defined as:
Version 2 of the HTTP protocol, as defined by the IETF in RFC 7540.

As well, the 3.1.8 on WebSocket could be:
The WebSocket protocol, as defined by the IETF in RFC 6455.

In 3.1.4: Push Acknowledge

Should we generalize (or rename?) by saying that it can be:

- Indeed an acknowledgement from a server to a client’s request for server push

- But also an announcement from a server of a push policy to be used (even when no

client’s request for push; i.e. server-initiated push)

We could rewrite into:
A response modifier, sent from a server to a client, which enables a server to state the push policy used
when processing a request.

In 3.1.5: Push Directive:
A request modifier, sent from a client to a server, which enables a client to express its expectations
regarding the server’s push strategy for processing a request.

In 3.1.6: push strategy:

Current definition still considers the possibility of MPD push, even if there is no

description/example in the specification. => should we remove or keep this part:

It was agreed during MPEG#112 [3] that “MPD push was not going to be included in the initial

solution. The existing mechanism for MPD update was considered sufficient”. We should clarify

what it is allowed (WebSocket binding seems to use it).

We think “agreed upon by the client and server” should be removed since it is indication from

the clients, and may not be agreed or applied by server.

We propose the following rewording for push strategy:
a segment and/or MPD transmission strategy that defines how segments or MPDs may be pushed from a
server to a client.

In 3.1.7: Server Push

Same comment as above on segment and MPD.

3.3 Section 4: Introduction

Not sure, we should describe the upgrade to HTTP/2 or WebSocket: we can consider the full-

duplex connection is already established (this is out of DASH scope).

We propose to modify the figure 1 to simplify with common behavior; i.e. having a loop on

segment request instead of MPD request.

Note that on response to MPD request by the server, we could also illustrate the fast start

possibility by adding a push strategy to the mpd file. As well a push of init segments from the

server to the client could be added.

Another alternative is to simply remove this figure since a bit redundant with figure 2 in section

6.1.

The current draft seems to assume a specific architecture on the client (and maybe on the server)

with some intermediate component between the DASH access engine and the network, realizing

some abstraction of the actual protocol used below (HTTP/2 or WebSocket). A diagram

describing such architecture would be useful to understand the model used in the specification

and in particular, what is normative and what is not. We suggest adding such diagram in the

introduction, similar to the Figure 2 of Part 1.

3.4 Section 5: Specification structure
We propose the following formulation to replace the current one:
“This specification defines an abstract protocol through a set of messages between a client and a server
in order to drive the delivery of an MPEG DASH media presentation over full-duplex HTTP-compatible
protocols. This set of messages is described in a first section and bindings to specific protocols are
described, respectively for HTTP/2 and WebSocket in section 7 and section 8.”

This section could also be merged with introduction if finally figures 1 and 2 were merged (since

also redundant).

3.5 Section 6.1: FDH Message flow

Replace the following sentence:
“The APIs defined are the absolute minimum changes required to DASH client and the server to take
advantage of the additional useful features in a full-duplex HTTP based protocol”

With:

“This abstract specification defines the minimum set of messages that can be exchanged between a
DASH client and a server to take advantage of the additional useful features in a full-duplex HTTP
compatible protocol”.

In addition, on the figure describing the message flow, we propose to remove the upgrade from

HTTP/1.1 to the bidirectional protocol to focus only on the DASH part. Connection

establishment is out of scope (idem for description text). Additionally, the current diagram is

wrong. In case of upgrade, the client does not issue 2 separate messages, the upgrade is done as

part of the request for the MPD.

To simplify, we may not put the list of possible pushDirectives in the request for segment #i.

At the bottom of the figure the push of the MPD update should be removed (or at least clarified)

since it was decided during MPEG#112 [3] that current MPD update mechanisms were

sufficient.

3.6 Section 6.2: Protocol scheme Identifiers
We propose to remove this section and rather consider a naming of the pushType that integrates

this version number (for example: URN-based naming like: “urn:mpeg:dash:fdh:2015:push-

XXXX”).

In case this section is kept, a forward reference to where the identifiers are actually used would

help the reader.

3.7 Section 6.3: Data Type definitions

Replace (or even remove):
“Details for implementing these primitives for a given concrete protocol binding may be found in the
section of this specification defining that binding.”

With:
“The implementation of these primitives for a given concrete protocol binding may be found in the section
of this specification defining that binding.”

On data types in Table 2:

- The BinaryObject type does not seem to be used except to redefine data types already

defined in DASH: MPD and Segment. It may be useless to redefine those. We then

suggest to remove BinaryObject data type plus MPD and Segment.

- If the section 6.2 is removed, then remove SchemeID parameter.

- The pushAck data type could be generalized into: “A response from the server to the

client that contains the value describing the push strategy used by the server in response

to a client request. See Table 3 for valid values of this type.”

- The pushTemplate is more a new kind of pushDirective (pushType) than a new data type:

could be removed from the table 2.

3.7.1 Section 6.3.2 on definition of pushDirective:

Note: This section does not contain any normative statement. The definition of a push directive is not

formal. We suggest using a clear syntax for defining what a pushDirective is, such as a BNF grammar.

The term “approved” doesn’t seem appropriate for a protocol specification.

Replace:
“This section provides push directives for approved push strategies”

With:
“This section provides push directives for push strategies defined in this specification”

Replace:
“We define the push strategy as a type (PushType), followed by a payload (PushParams).”

With:
“A pushDirective is defined as a type (pushType), optionally followed by a payload (PushParams).”

Indeed, push-none and push-fast-start don’t have any parameters.

We suggest removing the inclusion of the scheme identifier. It is preferable, if versioning is

needed, to have a pushDirective identifier integrating a version number (for example a URN as

proposed in comments to section 6.2).

3.7.2 Section 6.3.3 on pushAck definition:

As for pushDirective, pushAck contains a type and optionally a payload.

In addition, the definition should reflect that PushAck can be used as an acknowledgment of

PushDirective but also as an indication from the server of the Push Strategy it used.

3.7.3 Section 6.3.4. on pushTemplate

PushTemplate should be defined as specific kind (pushType) of pushDirective. The exact syntax

remains to be defined (ex: URI template as defined by IETF) as well as the way to specify the

values:

- Single value

- Range of values

- List of values

- Values pairs in case of multiple template parameters to vary.

This section should at the end include a reference to the informative section 13.

3.7.4 List of defined push strategies (Table 3) at end of section 6.3.

Table 3 should be updated with the push-fast-start pushType as proposed in contribution

m36966.

We’re wondering where this table should be placed:

- inside the section 6.3.2 that defines the pushDirective?

- Create a dedicated section on “defined push strategies for FDH”?

Moreover, defining both client and server side interpretation of the pushDirectives may improve

understanding and would be justified since these can be used in client to server messages (the

pushDirective parameter) but also in server to client messages (the pushAck parameter).

As a consequence, the different pushDirective shouldn’t be defined only as request but rather as

an indication of the push strategy.

The (tentative) resulting table below considers the above comments (alphabetical order):

PushType PushParams Description

push-fast-start N/A Indication that initialization data is considered for push to
help client starting more rapidly.

A server receiving such push directive may push what it
considers the most appropriate for the client.

A client receiving such push directive is informed that
server intends to push initialization data.

push-next K:Number Indication that the the next K segments, using the
requested segment as the initial index are considered for

push.

A value of 0 means that the server may elect to push
indefinitely*.

A server receiving such push directive may push
consecutive segments to the requested one.

A client receiving such push directive is informed that
server intends to push the next segments consecutive to
the requested one.

push-none N/A Indication that no push should occur.

A server receiving such push directive should prevent
from pushing.

A client receiving such push directive is informed that
server does not intend to push.

push-template S:String Indication that some segments as described by the URI
template S are considered for push.

A server receiving such push directive may use it to
identify some resources to push.

A client receiving such push directive can be informed on
the resources the server intends to push.

push-time T:Number Indication that the next segments until the specified
segmentTime (presentation time of the first frame) of a
segment exceeds time T, beginning with the requested
segment, are considered for push.

A value of 0 means the server may elect to push
indefinitely*.

A server receiving such push directive may push a given
duration of media segments.

A client receiving such push directive is informed that
server intends to push a given duration of media
segments.

*Should the infinite push be kept? (push-next with K=0 or push_time with T=0).

3.8 Section 6.4: Message definitions

3.8.1 General comment

The use of the "preconditions", "post-conditions", "exceptions" and "errors" is unclear. We

suggest removing them, as they contain no normative statements. If they are not removed, we

suggest clarifying the behaviors in normative terms.

3.8.2 Section 6.4.1 on MPD request message

This section should include input text from contribution m36966 as agreed during the last conf

call on October 7
th

, 2015.

This text is provided here for convenience:

The MPD request message initiates the request for a DASH MPD file. A push directive is allowed on the
MPD request.

- Message Name: get_mpd

- Supplied Arguments

Argument Name Argument Type Description

mpd_uri URI The full URI for the MPD being requested

push_directive PushDirective A push strategy for suggesting server to
anticipate the sending of initialization data.

A push directive set to “push-none” explicitly
indicates that the client does not intend to use
push for fast start. (See Table 3)

- Preconditions

 None

- Postconditions
 The MPD request is initiated and pending all requested new_mpd messages are sent from the

server to the client. The new_mpd message indicates that the server has responded with a
requested MPD.

 A push acknowledgment in the corresponding new_mpd message may indicate that server
understood and applied the pushDirective indicated by the client.

- Errors/Exceptions
 None

Moreover, the “pending all requested new mpd messages” in the first post condition requires

clarification: In HTTP/2 there may be only one; is it then related to WebSocket?

3.8.3 Section 6.4.2 on Segment request message

We suggest removing the scheme parameter from the get_segment message. We think that, if

needed, having a push type indicating the version of the protocol would provide versioning and

extensibility.

Moreover, we may authorize more than one PushDirective in this message, for example to

indicate preferred Push Strategies (see proposal from m36966).

3.8.4 Section 6.4.3 on MPD received message

Following the inclusion of the new push-fast-start, a pushAck should be included as optional

parameter of the new_mpd message. The contribution m36966 provides the following text for

that purpose:

This message represents the server’s response from a previous get_mpd message sent by the client.

- Message Name: new_mpd

- Supplied Arguments

Argument Name Argument Type Description

mpd MPD The MPD returned by the server

push_acknowledge PushAcknowledge The push strategy that the server will follow

- Preconditions

 The client requests an MPD by sending the get_mpd message.

- Postconditions

 The client is ready to parse the received MPD.

 The client is informed through the push_acknowledge parameter either on resource selected by
server for fast start or on the fact that no push is done.

- Errors/Exceptions

 None

3.9 Section 7.1: General Method

3.10 Section 7.2: System Architecture for HTTP/2

Should we keep this section (does not bring so useful information on FDH messages)?

If we decide to keep it:

Replace:
“Unlike HTTP 1.0/1.1 streaming, in HTTP/2 the server (origin or cache) can actively push segments (or
MPDs) to the client (or the CDN) as soon as they are generated…”

With
“Unlike HTTP 1.0/1.1 streaming, in HTTP/2 the server (origin or cache) can actively push segments (or
MPDs) to the client (or the CDN) as soon as they are generated”

The figure 4 should move in example sections: Informative annex of section 11.

Here,we should go directly on mapping of FDH messages onto the HTTP headers.

Some comments only duplicate what is said in HTTP/2 spec: should be removed.

Section 7.2.1 should include the generic header definition from contribution m36966 as agreed

during last conf call on 7
th

 of October.

Replace:
DASH-PUSH:scheme=<SchemeID>,type=<PushType>,params=<PushParams>

With:
“Accept-Push-Policy” “:” <unique_name> [“;” <PushParams>*]

Note that the <unique_name> above would have to be discussed: could be pushType, could be

pushType plus a version number, could be a URN… and PushParams are specified as defined in

Table 3.

Section 7.2.2:

We propose for this section to align the HTTP/2 binding of the pushAck with the Accept-Push-

Policy proposed above as follows (using a different header name);

“Push-Policy” “:” <unique_name> [“;”<pushParams>*]

Where unique_name is TBD and PushParams are specified as defined in Table 3.

Section 7.2.3 is useless: this is standard HTTP/2 behavior.

Section 7.2.4 is useless: in case of a previously promised resource that would be unavailable,

natively in HTTP/2, a server can send a RST_STREAM for the stream identifier it reserved with

the PUSH_PROMISE..

3.11 Section 7.3: Message Bindings

3.11.1 Section 7.3.1 on MPD request message

We can now add (since we allow a PushDirective for fast start use case):
“The push directive parameter, if present, MUST be provided in the manner specified in section 7.2.1.”

3.11.2 Section 7.3.2 on segment request message

OK

3.11.3 Section 7.3.3 on MPD received message

It was agreed during MPEG#112 [3] that MPD push was not going to be included in the initial

solution. The existing mechanism for MPD update was considered sufficient.

Then, replace:
“An HTTP/2 server sends this message either in response to a client MPD request message (as in
section 7.2.1) or as a server-initiated MPD update.”

With
“An HTTP/2 server sends this message either in response to a client MPD request message (as in
section 7.2.1) or as a server-initiated MPD update.”

There is a strong requirement on server behavior in this section:
“In the case where the server sends this message in response to a client request, the server SHALL
return the MPD as the body of the HTTP response, just as it would when communicating with an HTTP
1.1 DASH client.”

That could be rewritten as follows (if we decide to focus on FDH messages and consider

client/server behavior as out of scope):
“This message shall contain the requested MPD in the body of the HTTP response (as in DASH over
HTTP/1.1).”

In addition, we should add following paragraph:

“If a push directive was specified in the client request, and the server supports the push directive, it MAY
insert a push acknowledgement, as described in section 7.2.2 in this message. Otherwise it MAY contain
a push acknowledgement to inform the client on default push strategy used by the server.”

3.11.4 Section 7.3.4 on segment received message

Again, this section contains strong requirements on server behavior which until now remained

out of scope of DASH specifications: do we want this FDH specification to constrain the server

behavior or should we just provide guidelines to optimize the delivery when using FDH

messages?

Depending on the above choice, this section should be rewritten.

Moreover, we could remove all references to “MPD update” in this section.

3.11.5 Section 7.3.5 on segment cancel message

The Segment Cancel message can be mapped directly to RST_STREAM frame. Then, a simple

sentence like the one below should be sufficient (instead of current paragraph):

“It is possible for a client to cancel a push sequence by sending RST_STREAM frames each referencing
the promised stream identifiers as specified in HTTP/2.”

3.12 Section 8: Protocol Binding for WebSocket
This section has not been deeply reviewed.

Should HTTP header value be strictly aligned with JSON Name Value Pair?

- We think it might be better.

3.13 Section 9: Considered use cases
 no specific comments

3.14 Section 10: Examples of abstract protocol client/server behavior

Maybe figures like the one on figure 4b could be provided to describe each behavior.

We propose the following list of examples, organized into good cases and error/mismatch cases:

Define a sub-section for “good cases”

These examples would correspond to good cases where client and server both support FDH

messages and server implements one or more push strategies.

- Keep the 11.1 Example of a client-initiated push request on segment (push-next or time

or template)

- Add a new example for a server-initiated push request on segment

Add a new example for a client-initiated push request when downloading MPD (fast-start use

case)

- Add a new example for a client indicating that it does not want any push at all (use of

push-none)

- Keep the 11.3 example of cancelling a push request: server took the initiative to push,

client does not accept the push by immediately sending a segment cancel message

- Add a new example for server-initiated fast start: no directive from client, server takes

the initiative of pushing initialization data and informs client in the new_mpd message.

Define a sub-section for error cases:

These examples would correspond to error or mismatch cases where server does not support

FDH messages or server does not implement the pushDirectives indicated by the client or pushes

resources that do not match client expectations.

- Add an example of a client-initiated fast-start request with apush capable serverbut that

does not support push-fast-start.

- Keep the 11.2 example of a client-initiated push request on segment with a server that

does not support push at all.

3.15 Section 13: Examples of Push Template
We propose to insert the examples from m36966 (using URI template from IETF)

13.1 Example of push template with segment number addressing

“../rep1/segment{Number}.mp4”; {2-4} to push segment2, segment3 and segment4 from

Representation “rep1”.

13.2 Example of push template with time-based addressing

“../rep1/segment{Time}.mp4” ; 1000: 10000 to push all segments between 1 and 10 seconds or

“../rep1/segment{Time}.mp4” ; : 10000 to push all segments between requested segment and 10

seconds later.

13.3 Example of push template with multiple representations

To push rep1/segment2.mp4 and rep2/segment3.mp4 and rep3/segment4.mp4:

../rep{id}/segment{Number}.mp4; (1,2) : (2,3) : (3,4)

Where {id} and {Number} template parameters are successively replaced with the couple given

as arguments: (id=1, number=2) and (id=2, number=3) and (id=3, number=4).

4 Conclusion
We would like DASH experts to consider the above comments and proposals to generate an

improved version of the FDH working draft.

5 References
[1] w15532 “Working Draft for 23009-6: DASH over Full Duplex HTTP-based Protocols

(FDH)” by I. Bouazizi, K. Streeter and V. Swaminathan, MPEG#112, Warsaw, July 2015

[2] “Hypertext Transfer Protocol version 2 (HTTP/2)” RFC 7540, by M. Belshe, R. peon and

M. Thompson, May 2015; available at https://tools.ietf.org/html/rfc7540

[3] m36858 “Descriptions of Core Experiments on DASH-FDH CE”, Warsaw, July 2015.

https://tools.ietf.org/html/rfc7540

