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Abstract. The characteristic independence property of Poisson point
processes gives an intuitive way to explain why a sequence of point pro-
cesses becoming less and less repulsive can converge to a Poisson point
process. The aim of this paper is to show this convergence for sequences
built by superposing repulsive point processes. We use Papangelou in-
tensities and Stein’s method to prove this result with a topology based
on total variation distance.
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1 Motivations

The primary motivation of this work was the following. Consider the locations of
base stations (BS), i.e. antennas, of the mobile network in Paris. If we have a look
at the global process of all base stations of all operators and for all operating
frequencies, we obtain the left picture of Figure 1. It turns to be compatible
with the null hypothesis of being a Poisson process. However, if we look at the
positions of base stations deployed by one operator, in one frequency band, we
get a picture similar to the right picture of Figure 1. It was shown in [5] that
this deployment is statistically compatible with a point process with repulsion,
called β-Ginibre process.
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Fig. 1. On the left, positions of all BS in Paris. On the right, locations of BS for one
frequency band.

When superposing a large number of independent processes with internal re-
pulsion but few points, it is intuitively clear that the resulting process does not
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exhibit strong interdependencies between its atoms and should thus resemble a
Poisson process. This is this intuition we wanted to quantify by determining how
fast does the convergence hold. It is often clear by looking at the Laplace trans-
forms that a superposition of processes converge to a Poisson process, however,
this does not yield a convergence rate. We here use the Stein-Dirichlet-Malliavin
method, developed in [1, 3], to precise this rate. It turns out that the perti-
nent characteristics of the point processes to be considered is their Papangelou
intensity, see [4] and references therein. We show here that the Kantorovitch-
Rubinstein between a Poisson point process and any other point process is con-
trolled by the L1 distance of their Papangelou intensity, thus generalizing the
property that the distance between two Poisson process is controlled by the L1

distance between their control measure [2]. This result is then applied to several
situations involving superpositions and dilations of point processes. This paper
is organized as follows: In Section 2, we recall the basics of point processes the-
ory and introduce our model of choice, the repulsive point processes. Section 3
is devoted to the explanation of the Stein-Dirichlet-Malliavin method and how
we get the main theorem. In Section 4, we apply this result to superposition of
repulsive point processes. The proofs are given in Appendix.

2 Preliminaries

2.1 Point processes

Let Y be a normed vector space and FY its Borel algebra, NY the space of all
locally finite subsets (configurations) in Y, N̂Y the space of finite subsets in Y,
and µ a diffuse and locally finite measure on Y. IN henceforth denoted the set
of positive integers, and IN0 := IN ∪ {0}.

A point process in Y is a random integer-valued positive and locally finite
measure Φ on Y [6]. If Φ almost-surely assigns at most measure 1 to singletons,
it is a simple point process, and in this case, for any measurable set A, Φ(A)
represents the number of points of the process that fall in A. Note that a point
process Φ can be seen as a random configuration or reduced to his probability
distribution IPΦ. Moreover, the intensity (or measure control) of a point process
Φ is defined as the measure A ∈ FY 7→ E[Φ(A)] on Y.

The µ-sample measure Sµ is defined for any measurable f : N̂Y → IR+ by:∫
N̂Y

f(α)Sµ(dα) =

+∞∑
k=0

1

k!

∫
Yk
f({x1, . . . , xk})µ(dx1) . . . µ(dxk). (1)

The correlation function ρ : N̂Y → IR+ of a point process Φ with respect
to the probability measure IPΦ is defined for any measurable bounded function
f : N̂Y → IR+ by:∫

NY

∑
α∈N̂Y
α⊂ξ

f(α)IPΦ(dξ) =

∫
N̂Y

f(α)ρ(α)Sµ(dα) (2)
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and characterizes the law of Φ ; in particular, the intensity measure is given by
A ∈ FY 7→

∫
A
ρ({x})µ(dx), and x ∈ Y 7→ ρ({x}) designs the density of Φ with

respect to µ. Hence, the correlation function of a Poisson point process (PPP)
with control measure M(dx) = m(x)µ(dx) on Y is given by ρ(ξ) =

∏
x∈ξm(x).

We say that c : Y×NY → IR+ is the Papangelou intensity of a point process
Φ w.r.t. IPΦ on Y if, for any measurable function f : Y×NY → IR+,

∫
NY

∑
x∈ξ

f(x, ξ \ {x})IPΦ(dξ) =

∫
Y

∫
NY

c(x, ξ)f(x, ξ)IPΦ(dξ)µ(dx). (3)

It immediatly comes from (2) and (3) that for any x ∈ Y,

ρ(x) = E[c(x, Φ)], (4)

and if Φ is a finite point process (i.e. such that Φ(Y) < +∞ a.s.), then by (3),

IP(|Φ| = 1) =

∫
Y
c(x,∅)µ(dx)IP(|Φ| = 0). (5)

We henceforth say that a point process Φ is repulsive if its Papangelou in-
tensity c verifies, for any ξ ∈ NY and any x ∈ Y, the inequality c(x, ξ) ≤ c(x,∅).
By theorem 3.1. in [4], a determinantal point process reduced to a compact set
is repulsive, and so is a Gibbs point process.

2.2 Determinantal point processes

For the applications we have in mind, we introduce now the notion of deter-
minantal point processes, for details we refer to ?. A process of this kind is
characterized by a reference measure µ on Y and an Hilbert-Schmidt linear map
K from L2(Y, µ; C) into itself satisfying the following properties:

– K is positive Hermitian.
– The discrete spectrum of K is included in [0, 1).
– K is a locally trace-class: For any compact Λ ⊂ Y, KΛ = PΛKPΛ (where PΛ

is the orthogonal projection of L2(Y, µ; C) to L2(Λ, µ; C)), the restriction of
K to L2(Λ, µ; C), is trace class.

Since K is Hilbert-Schmidt, there exists a kernel, which we still denote by K,
from Y× Y into C, such that for any x ∈ Y,

Kf(x) =

∫
Y
K(x, y)f(y)µ(dy).

Together with K, there is another operator of importance, usually denoted by J
and defined as J = (I−K)−1K. Since K is hermitian, there exists a complete or-
thonormal basis (hj , j ∈ IN) of L2(Y, µ; C) and a sequence (λj , j ∈ IN) ⊂ [0, 1)IN

such that for all f ∈ L2(Y, µ; C),

Kf =

+∞∑
j=1

λj〈f, hj〉L2(µ)hj , Jf =

+∞∑
j=1

λj
1− λj

〈f, hj〉L2(µ)hj ,
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and then, for all x, y ∈ Y,

K(x, y) =

+∞∑
j=1

λjhj(x)hj(y), J(x, y) =

+∞∑
j=1

λj
1− λj

hj(x)hj(y).

The determinantal point process DPP(K,µ) is then defined by its correlation
functions (see ?):

ρ({x1, · · · , xk}) = det(K(xi, xj), 1 ≤ i, j ≤ k).

From 4, we know that

c(x0, {x1, · · · , xk}) =
det(J(xi, xj), 0 ≤ i, j ≤ k)

det(J(xi, xj), 1 ≤ i, j ≤ k)
·

2.3 Thinned and rescaled point processes

Let Φ be a point process on Y. If ε ∈ [0; 1], we associate to Φ the ε-thinned point
process tε(Φ) obtained by retaining, independently and with probability ε, each
point of Φ.

If Y = IRd and γ is a positive real number, we associate to Φ the γ-rescaled
point process rγ(Φ) obtained by applying a dilation of magnitude γ1/d to each
point of Φ. Note that this modifies the intensity measure of Φ by a factor γ.

For β ∈ (0; 1], we associate to Φ the β-point process rβ−1(tβ(Φ)) obtained by
combining a β-thinning and a β−1-rescaling, in order to conserve the intensity
measure of Φ. Their respective correlation functions are provided by the following
proposition.

Proposition 1. Let Φ be a point process on Y with correlation function ρ, and
ε ∈ [0; 1]. Then, the function correlation of tε(Φ) is given for any α ∈ N̂Y by

ρtγ(Φ)(α) = ε|α|ρ(α).

Moreover, if Y = IRd and γ > 0, the correlation function σγ of rγ(Φ) is given

for any α ∈ N̂Y by

ρrγ(Φ)(α) = γ|α|ρ(γ
1
dα).

3 Kantorovitch-Rubinstein distance and Stein’s method

The total variation distance between two measures ν1 and ν2 on Y is defined by

dTV(ν1, ν2) := sup
A∈FY

ν1(A),ν2(A)<∞

|ν1(A)− ν2(A)|.

We say that a measurable map F : NY → IR is 1-Lipschitz if

|F (φ1)− F (φ2)| ≤ dTV (φ1, φ2) for all φ1, φ2 ∈ NY.
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We denote by Lip1 the set of bounded 1-Lipschitz maps. The Kantorovich-
Rubinstein distance between two probability measures IP1 and IP2 on NY is
defined by

dKR(IP1, IP2) = sup
F∈Lip1

∣∣∣ ∫
NY

F (φ) IP1(dφ)−
∫
NY

F (φ) IP2(dφ)
∣∣∣. (6)

According to [3Proposition 2.1], the topology induced by this distance coincides
with the topology of narrow convergence of probability measures on NY. Our
goal is to evaluate the distance between some probability measure on NY and
IPM , the distribution of a Poisson point process of control measure M on Y.
We assume henceforth that M has a finite mass, i.e. M(Y) < ∞. We use the
Stein-Dirichlet-Malliavin method which we describe roughly now, for details we
refer to [3].

The Glauber process (Gt, t ≥ 0) associated to IPM is the N̂Y-valued Markov
process whose generator is given by

LF (φ) :=

∫
Y

(F (φ+ δy)− F (φ))M(dy) +
∑
y∈φ

(F (φ− δy)− F (φ)), φ ∈ N̂Y,

where F : NY → IR is a measurable and bounded function. Since M is a finite
measure, the dynamics of G is described as follows: Let G(0) = φ and consider
a Poisson process on the half-axis of intensity M(Y). We denote by (Tn, n ≥ 1)
the arrival times of this process. At each Tn, G(Tn) = G(T−n ) + δYn where Yn
is chosen according to M , independently of everything else. All the particles,
be they present at the origin or born after, have a lifetime which follows an
exponential distribution of parameter 1, independent of everything else. Then,
G(t) is the point process of living particles at time t. We denote by (Pt, t ≥ 0)
its semi-group:

PtF (φ) = E [F (G(t)) |G(0) = φ] .

This Markov process, or at least its semi-group, has two attractive features:

– It is ergodic: limt→∞ PtF (φ) =
∫
NY
F (ζ)IPM (dζ) for all φ ∈ NY.

– If we define the operator D by

DyF (φ) = F (φ+ δy)− F (φ),

for any y ∈ Y and φ ∈ NY, we have

DyPtF (φ) = e−tPtDyF (φ),

for all t ≥ 0, y ∈ Y and φ ∈ NY.

As a consequence of the ergodicity and of the markovianity of P , we have the
Stein-Dirichlet representation formula, see [3]: For any probability measure IP
on NY,∫

NY

F (φ) IP(dφ)−
∫
NY

F (φ) IPM (dφ) =

∫
NY

∫ ∞
0

LPsh(φ) ds IP(dφ).
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Theorem 1. Let IP be a finite point process on Y with Papangelou intensity c,
and IPM the distribution of a Poisson point process with finite control measure
M(dy) = m(y)µ(dy) on Y. Then, we have the following upper bound:

dKR(IP, IPM ) ≤
∫
Λ

∫
NY

|m(y)− c(y, φ)|ν(dφ)µ(dy).

Proof. Starting from the expression of L, we have∫
NY

F (φ) IP(dφ)−
∫
NY

F (φ) IPM (dφ)

=

∫
NY

∫ ∞
0

∫
Y
DyPsF (φ)m(y)µ(dy) ds IP(dφ)

+

∫
NY

∫ ∞
0

∑
y∈φ

PsF (φ− δy)− PsF (φ) ds IP(dφ).

By the very definition of the Papangelou intensity,∫
NY

∫ ∞
0

∑
y∈φ

PsF (φ− δy)− PsF (φ) ds IP(dφ)

= −
∫
NY

∫ ∞
0

∫
Y

DyPsF (φ)c(y, φ)µ(dy) ds IP(dφ).

Thus,∫
NY

F (φ) IP(dφ)−
∫
NY

F (φ) IPM (dφ)

=

∫
NY

∫ ∞
0

∫
Y

DyPsF (φ)(m(y)− c(y, φ))µ(dy) ds IP(dφ).

In view of the commutation relationship between Dy and Ps, since F Lipschitz
entails that |DyF (φ)| ≤ 1 for any (y, φ), we get

|DyPsF (φ)| = e−s|PsDyF (φ)| ≤ e−sPs1l = e−s.

The result then follows.

4 Application to superpositions of repulsive point
processes

For all n ∈ IN, we consider Φn,1, . . . , Φn,n, n independent, finite and repulsive
point processes on Y and Φn their superposition. For all i ∈ {1, . . . , n}, ρn,i
denotes the correlation function of Φn,i, and for any k ∈ IN0, we use the no-
tation pn,i,k := IP(|Φn,i| = k). We furthermore suppose that the two following
assumptions are verified:
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(A1) There exists a measurable function m and a positive constant K1 > 0
such that for any n ∈ IN,

Rn :=

∫
Y
|
n∑
i=1

ρn,i(x)−m(x)|µ(dx) ≤ K1

n
.

(A2) There exists a positive constant K2 > 0 such that for any n ∈ IN and
any i ∈ {1, . . . , n}, ∫

Y
ρn,i(x)µ(dx) ≤ K2

n

∫
Y
ρ(x)µ(dx).

Let us give a few comments on these assumptions: (A1) ensures that the
intensity of the superposition converges to the intensity M(dx) = m(x)dx and
(A2) allows to control the intensities of the elements of the superposition.

The Papangelou intensity of the superposition is expressed with help from
Papangelou intensities cn,i of the Φn,i in the following lemma:

Lemma 1. For all n ∈ IN, Φn admits a Papangelou intensity cn given for all
y ∈ Y, ξ ∈ NY by:

cn(y, Φn) =

n∑
i=1

cn,i(y, Φn,i).

The following proposition states the convergence of (Φn) with convergence
speed. Its proof uses upper bound given by Stein’s method.

Proposition 2. Let be a sequence (Φn) built for any n ∈ IN by superposition of
n independent, finite and repulsive point processes Φn,1, . . . , Φn,n. If (A1) and
(A2) holds, then (Φn) converges with respect to Kantorovitch-Rubinstein distance
to a Poisson point process πM with control measure M(dx) = m(x)µ(dx). In
addition, there exists a positive constant K such that, for any n ∈ IN,

dKR(Φn, πM ) ≤ K

n
.

5 Application to β-determinantal processes

Let K be the kernel of a DPP on IRd, and Λ a compact subset of IRd. Suppose
that (βn)n∈IN converges to 0 and that, for all n ∈ IN, Φn is the DPP with kernel
Kn defined by

Kn : (x, y) ∈ Y× Y 7→ K
( x√

βn
,
x√
βn

)
1Λ×Λ(x, y). (7)

Let be the sequence (Rn, n ∈ IN) defined for all n ∈ IN by

Rn =

∫
E

|Kn(y, y)−K(0, 0)|µ(dy).
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Proposition 3. Suppose
lim

n→+∞
Rn = 0,

then the sequence (Φn) converges strongly to an homogeneous PPP with in-
tensity M(dy) = K(0, 0)µ(dy) and, more precisely, there exists a constant C > 0
such that, for all n ∈ IN,

dKR(Φn, πM ) ≤ C(βn +Rn).

6 Conclusion
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A Proofs of Proposition 1, Theorem 1, Lemmas 2 and 1

A.1 Proof of Proposition 1

For any measurable bounded function f : N̂Y → IR+,

E[
∑

α⊂tε(Φ)
α∈N̂Y

f(α)] =

+∞∑
n=0

E[
∑

α⊂tε(Φ)
|α|=n

f(α)]

=

+∞∑
n=0

E[
∑
α⊂Φ
|α|=n

εnf(α)],

where the last equality is obtained using the fact that εn is the probability to
have n successes among n Bernoulli trials with success probability ε. Hence,
using equation (2) defining correlation function,

E[
∑

α⊂tε(Φ)
α∈N̂Y

f(α)] = E[
∑
α⊂Φ

ε|α|f(α)]

=

∫
N̂Y

f(α)εαρ(α)Sµ(dα),

which ends to show the first assertion.
Let us consider the γ-rescaled point process. Using equations (1) and (2), for

any measurable bounded function f : N̂Y → IR+,

E[
∑

α⊂rγ(Φ)
α∈N̂Y

f(α)] = E[
∑
ω⊂Φ
ω∈N̂Y

f(γ−
1
dω)]

=

∫
N̂Y

f(γ−
1
dα)ρ(α)Sµ(dα)

=

+∞∑
k=0

1

k!

∫
Yk
f({γ− 1

dx1, . . . , γ
− 1
dxk})ρ({x1, . . . , xk})µ(dx1) . . . µ(dxk)

=

+∞∑
k=0

1

k!
γk
∫
Yk
f({u1, . . . , uk})ρ({γ 1

du1, . . . , γ
1
duk})µ(du1) . . . µ(duk),

hence, the result.

A.2 Proof of Lemma 1

For all n ∈ IN, by independence, Φn is a simple point process. Moreover, for any
measurable function f : Y×NY → IR+, according to (3),
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E
[ ∑
y∈Φn

f(y, Φn \ {y})
]

=

n∑
i=1

E
[ ∑
y∈Φn,i

f(y, Φn \ {y})
]

=

n∑
i=1

E
[ ∫

E

f(y, Φn)cn,i(y, Φn,i)µ(dy)
]

= E
[ ∫

E

f(y, Φn)

n∑
i=1

cn,i(y, Φn,i)µ(dy)
]
.

B Proof of Proposition 2

By theorem 1, dKR(Φn, πM ) ≤
∫
Y E[|cn(x, Φn)−m(x)|]µ(dx).

Then, by lemma 1, dKR(Φn, πM ) ≤ Rn +

n∑
i=1

An,i, where

An,i =

∫
Y
E[|cn,i(x, Φn,i)− ρn,i(x)|]µ(dx)

=
∑
k≥0

∫
Y
E[|cn,i(x, Φn,i)− ρn,i(x)|1{|Φn,i|=k}]µ(dx)

= Bn,i + Cn,i

with

Bn,i = pn,i,0

∫
Y
|cn,i(x,∅)− ρn,i(x)|µ(dx),

Cn,i =
∑
k≥1

∫
Y
E[|cn,i(x, Φn,i)− ρn,i(x)|1{|Φn,i|=k}]µ(dx).

On one hand, by (4), for any x ∈ Y, pn,i,0ρn,i(x) = pn,i,0E[cn,i(x, Φn,i)], then,
since Φn,i is repulsive, pn,i,0ρn,i(x) ≤ pn,i,0cn,i(x,∅). On the other hand, still by
(4), for any x ∈ Y,

ρn,i(x) = E[cn,i(x, Φn,i)] ≥ pn,i,0cn,i(x,∅)

and it follows from both last inequalities that

|pn,i,0cn,i(x,∅)− pn,i,0ρn,i(x)| ≤ (1− pn,i,0)pn,i,0cn,i(x,∅),

then, since by (5), pn,i,0
∫
Y cn,i(x,∅)µ(dx) = pn,i,1 ≤ (1− pn,i,0), we get

Bn,i ≤ (1− pn,i,0)2.

Since cn,i(x, Φn,i) ≤ cn,i(x,∅) and ρn,i(x) ≤ cn,i(x,∅), we also have
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Cn,i ≤
∑
k≥1

pn,i,k

∫
Y
cn,i(x,∅)µ(dx)

= (1− pn,i,0)

∫
Y
cn,i(x,∅)µ(dx)

≤ (1− pn,i,0)2.

In addition, we get from (A2) the existence of a positive constant C such that
1 − pn,i,0 ≤ C/n, then An,i ≤ 2C2/n2. Then, there exists a positive constant δ
such that for any n ∈ IN, An ≤ δ/n. Hence, by (A1), the result.

C Proof of Proposition 3

We introduce the following notations, for all x, y ∈ Y and k ∈ IN: K(1)(x, y) = K(x, y)

K(k+1)(x, y) =
∫
Λ
K(k)(x, z)K(z, y)µ(dz).

Hence, we obtain by recurrence,

K(k+1)(x, y) =

∫
Λk
K(x, z1)K(z1, z2) . . .K(zk, y)µ(dz1) . . . µ(dzk). (8)

Let us now give the following technical lemma:

Lemma 2. Suppose Φ a DPP with kernel K of local trace class and with discrete
spectrum in [0; 1), J its associated interaction operator, and (λj) the associated
sequence of eigenvalues of K. Then, for all k ∈ IN,∫

Y
K(k)(x, x)µ(dx) =

+∞∑
j=1

λkj ,

∫
Y
|J(x, x)−K(x, x)|µ(dx) =

+∞∑
j=1

λ2j
1− λj

.

Proof. Let us show the first equality.
By (8), for all k ∈ IN, x, y ∈ Y,

K(k+1)(x, y) =

∫
Yk
K(x, z1)K(z1, z2) . . .K(zk, y)µ(dz1) . . . µ(dzk).

Then, by (2.2), we get
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K(k+1)(x, y) =

+∞∑
j1,...,jk+1=1

(

k+1∏
l=1

λjl)φj1(x)φjk+1
(y)

∫
Yk

( k∏
q=1

φjq (zq)φjq+1
(zq)

)
µk(dz1 . . . dzk),

and since (φj)j∈IN is an orthonormal basis,

K(k+1)(x, y) =

+∞∑
j1,...,jk+1=1

(

k+1∏
l=1

λjl)φj1(x)φjk+1
(y)1{λj1=···=λjk+1

},

hence, the first equality.
Moreover, by Lemma 2, for all x ∈ Y,

J(x, x) =
+∞∑
k=1

K(k)(x, x) ≥ K(x, x),

then,

∫
E

|J(x, x)−K(x, x)|µ(dx) =

+∞∑
k=2

∫
E

K(k)(x, x)µ(dx)

=

+∞∑
k=2

+∞∑
j=1

λkj

=

+∞∑
j=1

λ2j
1− λj

,

which concludes the proof of the lemma.

By Proposition 1, dR(Φn, πM ) ≤
∫
Λ
E[|cn(y, Φn)−Kn(y, y)|]µ(dy) =: dn. As

in previous proofs, we have the upper bound

dn ≤ Un + Vn +Rn,

where

Un =

∫
E

E
[
|cn(y, Φn)− Jn(y, y)|

]
µ(dy),

Vn =

∫
E

E
[
|Jn(y, y)−Kn(y, y)|

]
µ(dy).

By theorem 3.1. in [4], we get that cn(x, ξ) ≤ Jn(x, x) for any x ∈ IRd and
ξ ∈ NY, which allows to write

Un =

∫
Λ

E
[
Jn(y, y)− cn(y, Φn)

]
µ(dy),
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then, since by equation (4), for all y ∈ Y,

Kn(y, y) = E
[
cn(y, Φn)

]
we get

Un =

∫
E

Jn(y, y)−Kn(y, y)µ(dy).

By Lemma 2, for all n ∈ IN,

∫
E

Jn(y, y)−Kn(y, y)µ(dy) =

+∞∑
j=1

λ2n,j
1− λn,j

where the (λn,j)j≥1 are the eigenvalues of Kn.

If for all x, y ∈ Y, K(x, y) =

+∞∑
j=1

λjφj(x)φj(y), then for all x, y ∈ Λ,

Kn(x, y) =

+∞∑
j=1

λjφj(
x√
βn

)φj(
y√
βn

)

=

+∞∑
j=1

λjNn,j φ̃j(x)φ̃j(y),

where for all j ∈ IN and all x ∈ Y,

φ̃j(x) =
1√
Nn,j

φj(
x√
βn

)

and for all j ∈ IN,

Nn,j =
√
βn

∫
E

|φj(u)|2µ(du) ≤
√
βn,

such that (φ̃j)j∈IN is an orthonormal basis of L2(Y, µ; C).

Then λn,j = λjNn,j and we can deduce that there exists a θ > 0 independent
of Λ such that for all n ∈ IN,

Un ≤ θβn,

as expected.
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