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ABSTRACT
In this work, Compressed Sensing (CS) is investigated as a denoising tool in bioimaging. The denoising algorithm
exploits multiple CS reconstructions, taking advantage of the robustness of CS in the presence of noise via
regularized reconstructions and the properties of the Fourier transform of bioimages. Multiple reconstructions at
low sampling rates are combined to generate high quality denoised images using several sparsity constraints. We
present di�erent combination methods for the CS reconstructions and quantitatively compare the performance
of our denoising methods to state-of-the-art ones.
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1. INTRODUCTION
The Compressed Sensing (CS) theory, introduced by1, 2 , gives a solution to the problem of recovering a signal x

of size N from an observation vector y = �x of size M << N , constituted by linear projections of x. Under the
assumption that x has a sparse representation in some known linear projection space, CS theory states that the
signal x can be recovered from the observation y made in an adequate projection space via convex optimization.

The purpose of image denoising is the recovery of an image x - that is called the ground truth image - from
a degraded noisy observation y. A denoising algorithm is a process that takes as entry the observation y and
creates an estimator x̂ of the ground truth x.

Several image denoising algorithms already exist in the literature, that consider di�erent models of noise
and exploit di�erent properties of the images (see3 for a recent review). We can highlight the total-variation
based filtering4 and the non-local means (NLM)5 as the basis of many current techniques. In this paper, we will
apply our methods to images corrupted by a mixed Poisson-Gaussian noise, which corresponds to the reality of
biological microscopy images.6

The use of Total Variation (TV) for denoising was proposed in4 , and consists in minimizing the operator
ÎxÎTV =
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x are the partial horizontal and vertical derivatives
of the image x, and p, q are pixels coordinates. Convex optimization theory uses this TV operator in a wide
and diverse range of applications.7, 8 One of the main reasons of this popularity is the fact that TV-based
optimization techniques tend to preserve sharp edges in the image. This framework is well adapted, in the
context of biological microscopy, for the study of images containing simple cells with a stationary noise, but not
necessarily for more complex tissues with non-stationary Poisson noise. In these cases, the TV-based methods
tend to generate staircase artifacts, that we propose to attenuate in our method, while avoiding the use of Poisson
TV with a data-fidelity term using an estimation of the local variance of the noise.9, 10

Inspired by the work of Marim et al.11 and Meiniel et al.12 , we present a denoising method that takes
advantage of the total-variation based regularization through multiple compressed sensing reconstructions. Fol-
lowing the idea of, for instance, ultrasound compounding technique13 , our method combines multiple redundant
but imperfect reconstructions. Modeling of noise properties is avoided via the introduction of a new image
processing operator: the variance map, which infers edge locations and noise level directly from the series of CS
reconstructions.



2. MULTIPLE COMPRESSED SENSING RECONSTRUCTIONS
Following the work of14 , the Fourier Transform can be used as the observation projection operator � to recover a
signal that is sparse in the spatial domain. Fourier coe�cients from biological images acquired with a microscope
can be measured via digital holography15 or optical Fourier Transform16 . Our working assumption for biological
samples is that the energy of the noise-free image is mostly concentrated in the low-frequency part of its Fourier
domain (see17 p. 52).

Noisy observations y are randomly sampled in the Fourier domain, while most of the high-frequency co-
e�cients are not selected. Since this selection is random, each draw gives di�erent results, but they all bear
some similarity. We generate several sampling patterns, that lead to several measurement subsets y

k

, where
k œ {1, . . . , R}. Each of these subsets is used to compute an estimator x̂

k

of the ground truth image x using
CS reconstruction. Finally, the x̂

k

are aggregated through a fusion operator f , such that the final estimator
x̂ = f(x̂1, . . . , x̂

k

) is of higher quality that individual x̂

k

(e.g. corrects the staircase e�ect caused by the TV
regularization). In Louchet and Moisan18 , a similar concept is proposed, where a Monte Carlo Markov Chain
implementing a Metropolis scheme is designed. In this model, the TV regularization is modeled in a Bayesian
approach, and each element of the random process is an image constructed with respect to the posterior law of
the model. Then, the images are combined through averaging into the final estimator.

2.1 Generation of multiple random subsets of samples
2.1.1 Undersampling of the Fourier coe�cients
The denoising method is decomposed into three steps (see Fig. 1).

Figure 1: Denoising scheme using several CS reconstructions. From a noisy image y, a given number of CS
measurement vectors yk are generated, by taking the Fourier transform (FT) of y and selecting a subset
of the Fourier coe�cients. Then, each yk is used to produce an estimator x̂k of the original image through
a CS reconstruction scheme. Finally, all the x̂k are combined into an estimator x̂.

The first step is the generation of random subsets from measurement vectors y

k

in the Fourier domain.: As
mentioned above, we perform a sub-sampling of the Fourier Transform of the noisy image y, following a random
process in the high-frequency part of the Fourier Transform space (‹ > ‹

c

). Gaussian or polynomial sampling
are natural schemes to perform this kind of sampling, but LeMontagner in19 (p. 55) proposes a new design:



i. First, keep all the low-frequency coe�cients below a certain cut-o� spatial frequency ‹

c

,

ii. Second, sample the Fourier coe�cients above ‹

c

according to a uniform random process, such that the overall
sampling rate of the Fourier Transform of y is · .

The generation of these measurement vectors can be written as a linear transformation: y

k

= �
k

y, where
�

k

is constructed by zeroing many coe�cients in the 2D Fourier transform matrix corresponding to frequencies
‹ > ‹

c

. �
k

follows the restricted isometry property20 and thus is well suited for CS reconstructions.
Therefore, the two parameters for the sampling part are the cut-o� frequency ‹

c

and the sampling rate · .
Their influence is studied in the Results section. Intuitively, the parameter ‹

c

, which is the radius of the fully
sampled low-frequency area, is chosen so that it contains most of the relevant information of the natural image.
We select its value so that the low-frequency area contains 90% of the energy of the whole image. This values
corresponds, for the images we work with in this paper, to a circle containing from 3% up to 20% of the Fourier
coe�cients.

2.2 Generation of multiple reconstructions
We use the Compressed Sensing theory to recover the R estimators x̂

k

from the sub-sampled Fourier measures.
Given each measurement vector y

k

, we resolve a CS reconstruction problem using a TV regularization constraint:

x̂

k

= arg min
xœCN

ÎxÎTV s.t. Î�
k

x ≠ y

k

Î2 Æ ‘ (1)

The reconstruction of �
k

from a Fourier transform is performed very e�ciently using convex optimization
algorithms such as NESTA.8 This algorithm is based on the general framework developed in21 for the minimiza-
tion of composite objective functions. It addresses the following constrained problem, with f(x) = ÎxÎTV or
f(x) = Î�ú

xÎ1 without specific requirements of the sparsity matrix �ú, and using accelerated gradient descent
with back-projection on the feasible set:

arg min
xœCN

f(x) s.t. Î�
x

≠ yÎ2 Æ ‘ (2)

We have chosen this algorithm among many others, because of its trade-o� between flexibility and execution
speed (see19 (p. 37) for a detailed study on the comparison of di�erent CS reconstruction algorithms for Fourier-
based measures and TV regularization).

The parameters in this part of the algorithm are the number R of CS reconstructions and the weight ‘ of the
data fidelity term to handle noise in the observations. Throughout the remainder of this paper, we set the value
of R so that · ◊ R = 1.

The parameter ‘ is chosen as in8 : ‘ = ‡


·N + 2

Ô
2·N , where ‡ is an estimator of the Gaussian component

of the noise. In the scenario of denoising as post-processing, it is estimated in a uniform background region of the
image using cumulant method, matching the first four cumulants of y with the k-statistics of the samples (see22

for more details). As the noisy image is not available, we define an estimate ŷ of this image using the Fourier
coe�cients of each acquisition, combine them and compute the inverse Fourier transform. The error made for
the computation of ‡ with this approach is fairly low (≥ 5%).

2.3 Fusion of the reconstructions
Once the partial estimators are known, we propose to combine them through a fusion operator, to obtain a single
estimator of the original image x:

x̂ = f(x̂1, . . . , x̂

R

)
Each of x̂

R

reconstructions provides an approximated denoised version of the original image. They di�er due to
the random sampling of Fourier coe�cients but also share some structural coherence, sharing multiple common
Fourier coe�cients (especially in the low-frequencies) and spatial coherence thanks to the TV regularization. In
previous works, we tested several fusion techniques, such as non-local merging, weighted averaging11 , or simple
average of the x̂

k

12 . We dedicate the next sub-sections to the introduction of di�erent fusion operators f .



2.3.1 Fusion by averaging
Simple averaging of the x̂

k

has the advantage of being easy to compute and, moreover, of being an unbiased
method for fusing the reconstructions without any bias between them. We define this fusion operator as follows:

x̂ = f(x̂1, . . . , x̂

R

) = 1
R

Rÿ

k=1
x̂

k

(3)

Results provided by this method are detailed in12 . The clear limitation of this approach is the smoothing
of the image information due to variations within reconstructions with respect to the exact position of contours
between structures. One legitimate question at this point is whether there is one reconstruction better than the
other ones. We try to answer this question in the next section.

2.3.2 Oracle Fusion
In the particular case where the image has a known ground truth x, let us define the oracle fusion operator as:

’(p, q) œ �, o

x

(p, q) = x̂

k

ú(p, q) s.t. k

ú = arg min
kœ{1,...,R}

--- x̂

k

(p, q) ≠ x(p, q)
--- (4)

where the algorithm 1 is described below in pseudo-code.

Algorithm 1: Oracle Fusion
Input : R partial reconstructions x̂

k

and ground truth image x.
Output: Estimator o

x

.
1 for each pixel (p, q) do
2 s

x

(p, q) Ω [x̂
k

(p, q) ≠ x(p, q)]
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;
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ú(p, q)
5 end

The results obtained with this method outperform the classical denoising algorithms (see Fig.2), as evidenced
by the SSIM index. Hence, we set it as the reference method for estimating the quality of the fusion of Compressed
Sensing reconstructions.

In order to test if this method follows a deterministic selection process, and if there is a way to aggregate the
partial reconstructions in a method similar to the oracle one, without knowing the ground truth, we now take a
closer look at the oracle method.

We notice that the oracle value is not representative of the statistics of the values among the R reconstructions.
On a synthetic example with a noise-free image corrupted with mixed Gaussian-Poisson noise, we generated
enough reconstructions for the oracle fusion to be almost perfect. Then, for each pixel, we computed the samples
vector : s

x

(p, q) = [x̂1(p, q), . . . , x̂

R

(p, q)]. The results of this experiment, shown on Fig.3, suggest that the oracle
method does not follow a deterministic selection process, as it corresponds to outliers in the statistics.

It seems therefore di�cult to search for an algorithm that would mimic the oracle selection of reconstructions.
But if we compare the results given by the oracle fusion and the fusion by averaging, we notice that the latter
algorithm performs poorly only at the edges of objects within the image (see Fig.4). Hence, we propose to
improve the averaging fusion method by modifying the fusion rule at edges. We call this approach spatially
adaptive fusion and describe it next.



Noisy Image Ground Truth NL-means TV filtering CS averaging CS oracle
SSIM = 0.089 SSIM = 1 SSIM = 0.830 SSIM = 0.822 SSIM = 0.900 SSIM = 0.922

Figure 2: Result of the oracle fusion on the synthetic cell image (perturbed with a mixed Poisson-Gaussian
noise with parameters ‡ = 0.1 and ⁄ = 0.02. Comparison with classical denoising methods and with the
fusion by averaging.

(a) Case 1: Good approximation (b) Case 2: Bad approximation
Figure 3: Comparison of the oracle fusion with the mean and the median of 50 reconstructions for two
random pixels in the synthetic cell image. On the right-hand side image, it can be seen that the best
value seems to be an outlier in the distribution of the sample values.

(a) Mean (b) Oracle (c) Di�erence
Figure 4: Comparison of oracle and averaging fusion results on two synthetic images (corrupted with
a mixed Poisson-Gaussian noise of parameters ‡ = 0.1 and ⁄ = 0.02) showing large di�erences at edge
locations only.



2.3.3 Spatially-adaptive fusion
We introduce a spatially-adaptive fusion rule which varies within the image (i.e. between pixels). In order
to do so, and since we do not have any ground truth, we propose to rely on an inference method to localize
edge positions in the image being reconstructed, based on what we call the reconstruction variance map. The
approach is similar to the works existing in the field of Anisotropic di�usion23 , where a prior detection of
particular directions in the image is studied, in order to enhance the shapes.
Variance map: The so called variance map is derived as the classical standard deviation of a series of measures
(see Fig. 5).

Figure 5: Computation of the variance map.

Keeping the same notations as above, we define the operator ‡

x

as follows:

‡

x

=
ı̂ıÙ 1

R ≠ 1

Rÿ

k=1
(x̂

k

≠ x̂)2 (5)

Applied on reconstructions from 2.3, this operator probes the pixel-wise disagreement between the partial CS
reconstructions x̂

k

: high values correspond to pixels where the reconstructed gray level is highly dependent on
the selection of the Fourier coe�cients from the originally sampled signal y (i.e. the generation of y

k

), while low
values reveal consensus areas. An example is shown on Fig. 6. The shape of the variance map is very similar to the
reconstruction errors induced by the averaging method, when using the oracle fusion as a reference (see Fig. 7).
In other words, in order to recover the results given by the oracle method from the averaging reconstruction,
the variance map gives a good indication of where discrepancies are highest. Moreover, the advantage of the
variance map is that it does not require the knowledge of the ground truth of an image. This operator therefore
allows us to work, even on images where the ground truth is not known.

(a) Synthetic cells (b) Variance map
Figure 6: Variance map of the synthetic cell image. This map confirms our hypothesis that the overall
reconstruction method performs very well on flat areas (cytoplasm and nucleus in the cells) but that the
di�erent reconstructions disagree around edges.
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Synthetic cell Example Shepp-Logan Phantom

Figure 7: Visual comparison between the variance map and the oracle-mean di�erence for several images.

Next, we propose a new denoising scheme that takes advantage of the new information provided by the variance
map, while taking into account the fusion method of 2.2. This will lead to a new class of fusion methods, that
we will refer to as spatially-adaptive fusion.
Spatially-adaptive fusion operator

We propose to combine the reconstructions via averaging with an edge-preserving constraint, where the
variance map acts as a weight. In what follows, and in order to simplify the notations, we adopt a matrix
notation. The estimator is defined as:

x̂ = ‡

x

¶ y + (1 ≠ ‡

x

) ¶ x̂mean (6)

where ¶ represents the Hadamard product of two matrices, and ‡ here represents the normalized version of
the variance map, so that the values of ‡ belong to [0, 1].

This approach can be viewed as a barycenter estimate (quoting the term from18) between the original and
the denoised images, where the confidence is weighted in the two images with the variance map. Indeed in18 the
authors state that visual quality can be improved when noise and texture are not completely removed. Here we
further guarantee that the original image information will be preserved at edges, which are the critical location
for visual assessment.

Filtering method. In the cases when the noise is very strong or when the image has some particular properties,
one may want to filter the noisy image prior to the adaptive reconstruction. In that case, if we denote by H a local
filter on an image (e.g. local gaussian filter, median filter, etc.), we define the filtered adaptive reconstruction as
follows:

x̂ = ‡

x

¶ H(y) + (1 ≠ ‡

x

) ¶ x̂mean (7)

2.3.4 Other fusion methods
Here we give an overview of di�erent fusion methods that we will compare with ours in the Results section.



Median, Min, Max For each pixel (p, q) in the image, define the samples vector, containing the values of
each partial reconstruction at this pixel :

s

x

(p, q) =
Ë

x̂1(p, q), . . . , x̂

R

(p, q)
È

Then, for each pixel, select the median value of its statistics vector. This defines the median fusion:

’(p, q) œ �, f(x̂1, . . . , x̂

R

)(p, q) = med (s
x

(p, q))

The minimum fusion and the maximum fusion follow the same process, only replacing med by min or max
operators.

Patch For this method, we need to define a neighborhood in the image. For instance, define the Von Neumann
neighborhood of the pixel (p, q) in the image x as : V

x

(p, q) = {x, (p, q), x(p≠1, q), x(p, q≠1), x(p+1, q), x(p, q+1)}.
The idea of this fusion method is to select for each pixel the value of the element that is the most frequent in

the neighborhood of this pixel in each partial reconstruction. Define the set where we want to seek for the most
frequent value:

N
p,q

=
R€

k=1
V

x̂k (p, q)

Then, the final estimator is defined as follows:

x̂(p, q) = mode (N
p,q

)

3. RESULTS
When working on real images obtained in biological imaging, one major problem is the fact that we do not have
access to the ground truth image; another problem is that the images present in the databases of the denoising
literature do not fit with our hypotheses.

Therefore, in order to evaluate quantitatively the quality of our method, we have used a synthetic cell image
generated by the SIMCEP simulator for fluorescent cell populations24 . We perturbed the ground truth image
(Fig. 8) with a mixed Poisson Gaussian noise of parameters ‡ = 0.1 and ⁄ = 0.02. In other words, if x is the
ground truth image, make z ≥ P !

x

⁄

"
follow a Poisson distribution, then the final noisy image is y = ⁄z + b,

where b ≥ N !
0, ‡

2"
follows a Gaussian distribution.

On the synthetic images, we evaluate the quality of our results by using the Structural Similarity Index
Measure (SSIM)25 . We have chosen this measure among others (MSE, SNR) because it corresponds better to
the perception of the human eye.

We also assess the performances of our algorithm on real microscopy images of a Hela cell, where we obtained
a ground truth image using a much longer acquisition time than for the noisy version (Fig. 8) in order to smooth
out the noise.



HeLa cell Synthetic Cell

Figure 8: Natural and synthetic images used to assess the performances of our denoising algorithm. The
synthetic image is perturbed with a mixed Poisson-Gaussian noise of parameters ‡ = 0.1 and ⁄ = 0.02.
The ground truth of the HeLa cell is obtained with a long acquisition time (7 min), and the noisy version
is obtained with a fast acquisition time (2 sec). The conditions of the experiment were met to avoid the
presence of photobleaching in this case (excitation with a LED, strong fluorescence marker, low exposure
time).

3.1 Influence of the parameters
The algorithm that we propose in this paper has the advantage of using very few parameters. As stated earlier,
there are only four of them: ·, ‹

c

, R and ‘. Only · and R have still to be determined, keeping in mind that
we constrain · ◊ R = 1. In this part, we investigate the influence of these parameters on the averaging fusion
operator. Similar comments can be made for other fusion operators as the median or the adaptive reconstruction.

We first fixed the number of reconstructions R to 5 and studied the influence of · for the example image,
for di�erent values of ‹

c

. The results are shown on Fig. 9, where the SSIM of the reconstruction is measured for
di�erent values of · and ‹

c

. For very low values of · , the reconstruction is poor but, in the other hand, values
of · around 20% are enough to reach a quite optimal result.

On Fig. 10 we show the influence of the number of reconstructions R on the SSIM evaluation of the results
of the method (with · = 10% and ‹

c

= 10%). The striking shape of the curve indicates that if multiple
reconstructions perform better than just one, using too many reconstructions reduces the quality of the final
image. This proves the degradation caused by the averaging of di�erent images, that smoothes the shapes in the
image. For each processed image, there is an optimal value of R which never exceeds R = 10.

For the following experiments, we fix the values of · and R respectively at 20% and 5, so that we meet the
requirement that · ◊ R = 1.

3.2 Results on a synthetic image
In the case of the synthetic cell image, the ground truth is known. This allows to compare quantitatively the
di�erent fusion operators proposed in this paper with standard denoising algorithms. The results are shown in
Fig. 11 and in Tab. 1.

As expected, the oracle method gives the best results, and the other methods have di�erent characteristics.
While the staircase e�ect is very strong on the TV, median and patch methods, it is smoothed out by the adaptive
and averaging methods. The constrast inside the cell is poorly recovered by the NLM method. Visual contrast
is better recovered on images processed with the patch method, but the small white objects are corrupted.

The method giving the best results in terms of SSIM - apart from the oracle reconstruction - is the spatially-
adaptive reconstruction. Qualitatively, it also appears sharper than the other images. This result proves that the



Figure 9: Denoising results via averaging of multiple CS reconstructions obtained on the example image
for di�erent values of the sampling parameters ‹c and · . Note that the influence of · is more visible for
low values of ‹c but becomes marginal for higher values.

Figure 10: Denoising results via averaging of multiple CS reconstructions obtained on the example image
for di�erent values of the number of reconstructions R. The fusion of several reconstructions improves
the quality of the algorithm, until a certain value of R (depending on the image we process). If we use
more reconstructions that this value, the e�ect of the fusion degrades the result. In this example, R = 6
gives the best quantitative result.

Averaging Median Patch NLM TV Oracle Adaptive Adaptive (filtered)
Synthetic cell 0.903 0.904 0.867 0.831 0.838 0.928 0.906 0.902

Hela Cell 0.820 0.822 0.616 0.725 0.764 0.835 0.811 0.824

Table 1: SSIM Table for the Synthetic cell image corrupted with a mixed Poisson-Gaussian noise
(‡ = 0.1, ⁄ = 0.02) and for the Hela cell. Cells in blue show, for each image, the best result among
all di�erent methods. The oracle fusion, which is the reference method, indeed shows the best
results.

use of the variance map actually improves the reconstruction quality of the method proposed by12 . Finally, most
of the methods proposed in this paper outperform the classical NLM and TV-filtering method for the synthetic
cell image corrupted with a mixed Poisson-Gaussian noise.

3.3 Results on biological images
To quantitatively evaluate our algorithm on a real biological image, we acquired, with a confocal microscope,
a Hela cell image with di�erent exposure times, and labeled with a Cell Tracker CMFDA dye. Because of
the di�erent sources of noise present during the acquisition process6 , these images are corrupted with mixed
Poisson-Gaussian noise, which can be drastically reduced using a longer acquisition time. The dye that we used



Noisy Averaging Median
SSIM = 0.903 SSIM = 0.904

Patch NLM TV
SSIM = 0.867 SSIM = 0.831 SSIM = 0.838

Oracle Adaptive Adaptive (filtered)
SSIM = 0.928 SSIM = 0.906 SSIM = 0.902

Figure 11: Denoising results on the synthetic cell image (perturbed with a mixed Poisson-Gaussian noise
with parameters ‡ = 0.1 and ⁄ = 0.02) obtained with the di�erent methods proposed and the standard
algorithms. For the proposed algorithm, we used R = 5 and · = 20%. In this example, the ground truth
is given, thus we can compute the SSIM of each reconstruction.

for this experiment is strong enough, and the laser weak enough, to avoid photobleaching.
We first acquired one image with a short acquisition time (2 seconds), and used this image as the "reference"

noisy image y. Then we acquired the same field of view for a longer time (7 minutes), and used this other image
as the ground truth x. The results of our algorithm are compared with standard denoising methods (see Fig. 12
and Tab. 1).

Except for the patch reconstruction method which reconstructs many outliers and behaves poorly in the
background, the di�erent fusion methods give similar results. The amount of noise removed in the process is
larger than for the NLM and TV-filtering methods. This remark is confirmed with the SSIM values obtained for
each reconstruction, our method outperforming the standard ones in each case. However, artifacts appear in the
images and some outliers remain visible in most cases.

Similarly to the synthetic example, the adaptive method gives the best quantitative results. The filtered
version looks smoother, as the outliers have completely disappeared. With the adaptive methods, we propose an
alternative to classical denoising techniques.

4. CONCLUSION
In this paper, we have presented a new denoising method based on multiple Compressed Sensing reconstructions,
and presents a new image processing operator: the variance map. The method gives results that are comparable
with classical denoising methods, while relying on image reconstruction principles that could be tuned directly
during an acquisition process. The proposed spatially-adaptive reconstruction algorithm has the advantage of
using very few parameters, that are easy to tune, and makes no assumption on the noise present in the tested



Noisy Averaging Median
SSIM = 0.820 SSIM = 0.822

Patch NLM TV
SSIM = 0.616 SSIM = 0.725 SSIM = 0.764

Oracle Adaptive Adaptive (filtered)
SSIM = 0.835 SSIM = 0.811 SSIM = 0.824

Figure 12: Denoising results on the HeLa cell image obtained with the di�erent methods proposed and
the standard algorithms. For the proposed algorithm, we used R = 5 and · = 20%. In this example, we
use as a ground truth the same image obtained with a longer acquistion time. Hence we can compute the
SSIM of each reconstruction.

images. Along with the spatially-adaptive reconstruction, our method opens the possibility of creating many
other denoising schemes, just by changing the fusion operator. We compared several of these fusion operators,
but it would be interesting to look for even more diverse fusion schemes.
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