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ABSTRACT
In this paper, compressed sensing (CS) is investigated
as a denoising tool in bioimaging. Multiple reconstruc-
tions at low sampling rates are combined to generate
high quality denoised images using total- variation spar-
sity constraints. The validity of the proposed method is
first assessed on a synthetic image with a known ground
truth and then applied to real biological images.

Index Terms— Bioimaging, compressed sensing,
denoising, total-variation, Fourier transform.

1. INTRODUCTION

Image denoising consists in recovering an image x from a
degraded noisy observation y. A deterministic denoising
algorithm can then be viewed as a function g that maps
the observation y to an estimator x̂ = g(y) of x; g is
designed to make x̂ as faithful as possible to the ground
truth x.

A very large number of image denoising methods ex-
ist in the literature, that consider di�erent noise models
and image characteristics (see [1]). Among them, total-
variation based filtering [2] and non-local means (NLM)
[3], and their variations, are at the basis of many current
denoising approaches.

The use of total variation (TV) for denoising was
originally proposed in [2]. and consists in obtaining the
denoised estimator x̂ as the minimum of the functional
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x are the partial horizontal and vertical derivatives of
the image x, and p, q are the pixels of the image x. This
method makes no assumption about the underlying na-
ture of the noise. Optimization problems involving TV
fit into the theory of convex optimization, which provides
theoretical guaranties as well as e�cient solvers to com-
pute the denoising estimators (see [4], [5]). Moreover, it
is well known that TV-based schemes tend to preserve
the sharp edges present in the images and are therefore
well adapted to biological microscopy images.

Inspired by the work of Marim et al. [6], we present a
novel denoising method that exploits multiple redundant

compressed sensing reconstructions while incorporating
and taking advantage of total-variation based regularisa-
tion.

2. COMPRESSED SENSING AS A
DENOISING TOOL

Compressed - or compressive - sensing (CS) is a sam-
pling theory introduced in [7, 8], that states that if a
discrete signal of size N is known to be sparse, it can
be recovered from a set of M linear non-adaptive mea-
surements, even if its size N is much larger than M . CS
is robust to the presence of noise in the measurements,
and can handle compressible signals (i.e. that are close
from sparse signals for a certain norm). These latter ex-
tensions are important to deal with real-world data, for
which noise-free images and perfect sparsity are often
unrealistic hypothesis [9, 10].

2.1. Denoising by averaging of multiple CS re-
constructions

The idea of our denoising method is based on the two
following remarks. First, in terms of frequency analy-
sis, the energy of a noise-free natural image is mostly
concentrated in the low-frequency of its Fourier domain.
Second, the theory of CS states that a sparse or com-
pressible signal can be recovered from a non-adaptive
subset of linear noisy measurements.

Based on these two facts, we propose to generate sev-
eral correlated subsets considering the Fourier transform
of the image, and rejecting most of its high frequency
coe�cients, which, as stated above, are corrupted. Each
of these measurement subsets y

k

(k = 1, . . . , R) is used
to compute an estimator x̂

k

of the ground truth image
x through CS reconstruction. Finally, the x̂

k

estimators
are aggregated thanks to a fusion operator f , designed
such that the resulting image x̂ = f(x̂

1

, . . . , x̂

R

) is less
noisy.
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Fig. 1. Denoising scheme using several CS reconstruc-

tions. From a noisy image y, we generate a given num-

ber of CS measurement vectors yk, by taking the Fourier

transform (FT) of y and selecting a subset of the Fourier

coe�cients, as presented in Fig. 2. Then, each yk is used

to produce an estimator x̂k of the original signal through

a CS reconstruction scheme. Finally, all the x̂k are com-

bined in a x̂ estimator, with improved faithfulness prop-

erties.

2.2. Implementation

The denoising method can be decomposed into three
steps (see Fig. 1):

• Generation of random subsets of measurement vec-

tors y

k

in the Fourier domain : As mentioned above,
each vector y

k

is obtained through the selection of a dif-
ferent subset of Fourier coe�cients of y. These selections
are performed as the realization of a random selection
process (see Fig. 2) designed as follows:

a. first, keep all the low-frequency coe�cients below
a certain cut-o� spatial frequency ‹

c

,

b. second, sample in a uniform random manner the
Fourier coe�cients above ‹

c

, at a sampling rate
· Æ 1.

We use di�erent selection rules for low and high fre-
quency coe�cients to account for the properties men-
tioned in Sec. 2.1. The influence of the two parameters ‹

c

and · is studied in Sec. 3. The generation of these mea-
surement vectors can be written as a linear non-injective
transformation: y

k

= �
k

y, where �
k

is constructed by
rejecting several coe�cients in a 2D Fourier transform
matrix.

• CS reconstructions generating partial estimators x̂

k

:
For each measurement vectors y

k

, we resolve a CS recon-
struction problem based on TV minimization, as pro-
posed in [7]:

x̂
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= arg min
x
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with Î·Î
TV

defined as in [7]. The construction of �
k

from
a Fourier transform enables to solve (1) very e�ciently
using convex optimization algorithms [5].

• Fusion of the x̂

k

to produce a final denoised image

x̂: To aggregate the series of partial estimators into a
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Fig. 2. Examples of sampling masks used in the Fourier

domain to generate the measurement vectors yk. The

white dots and areas correspond to the selected Fourier

coe�cients. See Sec. 2.2 for more details on the meaning

of the parameters ‹c and · .

single scalar value per pixel, we define a fusion operator
f as:

f(x̂
1
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R

) = 1
R
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. (2)

We select f to be an averaging operator since the estima-
tors are highly correlated and not noisy. This function
verifies the basic property of being monotonic, which is
important to preserve the original contrast in the image.
It should be noted that if the x̂

k

were R independent
observations of the same signal, the energy of the resid-
ual noise in the fused image x̂ = f(x̂

1

, . . . , x̂

R

) would be
divided by R compared to the noise in each x̂

k

. Even if
in our case this hypothesis does not hold as the x̂

k

are
correlated, we still observe a reduction of the residual
noise power in the fused image x̂ (see Sec. 3).

3. RESULTS

3.1. Dataset

One of the major problems when assessing the e�ciency
of denoising methods in biological imaging, is the lack
of ground truth. A ground truth on a natural image
cannot be found, and the use of classical noise-free im-
ages that we can find in the denoising literature does not
correspond to our hypotheses.

Follicle (red channel) Lymphocytes T Synthetic Cell

Fig. 3. Natural and synthetic images used to assess the

performances of our denoising algorithm.

To quantitatively evaluate the quality of the proposed
denoising method, we used a synthetic image generated
by the SIMCEP simulator for fluorescent cell populations
[11]. Simulated cells consist of nuclei, cytoplasm, and



intracellular objects. We used only the ground truth
shape image, illustrated in 3 and corrupted with a mixed
Poisson-Gaussian noise with parameters : ‡ = 0.1, ⁄ =
0.02 (see Fig. 5).

In order to assess the quality of our method, we will
use the Structural Similarity Index Measure (SSIM), a
fidelity measure which takes into account the structural
information in the image (see [12]).

To assess the performances of our denoising algo-
rithm on real images, we used two sets of biological im-
ages (see Fig. 3): An image of fluorescently labelled T-
lymphocytes, visualized with a confocal microscope, and
the red channel of the fluorescently labelled image of hair
follicle, visualized with a two-photon microscope.

3.2. Influence of the parameters

The proposed method uses three numerical parameters:
‹

c

and · , that determine how the measurement vectors
y

k

are generated, and R, the number of intermediate
fused CS reconstructions.

We first tested the influence of R on the SSIM: we
noted that the SSIM increases exponentially with R, and
that an almost optimal SSIM level is reached after a lim-
ited number of reconstructions only, whatever the pa-
rameters ‹

c

and · (see [13]). The fact that only a small
number of reconstructions is enough to converge is im-
portant for practical usage of the method, as the overall
computation time of the method is proportional to R

(the most expensive part of the method being indeed
the successive CS reconstructions (1)). In the rest of the
paper, we used R = 10.

We then tested the influence of the sampling param-
eters ‹

c

and · on the final average image x̂ (see Fig. 4).
For low values of both parameters, the reconstructed im-
ages are of poor quality (upper left images in Fig. 4),
while for high values, there seems to be no denoising
(lower right images in Fig. 4): more precisely, using high
values for · and ‹

c

leads to estimators x̂ for which the
noise intensity remains significant in the parts of the im-
ages with objects present. Therefore we used intermedi-
ate values for · and ‹

c

(50% and 25% respectively) in
the rest of the paper.

3.3. Experience on a synthetic image

The proposed denoising algorithm was compared to
NLM and TV-filtering. Results obtained on the syn-
thetic cell image are presented on Fig. 5 where the de-
noised images are displayed along with the noise residues
|x̂ ≠ y|. These images show that the NLM method is un-
able to restore the weak contrast between the nuclei and
the cytoplasm, and do not denoise the small intracellular
structures at all. The TV-based method is corrupted
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Fig. 4. Denoising results via averaging of multiple CS

reconstructions obtained on the hair follicle (red channel)

image with di�erent values of the sampling parameters ‹c

and · .

with strong staircase artifacts. The proposed method
performs better both visually and in terms of SSIM.

Noisy image

NL-means

TV filtering Proposed

(Ground truth)

SSIM = 0.821 SSIM = 0.835 SSIM = 0.891

Fig. 5. Denoising results on the synthetic cell image

(perturbed with a mixed Poisson-Gaussian noise with pa-

rameters ‡ = 0.1 and ⁄ = 0.02) obtained with the pro-

posed algorithm and the standard methods. The top row

presents the denoised images and the bottom row shows

the corresponding noise residues. For the proposed algo-

rithm, we used R = 10, ‹c = 25%, and · = 50%. In this

example, the ground truth is given, thus we can compute

the SSIM of each reconstruction.

3.4. Experience on biological images

Results obtained on the red channel of the hair follicle
image and on the lymphocytes T image are respectively
presented on Fig. 6 and 7. We cannot give quantitative
results in terms of SSIM in this part because of the lack
of a ground truth. However, the satisfying results on the
synthetic image allow us to give qualitative comments
about natural images.

We first notice that NLM performs poorly on these
tested images, except in the background and in homoge-
neous areas, as can be seen in the residue maps. This



is probably due to the type of tested biological images,
which present few non-random textured areas, and are
therefore less favorable to the patch-search approach of
NLM. Moreover, the residue map indicates that the NLM
behavior highly depends on the local features in the im-
ages, thus leading to significant di�erences between ar-
eas in terms of denoising. It can also be seen that results
achieved on the tested images with our method and TV-
filtering present a much higher visual quality than with
NLM. Finally, it can be observed that TV-filtered images
are very similar to what is obtained with our proposed
method when applied with high values of · and ‹

c

.

NL-means

TV filtering Proposed

Fig. 6. Denoising results on the hair follicle image (red

channel) obtained with the proposed algorithm and the

compared standard methods.

NL-means

TV filtering Proposed

Fig. 7. Denoising results on the lymphocytes T image

obtained with the proposed algorithm and the compared

standard methods..

4. CONCLUSION

We have presented a new denoising method, that takes
advantage of the CS framework with TV regularization.
We have shown that this method achieves performances
similar to standard denoising algorithms, while present-
ing more flexibility: one can adapt the parameters de-
pending on each image that is processed.

This method bears as well the potential to combine
acquisition and denoising once randomly programmable

CCD cameras become readily available. We will address
in future work the automated tuning of the optimal set
of parameters for a given image.

Another promising development is the fusion step.
Indeed, we can replace the mean fusion by any other
mathematical operators. For instance, by computing the
pixel-wise standard deviation of the R reconstructions,
we obtain a so called variance map that shows where
reconstruction errors are most likely to occur. Using this
variance map to spatially adapt the fusion rule is the
topic of ongoing research.
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